1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
|
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "jni_compiler.h"
#include <algorithm>
#include <fstream>
#include <ios>
#include <memory>
#include <vector>
#include "art_method.h"
#include "base/arena_allocator.h"
#include "base/arena_containers.h"
#include "base/enums.h"
#include "base/logging.h" // For VLOG.
#include "base/macros.h"
#include "base/malloc_arena_pool.h"
#include "base/memory_region.h"
#include "base/utils.h"
#include "calling_convention.h"
#include "class_linker.h"
#include "dwarf/debug_frame_opcode_writer.h"
#include "dex/dex_file-inl.h"
#include "driver/compiler_options.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "jni/jni_env_ext.h"
#include "thread.h"
#include "utils/arm/managed_register_arm.h"
#include "utils/arm64/managed_register_arm64.h"
#include "utils/assembler.h"
#include "utils/jni_macro_assembler.h"
#include "utils/managed_register.h"
#include "utils/x86/managed_register_x86.h"
#define __ jni_asm->
namespace art {
template <PointerSize kPointerSize>
static void CopyParameter(JNIMacroAssembler<kPointerSize>* jni_asm,
ManagedRuntimeCallingConvention* mr_conv,
JniCallingConvention* jni_conv);
template <PointerSize kPointerSize>
static void SetNativeParameter(JNIMacroAssembler<kPointerSize>* jni_asm,
JniCallingConvention* jni_conv,
ManagedRegister in_reg);
template <PointerSize kPointerSize>
static std::unique_ptr<JNIMacroAssembler<kPointerSize>> GetMacroAssembler(
ArenaAllocator* allocator, InstructionSet isa, const InstructionSetFeatures* features) {
return JNIMacroAssembler<kPointerSize>::Create(allocator, isa, features);
}
enum class JniEntrypoint {
kStart,
kEnd
};
template <PointerSize kPointerSize>
static ThreadOffset<kPointerSize> GetJniEntrypointThreadOffset(JniEntrypoint which,
bool reference_return,
bool is_synchronized,
bool is_fast_native) {
if (which == JniEntrypoint::kStart) { // JniMethodStart
ThreadOffset<kPointerSize> jni_start =
is_synchronized
? QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodStartSynchronized)
: (is_fast_native
? QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodFastStart)
: QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodStart));
return jni_start;
} else { // JniMethodEnd
ThreadOffset<kPointerSize> jni_end(-1);
if (reference_return) {
// Pass result.
jni_end = is_synchronized
? QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodEndWithReferenceSynchronized)
: (is_fast_native
? QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodFastEndWithReference)
: QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodEndWithReference));
} else {
jni_end = is_synchronized
? QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodEndSynchronized)
: (is_fast_native
? QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodFastEnd)
: QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodEnd));
}
return jni_end;
}
}
// Generate the JNI bridge for the given method, general contract:
// - Arguments are in the managed runtime format, either on stack or in
// registers, a reference to the method object is supplied as part of this
// convention.
//
template <PointerSize kPointerSize>
static JniCompiledMethod ArtJniCompileMethodInternal(const CompilerOptions& compiler_options,
uint32_t access_flags,
uint32_t method_idx,
const DexFile& dex_file) {
const bool is_native = (access_flags & kAccNative) != 0;
CHECK(is_native);
const bool is_static = (access_flags & kAccStatic) != 0;
const bool is_synchronized = (access_flags & kAccSynchronized) != 0;
const char* shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(method_idx));
InstructionSet instruction_set = compiler_options.GetInstructionSet();
const InstructionSetFeatures* instruction_set_features =
compiler_options.GetInstructionSetFeatures();
// i.e. if the method was annotated with @FastNative
const bool is_fast_native = (access_flags & kAccFastNative) != 0u;
// i.e. if the method was annotated with @CriticalNative
const bool is_critical_native = (access_flags & kAccCriticalNative) != 0u;
VLOG(jni) << "JniCompile: Method :: "
<< dex_file.PrettyMethod(method_idx, /* with signature */ true)
<< " :: access_flags = " << std::hex << access_flags << std::dec;
if (UNLIKELY(is_fast_native)) {
VLOG(jni) << "JniCompile: Fast native method detected :: "
<< dex_file.PrettyMethod(method_idx, /* with signature */ true);
}
if (UNLIKELY(is_critical_native)) {
VLOG(jni) << "JniCompile: Critical native method detected :: "
<< dex_file.PrettyMethod(method_idx, /* with signature */ true);
}
if (kIsDebugBuild) {
// Don't allow both @FastNative and @CriticalNative. They are mutually exclusive.
