summaryrefslogtreecommitdiff
path: root/compiler/jni/quick/x86/calling_convention_x86.cc
blob: 1baffc57daeaf7f0aacdf56428f4560257e5c138 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "calling_convention_x86.h"

#include <android-base/logging.h>

#include "arch/instruction_set.h"
#include "arch/x86/jni_frame_x86.h"
#include "utils/x86/managed_register_x86.h"

namespace art {
namespace x86 {

static constexpr Register kManagedCoreArgumentRegisters[] = {
    EAX, ECX, EDX, EBX
};
static constexpr size_t kManagedCoreArgumentRegistersCount =
    arraysize(kManagedCoreArgumentRegisters);
static constexpr size_t kManagedFpArgumentRegistersCount = 4u;

static constexpr ManagedRegister kCalleeSaveRegisters[] = {
    // Core registers.
    X86ManagedRegister::FromCpuRegister(EBP),
    X86ManagedRegister::FromCpuRegister(ESI),
    X86ManagedRegister::FromCpuRegister(EDI),
    // No hard float callee saves.
};

template <size_t size>
static constexpr uint32_t CalculateCoreCalleeSpillMask(
    const ManagedRegister (&callee_saves)[size]) {
  // The spilled PC gets a special marker.
  uint32_t result = 1 << kNumberOfCpuRegisters;
  for (auto&& r : callee_saves) {
    if (r.AsX86().IsCpuRegister()) {
      result |= (1 << r.AsX86().AsCpuRegister());
    }
  }
  return result;
}

static constexpr uint32_t kCoreCalleeSpillMask = CalculateCoreCalleeSpillMask(kCalleeSaveRegisters);
static constexpr uint32_t kFpCalleeSpillMask = 0u;

static constexpr ManagedRegister kNativeCalleeSaveRegisters[] = {
    // Core registers.
    X86ManagedRegister::FromCpuRegister(EBX),
    X86ManagedRegister::FromCpuRegister(EBP),
    X86ManagedRegister::FromCpuRegister(ESI),
    X86ManagedRegister::FromCpuRegister(EDI),
    // No hard float callee saves.
};

static constexpr uint32_t kNativeCoreCalleeSpillMask =
    CalculateCoreCalleeSpillMask(kNativeCalleeSaveRegisters);
static constexpr uint32_t kNativeFpCalleeSpillMask = 0u;

// Calling convention

ManagedRegister X86JniCallingConvention::SavedLocalReferenceCookieRegister() const {
  // The EBP is callee-save register in both managed and native ABIs.
  // It is saved in the stack frame and it has no special purpose like `tr` on arm/arm64.
  static_assert((kCoreCalleeSpillMask & (1u << EBP)) != 0u);  // Managed callee save register.
  return X86ManagedRegister::FromCpuRegister(EBP);
}

ManagedRegister X86JniCallingConvention::ReturnScratchRegister() const {
  return ManagedRegister::NoRegister();  // No free regs, so assembler uses push/pop
}

static ManagedRegister ReturnRegisterForShorty(const char* shorty, bool jni) {
  if (shorty[0] == 'F' || shorty[0] == 'D') {
    if (jni) {
      return X86ManagedRegister::FromX87Register(ST0);
    } else {
      return X86ManagedRegister::FromXmmRegister(XMM0);
    }
  } else if (shorty[0] == 'J') {
    return X86ManagedRegister::FromRegisterPair(EAX_EDX);
  } else if (shorty[0] == 'V') {
    return ManagedRegister::NoRegister();
  } else {
    return X86ManagedRegister::FromCpuRegister(EAX);
  }
}

ManagedRegister X86ManagedRuntimeCallingConvention::ReturnRegister() {
  return ReturnRegisterForShorty(GetShorty(), false);
}

ManagedRegister X86JniCallingConvention::ReturnRegister() {
  return ReturnRegisterForShorty(GetShorty(), true);
}

ManagedRegister X86JniCallingConvention::IntReturnRegister() {
  return X86ManagedRegister::FromCpuRegister(EAX);
}

