diff options
author | David Brazdil <dbrazdil@google.com> | 2016-03-02 16:48:20 +0000 |
---|---|---|
committer | David Brazdil <dbrazdil@google.com> | 2016-04-04 11:21:30 +0100 |
commit | e3ff7b293be2a6791fe9d135d660c0cffe4bd73f (patch) | |
tree | d578d27cb78e6d2caef683cd8ac94c9a9752b192 /compiler/optimizing/instruction_builder.cc | |
parent | 86ea7eeabe30c98bbe1651a51d03cb89776724e7 (diff) |
Refactor HGraphBuilder and SsaBuilder to remove HLocals
This patch merges the instruction-building phases from HGraphBuilder
and SsaBuilder into a single HInstructionBuilder class. As a result,
it is not necessary to generate HLocal, HLoadLocal and HStoreLocal
instructions any more, as the builder produces SSA form directly.
Saves 5-15% of arena-allocated memory (see bug for more data):
GMS 20.46MB => 19.26MB (-5.86%)
Maps 24.12MB => 21.47MB (-10.98%)
YouTube 28.60MB => 26.01MB (-9.05%)
Bug: 27894376
Change-Id: Iefe28d40600c169c5d306fd2c77034ae19476d90
Diffstat (limited to 'compiler/optimizing/instruction_builder.cc')
-rw-r--r-- | compiler/optimizing/instruction_builder.cc | 2681 |
1 files changed, 2681 insertions, 0 deletions
diff --git a/compiler/optimizing/instruction_builder.cc b/compiler/optimizing/instruction_builder.cc new file mode 100644 index 0000000000..c5f2342027 --- /dev/null +++ b/compiler/optimizing/instruction_builder.cc @@ -0,0 +1,2681 @@ +/* + * Copyright (C) 2016 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "instruction_builder.h" + +#include "bytecode_utils.h" +#include "class_linker.h" +#include "driver/compiler_options.h" +#include "scoped_thread_state_change.h" + +namespace art { + +void HInstructionBuilder::MaybeRecordStat(MethodCompilationStat compilation_stat) { + if (compilation_stats_ != nullptr) { + compilation_stats_->RecordStat(compilation_stat); + } +} + +HBasicBlock* HInstructionBuilder::FindBlockStartingAt(uint32_t dex_pc) const { + return block_builder_->GetBlockAt(dex_pc); +} + +ArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsFor(HBasicBlock* block) { + ArenaVector<HInstruction*>* locals = &locals_for_[block->GetBlockId()]; + const size_t vregs = graph_->GetNumberOfVRegs(); + if (locals->size() != vregs) { + locals->resize(vregs, nullptr); + + if (block->IsCatchBlock()) { + // We record incoming inputs of catch phis at throwing instructions and + // must therefore eagerly create the phis. Phis for undefined vregs will + // be deleted when the first throwing instruction with the vreg undefined + // is encountered. Unused phis will be removed by dead phi analysis. + for (size_t i = 0; i < vregs; ++i) { + // No point in creating the catch phi if it is already undefined at + // the first throwing instruction. + HInstruction* current_local_value = (*current_locals_)[i]; + if (current_local_value != nullptr) { + HPhi* phi = new (arena_) HPhi( + arena_, + i, + 0, + current_local_value->GetType()); + block->AddPhi(phi); + (*locals)[i] = phi; + } + } + } + } + return locals; +} + +HInstruction* HInstructionBuilder::ValueOfLocalAt(HBasicBlock* block, size_t local) { + ArenaVector<HInstruction*>* locals = GetLocalsFor(block); + return (*locals)[local]; +} + +void HInstructionBuilder::InitializeBlockLocals() { + current_locals_ = GetLocalsFor(current_block_); + + if (current_block_->IsCatchBlock()) { + // Catch phis were already created and inputs collected from throwing sites. + if (kIsDebugBuild) { + // Make sure there was at least one throwing instruction which initialized + // locals (guaranteed by HGraphBuilder) and that all try blocks have been + // visited already (from HTryBoundary scoping and reverse post order). + bool catch_block_visited = false; + for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) { + HBasicBlock* current = it.Current(); + if (current == current_block_) { + catch_block_visited = true; + } else if (current->IsTryBlock()) { + const HTryBoundary& try_entry = current->GetTryCatchInformation()->GetTryEntry(); + if (try_entry.HasExceptionHandler(*current_block_)) { + DCHECK(!catch_block_visited) << "Catch block visited before its try block."; + } + } + } + DCHECK_EQ(current_locals_->size(), graph_->GetNumberOfVRegs()) + << "No instructions throwing into a live catch block."; + } + } else if (current_block_->IsLoopHeader()) { + // If the block is a loop header, we know we only have visited the pre header + // because we are visiting in reverse post