if (UNLIKELY(is_fast_native && is_critical_native)) {
LOG(FATAL) << "JniCompile: Method cannot be both @CriticalNative and @FastNative"
<< dex_file.PrettyMethod(method_idx, /* with_signature= */ true);
}
// @CriticalNative - extra checks:
// -- Don't allow virtual criticals
// -- Don't allow synchronized criticals
// -- Don't allow any objects as parameter or return value
if (UNLIKELY(is_critical_native)) {
CHECK(is_static)
<< "@CriticalNative functions cannot be virtual since that would"
<< "require passing a reference parameter (this), which is illegal "
<< dex_file.PrettyMethod(method_idx, /* with_signature= */ true);
CHECK(!is_synchronized)
<< "@CriticalNative functions cannot be synchronized since that would"
<< "require passing a (class and/or this) reference parameter, which is illegal "
<< dex_file.PrettyMethod(method_idx, /* with_signature= */ true);
for (size_t i = 0; i < strlen(shorty); ++i) {
CHECK_NE(Primitive::kPrimNot, Primitive::GetType(shorty[i]))
<< "@CriticalNative methods' shorty types must not have illegal references "
<< dex_file.PrettyMethod(method_idx, /* with_signature= */ true);
}
}
}
MallocArenaPool pool;
ArenaAllocator allocator(&pool);
// Calling conventions used to iterate over parameters to method
std::unique_ptr<JniCallingConvention> main_jni_conv =
JniCallingConvention::Create(&allocator,
is_static,
is_synchronized,
is_critical_native,
shorty,
instruction_set);
bool reference_return = main_jni_conv->IsReturnAReference();
std::unique_ptr<ManagedRuntimeCallingConvention> mr_conv(
ManagedRuntimeCallingConvention::Create(
&allocator, is_static, is_synchronized, shorty, instruction_set));
// Calling conventions to call into JNI method "end" possibly passing a returned reference, the
// method and the current thread.
const char* jni_end_shorty;
if (reference_return && is_synchronized) {
jni_end_shorty = "ILL";
} else if (reference_return) {
jni_end_shorty = "IL";
} else if (is_synchronized) {
jni_end_shorty = "VL";
} else {
jni_end_shorty = "V";
}
std::unique_ptr<JniCallingConvention> end_jni_conv(
JniCallingConvention::Create(&allocator,
is_static,
is_synchronized,
is_critical_native,
jni_end_shorty,
instruction_set));
// Assembler that holds generated instructions
std::unique_ptr<JNIMacroAssembler<kPointerSize>> jni_asm =
GetMacroAssembler<kPointerSize>(&allocator, instruction_set, instruction_set_features);
jni_asm->cfi().SetEnabled(compiler_options.GenerateAnyDebugInfo());
jni_asm->SetEmitRunTimeChecksInDebugMode(compiler_options.EmitRunTimeChecksInDebugMode());
// 1. Build the frame saving all callee saves, Method*, and PC return address.
// For @CriticalNative, this includes space for out args, otherwise just the managed frame.
const size_t managed_frame_size = main_jni_conv->FrameSize();
const size_t main_out_arg_size = main_jni_conv->OutFrameSize();
size_t current_frame_size = is_critical_native ? main_out_arg_size : managed_frame_size;
ManagedRegister method_register =
is_critical_native ? ManagedRegister::NoRegister() : mr_conv->MethodRegister();
ArrayRef<const ManagedRegister> callee_save_regs = main_jni_conv->CalleeSaveRegisters();
__ BuildFrame(current_frame_size, method_register, callee_save_regs);
DCHECK_EQ(jni_asm->cfi().GetCurrentCFAOffset(), static_cast<int>(current_frame_size));
if (LIKELY(!is_critical_native)) {
// Spill all register arguments.
// TODO: Pass these in a single call to let the assembler use multi-register stores.