// Managed runtime calling convention

ManagedRegister X86ManagedRuntimeCallingConvention::MethodRegister() {
  return X86ManagedRegister::FromCpuRegister(EAX);
}

void X86ManagedRuntimeCallingConvention::ResetIterator(FrameOffset displacement) {
  ManagedRuntimeCallingConvention::ResetIterator(displacement);
  gpr_arg_count_ = 1u;  // Skip EAX for ArtMethod*
}

void X86ManagedRuntimeCallingConvention::Next() {
  if (!IsCurrentParamAFloatOrDouble()) {
    gpr_arg_count_ += IsCurrentParamALong() ? 2u : 1u;
  }
  ManagedRuntimeCallingConvention::Next();
}

bool X86ManagedRuntimeCallingConvention::IsCurrentParamInRegister() {
  if (IsCurrentParamAFloatOrDouble()) {
    return itr_float_and_doubles_ < kManagedFpArgumentRegistersCount;
  } else {
    // Don't split a long between the last register and the stack.
    size_t extra_regs = IsCurrentParamALong() ? 1u : 0u;
    return gpr_arg_count_ + extra_regs < kManagedCoreArgumentRegistersCount;
  }
}

bool X86ManagedRuntimeCallingConvention::IsCurrentParamOnStack() {
  return !IsCurrentParamInRegister();
}

ManagedRegister X86ManagedRuntimeCallingConvention::CurrentParamRegister() {
  DCHECK(IsCurrentParamInRegister());
  if (IsCurrentParamAFloatOrDouble()) {
    // First four float parameters are passed via XMM0..XMM3
    XmmRegister reg = static_cast<XmmRegister>(XMM0 + itr_float_and_doubles_);
    return X86ManagedRegister::FromXmmRegister(reg);
  } else {
    if (IsCurrentParamALong()) {
      switch (gpr_arg_count_) {
        case 1:
          static_assert(kManagedCoreArgumentRegisters[1] == ECX);
          static_assert(kManagedCoreArgumentRegisters[2] == EDX);
          return X86ManagedRegister::FromRegisterPair(ECX_EDX);
        case 2:
          static_assert(kManagedCoreArgumentRegisters[2] == EDX);
          static_assert(kManagedCoreArgumentRegisters[3] == EBX);
          return X86ManagedRegister::FromRegisterPair(EDX_EBX);
        default:
          LOG(FATAL) << "UNREACHABLE";
          UNREACHABLE();
      }
    } else {
      Register core_reg = kManagedCoreArgumentRegisters[gpr_arg_count_];
      return X86ManagedRegister::FromCpuRegister(core_reg);
    }
  }
}

FrameOffset X86ManagedRuntimeCallingConvention::CurrentParamStackOffset() {
  return FrameOffset(displacement_.Int32Value() +   // displacement
                     kFramePointerSize +                 // Method*
                     (itr_slots_ * kFramePointerSize));  // offset into in args
}

// JNI calling convention

X86JniCallingConvention::X86JniCallingConvention(bool is_static,
                                                 bool is_synchronized,
                                                 bool is_critical_native,
                                                 const char* shorty)
    : JniCallingConvention(is_static,
                           is_synchronized,
                           is_critical_native,
                           shorty,
                           kX86PointerSize) {
}

uint32_t X86JniCallingConvention::CoreSpillMask() const {
  return is_critical_native_ ? 0u : kCoreCalleeSpillMask;
}

uint32_t X86JniCallingConvention::FpSpillMask() const {
  return is_critical_native_ ? 0u : kFpCalleeSpillMask;
}

size_t X86JniCallingConvention::FrameSize() const {
  if (is_critical_native_) {
    CHECK(!SpillsMethod());
    CHECK(!HasLocalReferenceSegmentState());
    CHECK(!SpillsReturnValue());
    return 0u;  // There is no managed frame for @CriticalNative.
  }

  // Method*, PC return address and callee save area size, local reference segment state
  DCHECK(SpillsMethod());
  const size_t method_ptr_size = static_cast<size_t>(kX86PointerSize);
  const size_t pc_return_addr_size = kFramePointerSize;
  const size_t callee_save_area_size = CalleeSaveRegisters().size() * kFramePointerSize;
  size_t total_size = method_ptr_size + pc_return_addr_size + callee_save_area_size;

  DCHECK(HasLocalReferenceSegmentState());
  // Cookie is saved in one of the spilled registers.

