1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
|
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dead_code_elimination.h"
#include "utils/array_ref.h"
#include "base/bit_vector-inl.h"
#include "ssa_phi_elimination.h"
namespace art {
static void MarkReachableBlocks(HGraph* graph, ArenaBitVector* visited) {
ArenaVector<HBasicBlock*> worklist(graph->GetArena()->Adapter());
constexpr size_t kDefaultWorlistSize = 8;
worklist.reserve(kDefaultWorlistSize);
visited->SetBit(graph->GetEntryBlock()->GetBlockId());
worklist.push_back(graph->GetEntryBlock());
while (!worklist.empty()) {
HBasicBlock* block = worklist.back();
worklist.pop_back();
int block_id = block->GetBlockId();
DCHECK(visited->IsBitSet(block_id));
ArrayRef<HBasicBlock* const> live_successors(block->GetSuccessors());
HInstruction* last_instruction = block->GetLastInstruction();
if (last_instruction->IsIf()) {
HIf* if_instruction = last_instruction->AsIf();
HInstruction* condition = if_instruction->InputAt(0);
if (condition->IsIntConstant()) {
if (condition->AsIntConstant()->IsOne()) {
live_successors = live_successors.SubArray(0u, 1u);
DCHECK_EQ(live_successors[0], if_instruction->IfTrueSuccessor());
} else {
DCHECK(condition->AsIntConstant()->IsZero());
live_successors = live_successors.SubArray(1u, 1u);
DCHECK_EQ(live_successors[0], if_instruction->IfFalseSuccessor());
}
}
} else if (last_instruction->IsPackedSwitch()) {
HPackedSwitch* switch_instruction = last_instruction->AsPackedSwitch();
HInstruction* switch_input = switch_instruction->InputAt(0);
if (switch_input->IsIntConstant()) {
int32_t switch_value = switch_input->AsIntConstant()->GetValue();
int32_t start_value = switch_instruction->GetStartValue();
// Note: Though the spec forbids packed-switch values to wrap around, we leave
// that task to the verifier and use unsigned arithmetic with it's "modulo 2^32"
// semantics to check if the value is in range, wrapped or not.
uint32_t switch_index =
static_cast<uint32_t>(switch_value) - static_cast<uint32_t>(start_value);
if (switch_index < switch_instruction->GetNumEntries()) {
live_successors = live_successors.SubArray(switch_index, 1u);
DCHECK_EQ(live_successors[0], block->GetSuccessors()[switch_index]);
} else {
live_successors = live_successors.SubArray(switch_instruction->GetNumEntries(), 1u);
DCHECK_EQ(live_successors[0], switch_instruction->GetDefaultBlock());
}
}
}
for (HBasicBlock* successor : live_successors) {
// Add only those successors that have not been visited yet.
if (!visited->IsBitSet(successor->GetBlockId())) {
visited->SetBit(successor->GetBlockId());
worklist.push_back(successor);
}
}
}
}
void HDeadCodeElimination::MaybeRecordDeadBlock(HBasicBlock* block) {
if (stats_ != nullptr) {
stats_->RecordStat(MethodCompilationStat::kRemovedDeadInstruction,
block->GetPhis().CountSize() + block->GetInstructions().CountSize());
}
}
void HDeadCodeElimination::RemoveDeadBlocks() {
if (graph_->HasIrreducibleLoops()) {
// Do not eliminate dead blocks if the graph has irreducible loops. We could
// support it, but that would require changes in our loop representation to handle
// multiple entry points. We decided it was not worth the complexity.
return;
}
// Classify blocks as reachable/unreachable.
ArenaAllocator* allocator = graph_->GetArena();
ArenaBitVector live_blocks(allocator, graph_->GetBlocks().size(), false, kArenaAllocDCE);
MarkReachableBlocks(graph_, &live_blocks);
bool removed_one_or_more_blocks = false;
bool rerun_dominance_and_loop_analysis = false;
// Remove all dead blocks. Iterate in post order because removal needs the
// block's chain of dominators and nested loops need to be updated from the
// inside out.
for (HPostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
HBasicBlock* block = it.Current();
int id = block->GetBlockId();
if (!live_blocks.IsBitSet(id)) {
MaybeRecordDeadBlock(block);
block->DisconnectAndDelete();
removed_one_or_more_blocks = true;
if (block->IsInLoop()) {
rerun_dominance_and_loop_analysis = true;
}
}
}
// If we removed at least one block, we need to recompute the full
// dominator tree and try block membership.
if (removed_one_or_more_blocks) {
if (rerun_dominance_and_loop_analysis) {
graph_->ClearLoopInformation();
graph_->ClearDominanceInformation();
graph_->BuildDominatorTree();
} else {
graph_->ClearDominanceInformation();
graph_->ComputeDominanceInformation();
graph_->ComputeTryBlockInformation();
}
}
// Connect successive blocks created by dead branches. Order does not matter.
for (HReversePostOrderIterator it(*graph_); !it.Done();) {
HBasicBlock* block = it.Current();
if (block->IsEntryBlock() || !block->GetLastInstruction()->IsGoto()) {
it.Advance();
continue;
}
HBasicBlock* successor = block->GetSingleSuccessor();
if (successor->IsExitBlock() || successor->GetPredecessors().size() != 1u) {
it.Advance();
continue;
}
block->MergeWith(successor);
// Reiterate on this block in case it can be merged with its new successor.
}
}
void HDeadCodeElimination::RemoveDeadInstructions() {
// Process basic blocks in post-order in the dominator tree, so that
// a dead instruction depending on another dead instruction is removed.
for (HPostOrderIterator b(*graph_); !b.Done(); b.Advance()) {
HBasicBlock* block = b.Current();
// Traverse this block's instructions in backward order and remove
// the unused ones.
HBackwardInstructionIterator i(block->GetInstructions());
// Skip the first iteration, as the last instruction of a block is
// a branching instruction.
DCHECK(i.Current()->IsControlFlow());
for (i.Advance(); !i.Done(); i.Advance()) {
HInstruction* inst = i.Current();
DCHECK(!inst->IsControlFlow());
if (!inst->HasSideEffects()
&& !inst->CanThrow()
&& !inst->IsSuspendCheck()
&& !inst->IsNativeDebugInfo()
// If we added an explicit barrier then we should keep it.
&& !inst->IsMemoryBarrier()
&& !inst->IsParameterValue()
&& !inst->HasUses()) {
block->RemoveInstruction(inst);
MaybeRecordStat(MethodCompilationStat::kRemovedDeadInstruction);
}
}
}
}
void HDeadCodeElimination::Run() {
RemoveDeadBlocks();
SsaRedundantPhiElimination(graph_).Run();
RemoveDeadInstructions();
}
} // namespace art
|