// TODO: Spill native stack args straight to their stack locations (adjust SP earlier).
mr_conv->ResetIterator(FrameOffset(current_frame_size));
for (; mr_conv->HasNext(); mr_conv->Next()) {
if (mr_conv->IsCurrentParamInRegister()) {
size_t size = mr_conv->IsCurrentParamALongOrDouble() ? 8u : 4u;
__ Store(mr_conv->CurrentParamStackOffset(), mr_conv->CurrentParamRegister(), size);
}
}
// 2. Write out the end of the quick frames.
__ StoreStackPointerToThread(Thread::TopOfManagedStackOffset<kPointerSize>());
// NOTE: @CriticalNative does not need to store the stack pointer to the thread
// because garbage collections are disabled within the execution of a
// @CriticalNative method.
// (TODO: We could probably disable it for @FastNative too).
} // if (!is_critical_native)
// 3. Move frame down to allow space for out going args.
size_t current_out_arg_size = main_out_arg_size;
if (UNLIKELY(is_critical_native)) {
DCHECK_EQ(main_out_arg_size, current_frame_size);
} else {
__ IncreaseFrameSize(main_out_arg_size);
current_frame_size += main_out_arg_size;
}
// 4. Check if we need to go to the slow path to emit the read barrier for the declaring class
// in the method for a static call.
// Skip this for @CriticalNative because we're not passing a `jclass` to the native method.
std::unique_ptr<JNIMacroLabel> jclass_read_barrier_slow_path;
std::unique_ptr<JNIMacroLabel> jclass_read_barrier_return;
if (kUseReadBarrier && is_static && !is_critical_native) {
jclass_read_barrier_slow_path = __ CreateLabel();
jclass_read_barrier_return = __ CreateLabel();
// Check if gc_is_marking is set -- if it's not, we don't need a read barrier.
__ TestGcMarking(jclass_read_barrier_slow_path.get(), JNIMacroUnaryCondition::kNotZero);
// If marking, the slow path returns after the check.
__ Bind(jclass_read_barrier_return.get());
}
// 5. Call into appropriate JniMethodStart passing Thread* so that transition out of Runnable
// can occur. The result is the saved JNI local state that is restored by the exit call. We
// abuse the JNI calling convention here, that is guaranteed to support passing 2 pointer
// arguments.
constexpr size_t cookie_size = JniCallingConvention::SavedLocalReferenceCookieSize();
ManagedRegister saved_cookie_register = ManagedRegister::NoRegister();
if (LIKELY(!is_critical_native)) {
// Skip this for @CriticalNative methods. They do not call JniMethodStart.
ThreadOffset<kPointerSize> jni_start(
GetJniEntrypointThreadOffset<kPointerSize>(JniEntrypoint::kStart,
reference_return,
is_synchronized,
is_fast_native).SizeValue());
main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size));
if (is_synchronized) {
// Pass object for locking.
if (is_static) {
// Pass the pointer to the method's declaring class as the first argument.
DCHECK_EQ(ArtMethod::DeclaringClassOffset().SizeValue(), 0u);
SetNativeParameter(jni_asm.get(), main_jni_conv.get(), method_register);
} else {
// TODO: Use the register that still holds the `this` reference.
mr_conv->ResetIterator(FrameOffset(current_frame_size));
FrameOffset this_offset = mr_conv->CurrentParamStackOffset();
if (main_jni_conv->IsCurrentParamOnStack()) {
FrameOffset out_off = main_jni_conv->CurrentParamStackOffset();
__ CreateJObject(out_off, this_offset, /*null_allowed=*/ false);
} else {
ManagedRegister out_reg = main_jni_conv->CurrentParamRegister();
__ CreateJObject(out_reg,
this_offset,
ManagedRegister::NoRegister(),
/*null_allowed=*/ false);
}
}
main_jni_conv->Next();
}
if (main_jni_conv->IsCurrentParamInRegister()) {
__ GetCurrentThread(main_jni_conv->CurrentParamRegister());
__ Call(main_jni_conv->CurrentParamRegister(), Offset(jni_start));
} else {
__ GetCurrentThread(main_jni_conv->CurrentParamStackOffset());
__ CallFromThread(jni_start);
}
method_register = ManagedRegister::NoRegister(); // Method register is clobbered.
if (is_synchronized) { // Check for exceptions from monitor enter.