  // Plus return value spill area size
  if (SpillsReturnValue()) {
    // For 64-bit return values there shall be a 4B alignment gap between
    // the method pointer and the saved return value.
    size_t padding = ReturnValueSaveLocation().SizeValue() - method_ptr_size;
    DCHECK_EQ(padding,
              (GetReturnType() == Primitive::kPrimLong || GetReturnType() == Primitive::kPrimDouble)
                  ? 4u
                  : 0u);
    total_size += padding;
    total_size += SizeOfReturnValue();
  }

  return RoundUp(total_size, kStackAlignment);
}

size_t X86JniCallingConvention::OutFrameSize() const {
  // The size of outgoing arguments.
  size_t size = GetNativeOutArgsSize(/*num_args=*/ NumberOfExtraArgumentsForJni() + NumArgs(),
                                     NumLongOrDoubleArgs());

  // @CriticalNative can use tail call as all managed callee saves are preserved by AAPCS.
  static_assert((kCoreCalleeSpillMask & ~kNativeCoreCalleeSpillMask) == 0u);
  static_assert((kFpCalleeSpillMask & ~kNativeFpCalleeSpillMask) == 0u);

  if (UNLIKELY(IsCriticalNative())) {
    // Add return address size for @CriticalNative.
    // For normal native the return PC is part of the managed stack frame instead of out args.
    size += kFramePointerSize;
    // For @CriticalNative, we can make a tail call if there are no stack args
    // and the return type is not FP type (needs moving from ST0 to MMX0) and
    // we do not need to extend the result.
    bool return_type_ok = GetShorty()[0] == 'I' || GetShorty()[0] == 'J' || GetShorty()[0] == 'V';
    DCHECK_EQ(
        return_type_ok,
        GetShorty()[0] != 'F' && GetShorty()[0] != 'D' && !RequiresSmallResultTypeExtension());
    if (return_type_ok && size == kFramePointerSize) {
      // Note: This is not aligned to kNativeStackAlignment but that's OK for tail call.
      static_assert(kFramePointerSize < kNativeStackAlignment);
      // The stub frame size is considered 0 in the callee where the return PC is a part of
      // the callee frame but it is kPointerSize in the compiled stub before the tail call.
      DCHECK_EQ(0u, GetCriticalNativeStubFrameSize(GetShorty(), NumArgs() + 1u));
      return kFramePointerSize;
    }
  }

  size_t out_args_size = RoundUp(size, kNativeStackAlignment);
  if (UNLIKELY(IsCriticalNative())) {
    DCHECK_EQ(out_args_size, GetCriticalNativeStubFrameSize(GetShorty(), NumArgs() + 1u));
  }
  return out_args_size;
}

ArrayRef<const ManagedRegister> X86JniCallingConvention::CalleeSaveRegisters() const {
  if (UNLIKELY(IsCriticalNative())) {
    // Do not spill anything, whether tail call or not (return PC is already on the stack).
    return ArrayRef<const ManagedRegister>();
  } else {
    return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters);
  }
}

bool X86JniCallingConvention::IsCurrentParamInRegister() {
  return false;  // Everything is passed by stack.
}

bool X86JniCallingConvention::IsCurrentParamOnStack() {
  return true;  // Everything is passed by stack.
}

ManagedRegister X86JniCallingConvention::CurrentParamRegister() {
  LOG(FATAL) << "Should not reach here";
  UNREACHABLE();
}

FrameOffset X86JniCallingConvention::CurrentParamStackOffset() {
  return
      FrameOffset(displacement_.Int32Value() - OutFrameSize() + (itr_slots_ * kFramePointerSize));
}

ManagedRegister X86JniCallingConvention::HiddenArgumentRegister() const {
  CHECK(IsCriticalNative());
  // EAX is neither managed callee-save, nor argument register, nor scratch register.
  DCHECK(std::none_of(kCalleeSaveRegisters,
                      kCalleeSaveRegisters + std::size(kCalleeSaveRegisters),
                      [](ManagedRegister callee_save) constexpr {
                        return callee_save.Equals(X86ManagedRegister::FromCpuRegister(EAX));
                      }));
  return X86ManagedRegister::FromCpuRegister(EAX);
}

bool X86JniCallingConvention::UseTailCall() const {
  CHECK(IsCriticalNative());
  return OutFrameSize() == kFramePointerSize;
}

}  // namespace x86
}  // namespace art