order. We create phis for all initialized + // locals from the pre header. Their inputs will be populated at the end of + // the analysis. + for (size_t local = 0; local < current_locals_->size(); ++local) { + HInstruction* incoming = + ValueOfLocalAt(current_block_->GetLoopInformation()->GetPreHeader(), local); + if (incoming != nullptr) { + HPhi* phi = new (arena_) HPhi( + arena_, + local, + 0, + incoming->GetType()); + current_block_->AddPhi(phi); + (*current_locals_)[local] = phi; + } + } + + // Save the loop header so that the last phase of the analysis knows which + // blocks need to be updated. + loop_headers_.push_back(current_block_); + } else if (current_block_->GetPredecessors().size() > 0) { + // All predecessors have already been visited because we are visiting in reverse post order. + // We merge the values of all locals, creating phis if those values differ. + for (size_t local = 0; local < current_locals_->size(); ++local) { + bool one_predecessor_has_no_value = false; + bool is_different = false; + HInstruction* value = ValueOfLocalAt(current_block_->GetPredecessors()[0], local); + + for (HBasicBlock* predecessor : current_block_->GetPredecessors()) { + HInstruction* current = ValueOfLocalAt(predecessor, local); + if (current == nullptr) { + one_predecessor_has_no_value = true; + break; + } else if (current != value) { + is_different = true; + } + } + + if (one_predecessor_has_no_value) { + // If one predecessor has no value for this local, we trust the verifier has + // successfully checked that there is a store dominating any read after this block. + continue; + } + + if (is_different) { + HInstruction* first_input = ValueOfLocalAt(current_block_->GetPredecessors()[0], local); + HPhi* phi = new (arena_) HPhi( + arena_, + local, + current_block_->GetPredecessors().size(), + first_input->GetType()); + for (size_t i = 0; i < current_block_->GetPredecessors().size(); i++) { + HInstruction* pred_value = ValueOfLocalAt(current_block_->GetPredecessors()[i], local); + phi->SetRawInputAt(i, pred_value); + } + current_block_->AddPhi(phi); + value = phi; + } + (*current_locals_)[local] = value; + } + } +} + +void HInstructionBuilder::PropagateLocalsToCatchBlocks() { + const HTryBoundary& try_entry = current_block_->GetTryCatchInformation()->GetTryEntry(); + for (HBasicBlock* catch_block : try_entry.GetExceptionHandlers()) { + ArenaVector<HInstruction*>* handler_locals = GetLocalsFor(catch_block); + DCHECK_EQ(handler_locals->size(), current_locals_->size()); + for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) { + HInstruction* handler_value = (*handler_locals)[vreg]; + if (handler_value == nullptr) { + // Vreg was undefined at a previously encountered throwing instruction + // and the catch phi was deleted. Do not record the local value. + continue; + } + DCHECK(handler_value->IsPhi()); + + HInstruction* local_value = (*current_locals_)[vreg]; + if (local_value == nullptr) { + // This is the first instruction throwing into `catch_block` where + // `vreg` is undefined. Delete the catch phi. + catch_block->RemovePhi(handler_value->AsPhi()); + (*handler_locals)[vreg] = nullptr; + } else { + // Vreg has been defined at all instructions throwing into `catch_block` + // encountered so far. Record the local value in the catch phi. + handler_value->AsPhi()->AddInput(local_value); + } + } + } +} + +void HInstructionBuilder::AppendInstruction(HInstruction* instruction) { + current_block_->AddInstruction(instruction); + InitializeInstruction(instruction); +} + +void HInstructionBuilder::InsertInstructionAtTop(HInstruction* instruction) { + if (current_block_->GetInstructions().IsEmpty()) { + current_block_->AddInstruction(instruction); + } else { + current_block_->InsertInstructionBefore(instruction, current_block_->GetFirstInstruction()); + } + InitializeInstruction(instruction); +} + +void HInstructionBuilder::InitializeInstruction(HInstruction* instruction) { + if (instruction->NeedsEnvironment()) { + HEnvironment* environment = new (arena_) HEnvironment( + arena_, + current_locals_->size(), + graph_->GetDexFile(), + graph_->GetMethodIdx(), + instruction->GetDexPc(), + graph_->GetInvokeType(), + instruction); + environment->CopyFrom(*current_locals_); + instruction->SetRawEnvironment(environment); + } +} + +void HInstructionBuilder::SetLoopHeaderPhiInputs() { + for (size_t i = loop_headers_.size(); i > 0; --i) { + HBasicBlock* block = loop_headers_[i - 1]; + for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { + HPhi* phi = it.Current()->AsPhi(); + size_t vreg = phi->GetRegNumber(); + for (HBasicBlock* predecessor : block->GetPredecessors()) { + HInstruction* value = ValueOfLocalAt(predecessor, vreg); + if (value == nullptr) { + // Vreg is undefined at this predecessor. Mark it dead and leave with + // fewer inputs than predecessors. SsaChecker will fail if not removed. + phi->SetDead(); + break; + } else { + phi->AddInput(value); + } + } + } + } +} + +static bool IsBlockPopulated(HBasicBlock* block) { + if (block->IsLoopHeader()) { + // Suspend checks were inserted into loop headers during building of dominator tree. + DCHECK(block->GetFirstInstruction()->IsSuspendCheck()); + return block->GetFirstInstruction() != block->GetLastInstruction(); + } else { + return !block->GetInstructions().IsEmpty(); + } +} + +bool HInstructionBuilder::Build() { + locals_for_.resize(graph_->GetBlocks().size(), + ArenaVector<HInstruction*>(arena_->Adapter(kArenaAllocGraphBuilder))); + + // Find locations where we want to generate extra stackmaps for native debugging. + // This allows us to generate the info only at interesting points (for example, + // at start of java statement) rather than before every dex instruction. + const bool native_debuggable = compiler_driver_ != nullptr && + compiler_driver_->GetCompilerOptions().GetNativeDebuggable(); + ArenaBitVector* native_debug_info_locations = nullptr; + if (native_debuggable) { + const uint32_t num_instructions = code_item_.insns_size_in_code_units_; + native_debug_info_locations = new (arena_) ArenaBitVector (arena_, num_instructions, false); + FindNativeDebugInfoLocations(native_debug_info_locations); + } + + for (HReversePostOrderIterator block_it(*graph_); !block_it.Done(); block_it.Advance()) { + current_block_ = block_it.Current(); + uint32_t block_dex_pc = current_block_->GetDexPc(); + + InitializeBlockLocals(); + + if (current_block_->IsEntryBlock()) { + InitializeParameters(); + AppendInstruction(new (arena_) HSuspendCheck(0u)); + AppendInstruction(new (arena_) HGoto(0u)); + continue; + } else if (current_block_->IsExitBlock()) { + AppendInstruction(new (arena_) HExit()); + continue; + } else if (current_block_->IsLoopHeader()) { + HSuspendCheck* suspend_check = new (arena_) HSuspendCheck(current_block_->GetDexPc()); + current_block_->GetLoopInformation()->SetSuspendCheck(suspend_check); + // This is slightly odd because the loop header might not be empty (TryBoundary). + // But we're still creating the environment with locals from the top of the block. + InsertInstructionAtTop(suspend_check); + } + + if (block_dex_pc == kNoDexPc || current_block_ != block_builder_->GetBlockAt(block_dex_pc)) { + // Synthetic block that does not need to be populated. + DCHECK(IsBlockPopulated(current_block_)); + continue; + } + + DCHECK(!IsBlockPopulated(current_block_)); + + for (CodeItemIterator it(code_item_, block_dex_pc); !it.Done(); it.Advance()) { + if (current_block_ == nullptr) { + // The previous instruction ended this block. + break; + } + + uint32_t dex_pc = it.CurrentDexPc(); + if (dex_pc != block_dex_pc && FindBlockStartingAt(dex_pc) != nullptr) { + // This dex_pc starts a new basic block. + break; + } + + if (current_block_->IsTryBlock() && IsThrowingDexInstruction(it.CurrentInstruction())) { + PropagateLocalsToCatchBlocks(); + } + + if (native_debuggable && native_debug_info_locations->IsBitSet(dex_pc)) { + AppendInstruction(new (arena_) HNativeDebugInfo(dex_pc)); + } + + if (!ProcessDexInstruction(it.CurrentInstruction(), dex_pc)) { + return false; + } + } + + if (current_block_ != nullptr) { + // Branching instructions clear current_block, so we know the last + // instruction of the current block is not a branching instruction. + // We add an unconditional Goto to the next block. + DCHECK_EQ(current_block_->GetSuccessors().size(), 1u); + AppendInstruction(new (arena_) HGoto()); + } + } + + SetLoopHeaderPhiInputs(); + + return true; +} + +void HInstructionBuilder::FindNativeDebugInfoLocations(ArenaBitVector* locations) { + // The callback gets called when the line number changes. + // In other words, it marks the start of new java statement. + struct Callback { + static bool Position(void* ctx, const DexFile::PositionInfo& entry) { + static_cast<ArenaBitVector*>(ctx)->SetBit(entry.address_); + return