__ ExceptionPoll(main_out_arg_size);
}
// Store into stack_frame[saved_cookie_offset] the return value of JniMethodStart.
saved_cookie_register = main_jni_conv->SavedLocalReferenceCookieRegister();
__ Move(saved_cookie_register, main_jni_conv->IntReturnRegister(), cookie_size);
}
// 6. Fill arguments.
if (UNLIKELY(is_critical_native)) {
ArenaVector<ArgumentLocation> src_args(allocator.Adapter());
ArenaVector<ArgumentLocation> dest_args(allocator.Adapter());
// Move the method pointer to the hidden argument register.
size_t pointer_size = static_cast<size_t>(kPointerSize);
dest_args.push_back(ArgumentLocation(main_jni_conv->HiddenArgumentRegister(), pointer_size));
src_args.push_back(ArgumentLocation(mr_conv->MethodRegister(), pointer_size));
// Move normal arguments to their locations.
mr_conv->ResetIterator(FrameOffset(current_frame_size));
main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size));
for (; mr_conv->HasNext(); mr_conv->Next(), main_jni_conv->Next()) {
DCHECK(main_jni_conv->HasNext());
size_t size = mr_conv->IsCurrentParamALongOrDouble() ? 8u : 4u;
src_args.push_back(mr_conv->IsCurrentParamInRegister()
? ArgumentLocation(mr_conv->CurrentParamRegister(), size)
: ArgumentLocation(mr_conv->CurrentParamStackOffset(), size));
dest_args.push_back(main_jni_conv->IsCurrentParamInRegister()
? ArgumentLocation(main_jni_conv->CurrentParamRegister(), size)
: ArgumentLocation(main_jni_conv->CurrentParamStackOffset(), size));
}
DCHECK(!main_jni_conv->HasNext());
__ MoveArguments(ArrayRef<ArgumentLocation>(dest_args), ArrayRef<ArgumentLocation>(src_args));
} else {
// Iterate over arguments placing values from managed calling convention in
// to the convention required for a native call (shuffling). For references
// place an index/pointer to the reference after checking whether it is
// null (which must be encoded as null).
// Note: we do this prior to materializing the JNIEnv* and static's jclass to
// give as many free registers for the shuffle as possible.
mr_conv->ResetIterator(FrameOffset(current_frame_size));
uint32_t args_count = 0;
while (mr_conv->HasNext()) {
args_count++;
mr_conv->Next();
}
// Do a backward pass over arguments, so that the generated code will be "mov
// R2, R3; mov R1, R2" instead of "mov R1, R2; mov R2, R3."
// TODO: A reverse iterator to improve readability.
// TODO: This is currently useless as all archs spill args when building the frame.
// To avoid the full spilling, we would have to do one pass before the BuildFrame()
// to determine which arg registers are clobbered before they are needed.
for (uint32_t i = 0; i < args_count; ++i) {
mr_conv->ResetIterator(FrameOffset(current_frame_size));
main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size));
// Skip the extra JNI parameters for now.
main_jni_conv->Next(); // Skip JNIEnv*.
if (is_static) {
main_jni_conv->Next(); // Skip Class for now.
}
// Skip to the argument we're interested in.
for (uint32_t j = 0; j < args_count - i - 1; ++j) {
mr_conv->Next();
main_jni_conv->Next();
}
CopyParameter(jni_asm.get(), mr_conv.get(), main_jni_conv.get());
}
// 7. For static method, create jclass argument as a pointer to the method's declaring class.
if (is_static) {
main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size));
main_jni_conv->Next(); // Skip JNIEnv*
// Load reference to the method's declaring class. The method register has been
// clobbered by the above call, so we need to load the method from the stack.
FrameOffset method_offset =
FrameOffset(current_out_arg_size + mr_conv->MethodStackOffset().SizeValue());
DCHECK_EQ(ArtMethod::DeclaringClassOffset().SizeValue(), 0u);
if (main_jni_conv->IsCurrentParamOnStack()) {
FrameOffset out_off = main_jni_conv->CurrentParamStackOffset();
__ Copy(out_off, method_offset, static_cast<size_t>(kPointerSize));
// TODO(x86): Get hold of the register used to copy the method pointer,
// so that we can use it also for loading the method entrypoint below.
} else {
ManagedRegister out_reg = main_jni_conv->CurrentParamRegister();
__ Load(out_reg, method_offset, static_cast<size_t>(kPointerSize));
// Reuse the register also for loading the method entrypoint below.
method_register = out_reg;
}
}
// Set the iterator back to the incoming Method*.
main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size));
// 8. Create 1st argument, the JNI environment ptr.
// Register that will hold local indirect reference table
if (main_jni_conv->IsCurrentParamInRegister()) {
ManagedRegister jni_env = main_jni_conv->CurrentParamRegister();
__ LoadRawPtrFromThread(jni_env, Thread::JniEnvOffset<kPointerSize>());
} else {
FrameOffset jni_env = main_jni_conv->CurrentParamStackOffset();
__ CopyRawPtrFromThread(jni_env, Thread::JniEnvOffset<kPointerSize>());
}
}
// 9. Plant call to native code associated with method.
MemberOffset jni_entrypoint_offset =
ArtMethod::EntryPointFromJniOffset(InstructionSetPointerSize(instruction_set));
if (UNLIKELY(is_critical_native)) {
if (main_jni_conv->UseTailCall()) {
__ Jump(main_jni_conv->HiddenArgumentRegister(), jni_entrypoint_offset);
} else {
__ Call(main_jni_conv->HiddenArgumentRegister(), jni_entrypoint_offset);
}
} else {
if (method_register.IsRegister()) {
__ Call(method_register, jni_entrypoint_offset);
} else {
__ Call(FrameOffset(current_out_arg_size + mr_conv->MethodStackOffset().SizeValue()),
jni_entrypoint_offset);
}
}
// 10. Fix differences in result widths.
if (main_jni_conv->RequiresSmallResultTypeExtension()) {
DCHECK(main_jni_conv->HasSmallReturnType());
CHECK(!is_critical_native || !main_jni_conv->UseTailCall());
if (main_jni_conv->GetReturnType() == Primitive::kPrimByte ||
main_jni_conv->GetReturnType() == Primitive::kPrimShort) {
__ SignExtend(main_jni_conv->ReturnRegister(),
Primitive::ComponentSize(main_jni_conv->GetReturnType()));
} else {
CHECK(main_jni_conv->GetReturnType() == Primitive::kPrimBoolean ||
main_jni_conv->GetReturnType() == Primitive::kPrimChar);
__ ZeroExtend(main_jni_conv->ReturnRegister(),
Primitive::ComponentSize(main_jni_conv->GetReturnType()));
}
}
// 11. Process return value
bool spill_return_value = main_jni_conv->SpillsReturnValue();
FrameOffset return_save_location =
spill_return_value ? main_jni_conv->ReturnValueSaveLocation() : FrameOffset(0);
if (spill_return_value) {
DCHECK(!is_critical_native);
// For normal JNI, store the return value on the stack because the call to
// JniMethodEnd will clobber the return value. It will be restored in (13).
CHECK_LT(return_save_location.Uint32Value(), current_frame_size);
__ Store(return_save_location,
main_jni_conv->ReturnRegister(),
main_jni_conv->SizeOfReturnValue());
} else if (UNLIKELY(is_critical_native) && main_jni_conv->SizeOfReturnValue() != 0) {
// For @CriticalNative only,
// move the JNI return register into the managed return register (if they don't match).
ManagedRegister jni_return_reg = main_jni_conv->ReturnRegister();
ManagedRegister mr_return_reg = mr_conv->ReturnRegister();
// Check if the JNI return register matches the managed return register.
// If they differ, only then do we have to do anything about it.
// Otherwise the return value is already in the right place when we return.
if (!jni_return_reg.Equals(mr_return_reg)) {
CHECK(!main_jni_conv->UseTailCall());
// This is typically only necessary on ARM32 due to native being softfloat
// while managed is hardfloat.
// -- For example VMOV {r0, r1} -> D0; VMOV r0 -> S0.
__ Move(mr_return_reg, jni_return_reg, main_jni_conv->SizeOfReturnValue());
} else if (jni_return_reg.IsNoRegister() && mr_return_reg.IsNoRegister()) {
// Check that if the return value is passed on the stack for some reason,
// that the size matches.
CHECK_EQ(main_jni_conv->SizeOfReturnValue(), mr_conv->SizeOfReturnValue());
}
}
if (LIKELY(!is_critical_native)) {
// Increase frame size for out args if needed by the end_jni_conv.
const size_t end_out_arg_size = end_jni_conv->OutFrameSize();
if (end_out_arg_size > current_out_arg_size) {
size_t out_arg_size_diff = end_out_arg_size - current_out_arg_size;
current_out_arg_size = end_out_arg_size;
__ IncreaseFrameSize(out_arg_size_diff);
current_frame_size += out_arg_size_diff;
return_save_location = FrameOffset(return_save_location.SizeValue() + out_arg_size_diff);
}
end_jni_conv->ResetIterator(FrameOffset(end_out_arg_size));
// 12. Call JniMethodEnd
ThreadOffset<kPointerSize> jni_end(
GetJniEntrypointThreadOffset<kPointerSize>(JniEntrypoint::kEnd,
reference_return,
is_synchronized,
is_fast_native).SizeValue());
if (reference_return) {
// Pass result.
SetNativeParameter(jni_asm.get(), end_jni_conv.get(), end_jni_conv->ReturnRegister());
end_jni_conv->Next();
}
// Pass saved local reference state.
if (end_jni_conv->IsCurrentParamOnStack()) {
FrameOffset out_off = end_jni_conv->CurrentParamStackOffset();
__ Store(out_off, saved_cookie_register, cookie_size);
} else {
ManagedRegister out_reg = end_jni_conv->CurrentParamRegister();
__ Move(out_reg, saved_cookie_register, cookie_size);
}
end_jni_conv->Next();
if (is_synchronized) {
// Pass object for unlocking.
if (is_static) {
// Load reference to the method's declaring class. The method register has been
// clobbered by the above call, so we need to load the method from the stack.
FrameOffset method_offset =
FrameOffset(current_out_arg_size + mr_conv->MethodStackOffset().SizeValue());
DCHECK_EQ(ArtMethod::DeclaringClassOffset().SizeValue(), 0u);
if (end_jni_conv->IsCurrentParamOnStack()) {
FrameOffset out_off = end_jni_conv->CurrentParamStackOffset();
__ Copy(out_off, method_offset, static_cast<size_t>(kPointerSize));
} else {
ManagedRegister out_reg = end_jni_conv->CurrentParamRegister();
__ Load(out_reg, method_offset, static_cast<size_t>(kPointerSize));
}
} else {
mr_conv->ResetIterator(FrameOffset(current_frame_size));
FrameOffset this_offset = mr_conv->CurrentParamStackOffset();
if (end_jni_conv->IsCurrentParamOnStack()) {
FrameOffset out_off = end_jni_conv->CurrentParamStackOffset();
__ CreateJObject(out_off, this_offset, /*null_allowed=*/ false);
} else {
ManagedRegister out_reg = end_jni_conv->CurrentParamRegister();
__ CreateJObject(out_reg,
this_offset,
ManagedRegister::NoRegister(),
/*null_allowed=*/ false);
}
}
end_jni_conv->Next();
}
if (end_jni_conv->IsCurrentParamInRegister()) {
__ GetCurrentThread(end_jni_conv->CurrentParamRegister());
__ Call(end_jni_conv->CurrentParamRegister(), Offset(jni_end));
} else {
__ GetCurrentThread(end_jni_conv->CurrentParamStackOffset());
__ CallFromThread(jni_end);
}
// 13. Reload return value
if (spill_return_value) {
__ Load(mr_conv->ReturnRegister(), return_save_location, mr_conv->SizeOfReturnValue());
}
} // if (!is_critical_native)
// 14. Move frame up now we're done with the out arg space.
// @CriticalNative remove out args together with the frame in RemoveFrame().
if (LIKELY(!is_critical_native)) {
__ DecreaseFrameSize(current_out_arg_size);
current_frame_size -= current_out_arg_size;
}
// 15. Process pending exceptions from JNI call or monitor exit.
// @CriticalNative methods do not need exception poll in the stub.
if (LIKELY(!is_critical_native)) {
__ ExceptionPoll(/* stack_adjust= */ 0);
}
// 16. Remove activation - need to restore callee save registers since the GC may have changed
// them.
DCHECK_EQ(jni_asm->cfi().GetCurrentCFAOffset(), static_cast<int>(current_frame_size));
if (LIKELY(!is_critical_native) || !main_jni_conv->UseTailCall()) {
// We expect the compiled method to possibly be suspended during its
// execution, except in the case of a CriticalNative method.
bool may_suspend = !is_critical_native;
__ RemoveFrame(current_frame_size, callee_save_regs, may_suspend);
DCHECK_EQ(jni_asm->cfi().GetCurrentCFAOffset(), static_cast<int>(current_frame_size));
}
// 17. Read barrier slow path for the declaring class in the method for a static call.
// Skip this for @CriticalNative because we're not passing a `jclass` to the native method.
if (kUseReadBarrier && is_static && !is_critical_native) {
__ Bind(jclass_read_barrier_slow_path.get());
// We do the marking check after adjusting for outgoing arguments. That ensures that
// we have space available for at least two params in case we need to pass the read
// barrier parameters on stack (only x86). But that means we must adjust the CFI
// offset accordingly as it does not include the outgoing args after `RemoveFrame().
if (main_out_arg_size != 0) {
// Note: The DW_CFA_def_cfa_offset emitted by `RemoveFrame()` above
// is useless when it is immediatelly overridden here but avoiding
// it adds a lot of code complexity for minimal gain.
jni_asm->cfi().AdjustCFAOffset(main_out_arg_size);
}
// We enter the slow path with the method register unclobbered.
method_register = mr_conv->MethodRegister();
// Construct slow path for read barrier:
//
// Call into the runtime's ReadBarrierJni and have it fix up
// the object address if it was moved.
ThreadOffset<kPointerSize> read_barrier = QUICK_ENTRYPOINT_OFFSET(kPointerSize,
pReadBarrierJni);
main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size));
// Pass the pointer to the method's declaring class as the first argument.
DCHECK_EQ(ArtMethod::DeclaringClassOffset().SizeValue(), 0u);
SetNativeParameter(jni_asm.get(), main_jni_conv.get(), method_register);
main_jni_conv->Next();
// Pass the current thread as the second argument and call.
if (main_jni_conv->IsCurrentParamInRegister()) {
__ GetCurrentThread(main_jni_conv->CurrentParamRegister());
__ Call(main_jni_conv->CurrentParamRegister(), Offset(read_barrier));
} else {
__ GetCurrentThread(main_jni_conv->CurrentParamStackOffset());
__ CallFromThread(read_barrier);
}
if (is_synchronized) {
// Reload the method pointer in the slow path because it is needed
// as an argument for the `JniMethodStartSynchronized`.
__ Load(method_register,
FrameOffset(main_out_arg_size + mr_conv->MethodStackOffset().SizeValue()),
static_cast<size_t>(kPointerSize));
}
// Return to main path.
__ Jump(jclass_read_barrier_return.get());
// Undo the CFI offset adjustment at the start of the slow path.
if (main_out_arg_size != 0) {
jni_asm->cfi().AdjustCFAOffset(-main_out_arg_size);
}
}
// 18. Finalize code generation
__ FinalizeCode();
size_t cs = __ CodeSize();
std::vector<uint8_t> managed_code(cs);
MemoryRegion code(&managed_code[0], managed_code.size());
__ FinalizeInstructions(code);
return JniCompiledMethod(instruction_set,
std::move(managed_code),
managed_frame_size,
main_jni_conv->CoreSpillMask(),
main_jni_conv->FpSpillMask(),
ArrayRef<const uint8_t>(*jni_asm->cfi().data()));
}
// Copy a single parameter from the managed to the JNI calling convention.
template <PointerSize kPointerSize>
static void CopyParameter(JNIMacroAssembler<kPointerSize>* jni_asm,
ManagedRuntimeCallingConvention* mr_conv,
JniCallingConvention* jni_conv) {
// We spilled all registers, so use stack locations.
// TODO: Move args in registers for @CriticalNative.
bool input_in_reg = false; // mr_conv->IsCurrentParamInRegister();
bool output_in_reg = jni_conv->IsCurrentParamInRegister();
FrameOffset spilled_reference_offset(0);
bool null_allowed = false;
bool ref_param = jni_conv->IsCurrentParamAReference();
CHECK(!ref_param || mr_conv->IsCurrentParamAReference());
if (output_in_reg) { // output shouldn't straddle registers and stack
CHECK(!jni_conv->IsCurrentParamOnStack());
} else {
CHECK(jni_conv->IsCurrentParamOnStack());
}
// References are spilled to caller's reserved out vreg area.
if (ref_param) {
null_allowed = mr_conv->IsCurrentArgPossiblyNull();
// Compute spilled reference offset. Note that null is spilled but the jobject
// passed to the native code must be null (not a pointer into the spilled value
// as with regular references).
spilled_reference_offset = mr_conv->CurrentParamStackOffset();
// Check that spilled reference offset is in the spill area in the caller's frame.
CHECK_GT(spilled_reference_offset.Uint32Value(), mr_conv->GetDisplacement().Uint32Value());
}
if (input_in_reg && output_in_reg) {
ManagedRegister in_reg = mr_conv->CurrentParamRegister();
ManagedRegister out_reg = jni_conv->CurrentParamRegister();
if (ref_param) {
__ CreateJObject(out_reg, spilled_reference_offset, in_reg, null_allowed);
} else {
if (!mr_conv->IsCurrentParamOnStack()) {
// regular non-straddling move
__ Move(out_reg, in_reg, mr_conv->CurrentParamSize());
} else {
UNIMPLEMENTED(FATAL); // we currently don't expect to see this case
}
}
} else if (!input_in_reg && !output_in_reg) {
FrameOffset out_off = jni_conv->CurrentParamStackOffset();
if (ref_param) {
__ CreateJObject(out_off, spilled_reference_offset, null_allowed);
} else {
FrameOffset in_off = mr_conv->CurrentParamStackOffset();
size_t param_size = mr_conv->CurrentParamSize();
CHECK_EQ(param_size, jni_conv->CurrentParamSize());
__ Copy(out_off, in_off, param_size);
}
} else if (!input_in_reg && output_in_reg) {
FrameOffset in_off = mr_conv->CurrentParamStackOffset();
ManagedRegister out_reg = jni_conv->CurrentParamRegister();
// Check that incoming stack arguments are above the current stack frame.
CHECK_GT(in_off.Uint32Value(), mr_conv->GetDisplacement().Uint32Value());
if (ref_param) {
__ CreateJObject(out_reg,
spilled_reference_offset,
ManagedRegister::NoRegister(),
null_allowed);
} else {
size_t param_size = mr_conv->CurrentParamSize();
CHECK_EQ(param_size, jni_conv->CurrentParamSize());
__ Load(out_reg, in_off, param_size);
}
} else {
CHECK(input_in_reg && !output_in_reg);
ManagedRegister in_reg = mr_conv->CurrentParamRegister();
FrameOffset out_off = jni_conv->CurrentParamStackOffset();
// Check outgoing argument is within frame part dedicated to out args.
CHECK_LT(out_off.Uint32Value(), jni_conv->GetDisplacement().Uint32Value());
if (ref_param) {
// TODO: recycle value in in_reg rather than reload from spill slot.
__ CreateJObject(out_off, spilled_reference_offset, null_allowed);
} else {
size_t param_size = mr_conv->CurrentParamSize();
CHECK_EQ(param_size, jni_conv->CurrentParamSize());
if (!mr_conv->IsCurrentParamOnStack()) {
// regular non-straddling store
__ Store(out_off, in_reg, param_size);
} else {
// store where input straddles registers and stack
CHECK_EQ(param_size, 8u);
FrameOffset in_off = mr_conv->CurrentParamStackOffset();
__ StoreSpanning(out_off, in_reg, in_off);
}
}
}
}
template <PointerSize kPointerSize>
static void SetNativeParameter(JNIMacroAssembler<kPointerSize>* jni_asm,
JniCallingConvention* jni_conv,
ManagedRegister in_reg) {
if (jni_conv->IsCurrentParamOnStack()) {
FrameOffset dest = jni_conv->CurrentParamStackOffset();
__ StoreRawPtr(dest, in_reg);
} else {
if (!jni_conv->CurrentParamRegister().Equals(in_reg)) {
__ Move(jni_conv->CurrentParamRegister(), in_reg, jni_conv->CurrentParamSize());
}
}
}
JniCompiledMethod ArtQuickJniCompileMethod(const CompilerOptions& compiler_options,
uint32_t access_flags,
uint32_t method_idx,
const DexFile& dex_file) {
if (Is64BitInstructionSet(compiler_options.GetInstructionSet())) {
return ArtJniCompileMethodInternal<PointerSize::k64>(
compiler_options, access_flags, method_idx, dex_file);
} else {
return ArtJniCompileMethodInternal<PointerSize::k32>(
compiler_options, access_flags, method_idx, dex_file);
}
}
} // namespace art
|