false; + } + }; + dex_file_->DecodeDebugPositionInfo(&code_item_, Callback::Position, locations); + // Instruction-specific tweaks. + const Instruction* const begin = Instruction::At(code_item_.insns_); + const Instruction* const end = begin->RelativeAt(code_item_.insns_size_in_code_units_); + for (const Instruction* inst = begin; inst < end; inst = inst->Next()) { + switch (inst->Opcode()) { + case Instruction::MOVE_EXCEPTION: { + // Stop in native debugger after the exception has been moved. + // The compiler also expects the move at the start of basic block so + // we do not want to interfere by inserting native-debug-info before it. + locations->ClearBit(inst->GetDexPc(code_item_.insns_)); + const Instruction* next = inst->Next(); + if (next < end) { + locations->SetBit(next->GetDexPc(code_item_.insns_)); + } + break; + } + default: + break; + } + } +} + +HInstruction* HInstructionBuilder::LoadLocal(uint32_t reg_number, Primitive::Type type) const { + HInstruction* value = (*current_locals_)[reg_number]; + DCHECK(value != nullptr); + + // If the operation requests a specific type, we make sure its input is of that type. + if (type != value->GetType()) { + if (Primitive::IsFloatingPointType(type)) { + return ssa_builder_->GetFloatOrDoubleEquivalent(value, type); + } else if (type == Primitive::kPrimNot) { + return ssa_builder_->GetReferenceTypeEquivalent(value); + } + } + + return value; +} + +void HInstructionBuilder::UpdateLocal(uint32_t reg_number, HInstruction* stored_value) { + Primitive::Type stored_type = stored_value->GetType(); + DCHECK_NE(stored_type, Primitive::kPrimVoid); + + // Storing into vreg `reg_number` may implicitly invalidate the surrounding + // registers. Consider the following cases: + // (1) Storing a wide value must overwrite previous values in both `reg_number` + // and `reg_number+1`. We store `nullptr` in `reg_number+1`. + // (2) If vreg `reg_number-1` holds a wide value, writing into `reg_number` + // must invalidate it. We store `nullptr` in `reg_number-1`. + // Consequently, storing a wide value into the high vreg of another wide value + // will invalidate both `reg_number-1` and `reg_number+1`. + + if (reg_number != 0) { + HInstruction* local_low = (*current_locals_)[reg_number - 1]; + if (local_low != nullptr && Primitive::Is64BitType(local_low->GetType())) { + // The vreg we are storing into was previously the high vreg of a pair. + // We need to invalidate its low vreg. + DCHECK((*current_locals_)[reg_number] == nullptr); + (*current_locals_)[reg_number - 1] = nullptr; + } + } + + (*current_locals_)[reg_number] = stored_value; + if (Primitive::Is64BitType(stored_type)) { + // We are storing a pair. Invalidate the instruction in the high vreg. + (*current_locals_)[reg_number + 1] = nullptr; + } +} + +void HInstructionBuilder::InitializeParameters() { + DCHECK(current_block_->IsEntryBlock()); + + // dex_compilation_unit_ is null only when unit testing. + if (dex_compilation_unit_ == nullptr) { + return; + } + + const char* shorty = dex_compilation_unit_->GetShorty(); + uint16_t number_of_parameters = graph_->GetNumberOfInVRegs(); + uint16_t locals_index = graph_->GetNumberOfLocalVRegs(); + uint16_t parameter_index = 0; + + const DexFile::MethodId& referrer_method_id = + dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex()); + if (!dex_compilation_unit_->IsStatic()) { + // Add the implicit 'this' argument, not expressed in the signature. + HParameterValue* parameter = new (arena_) HParameterValue(*dex_file_, + referrer_method_id.class_idx_, + parameter_index++, + Primitive::kPrimNot, + true); + AppendInstruction(parameter); + UpdateLocal(locals_index++, parameter); + number_of_parameters--; + } + + const DexFile::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id); + const DexFile::TypeList* arg_types = dex_file_->GetProtoParameters(proto); + for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) { + HParameterValue* parameter = new (arena_) HParameterValue( + *dex_file_, + arg_types->GetTypeItem(shorty_pos - 1).type_idx_, + parameter_index++, + Primitive::GetType(shorty[shorty_pos]), + false); + ++shorty_pos; + AppendInstruction(parameter); + // Store the parameter value in the local that the dex code will use + // to reference that parameter. + UpdateLocal(locals_index++, parameter); + if (Primitive::Is64BitType(parameter->GetType())) { + i++; + locals_index++; + parameter_index++; + } + } +} + +template<typename T> +void HInstructionBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) { + HInstruction* first = LoadLocal(instruction.VRegA(), Primitive::kPrimInt); + HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); + T* comparison = new (arena_) T(first, second, dex_pc); + AppendInstruction(comparison); + AppendInstruction(new (arena_) HIf(comparison, dex_pc)); + current_block_ = nullptr; +} + +template<typename T> +void HInstructionBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) { + HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt); + T* comparison = new (arena_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc); + AppendInstruction(comparison); + AppendInstruction(new (arena_) HIf(comparison, dex_pc)); + current_block_ = nullptr; +} + +template<typename T> +void HInstructionBuilder::Unop_12x(const Instruction& instruction, + Primitive::Type type, + uint32_t dex_pc) { + HInstruction* first = LoadLocal(instruction.VRegB(), type); + AppendInstruction(new (arena_) T(type, first, dex_pc)); + UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); +} + +void HInstructionBuilder::Conversion_12x(const Instruction& instruction, + Primitive::Type input_type, + Primitive::Type result_type, + uint32_t dex_pc) { + HInstruction* first = LoadLocal(instruction.VRegB(), input_type); + AppendInstruction(new (arena_) HTypeConversion(result_type, first, dex_pc)); + UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); +} + +template<typename T> +void HInstructionBuilder::Binop_23x(const Instruction& instruction, + Primitive::Type type, + uint32_t dex_pc) { + HInstruction* first = LoadLocal(instruction.VRegB(), type); + HInstruction* second = LoadLocal(instruction.VRegC(), type); + AppendInstruction(new (arena_) T(type, first, second, dex_pc)); + UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); +} + +template<typename T> +void HInstructionBuilder::Binop_23x_shift(const Instruction& instruction, + Primitive::Type type, + uint32_t dex_pc) { + HInstruction* first = LoadLocal(instruction.VRegB(), type); + HInstruction* second = LoadLocal(instruction.VRegC(), Primitive::kPrimInt); + AppendInstruction(new (arena_) T(type, first, second, dex_pc)); + UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); +} + +void HInstructionBuilder::Binop_23x_cmp(const Instruction& instruction, + Primitive::Type type, + ComparisonBias bias, + uint32_t dex_pc) { + HInstruction* first = LoadLocal(instruction.VRegB(), type); + HInstruction* second = LoadLocal(instruction.VRegC(), type); + AppendInstruction(new (arena_) HCompare(type, first, second, bias, dex_pc)); + UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); +} + +template<typename T> +void HInstructionBuilder::Binop_12x_shift(const Instruction& instruction, + Primitive::Type type, + uint32_t dex_pc) { + HInstruction* first = LoadLocal(instruction.VRegA(), type); + HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); + AppendInstruction(new (arena_) T(type, first, second, dex_pc)); + UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); +} + +template<typename T> +void HInstructionBuilder::Binop_12x(const Instruction& instruction, + Primitive::Type type, + uint32_t dex_pc) { + HInstruction* first = LoadLocal(instruction.VRegA(), type); + HInstruction* second = LoadLocal(instruction.VRegB(), type); + AppendInstruction(new (arena_) T(type, first, second, dex_pc)); + UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); +} + +template<typename T> +void HInstructionBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) { + HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); + HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc); + if (reverse) { + std::swap(first, second); + } + AppendInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc)); + UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); +} + +template<typename T> +void HInstructionBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) { + HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); + HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc); + if (reverse) { + std::swap(first, second); + } + AppendInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc)); + UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); +} + +static bool RequiresConstructorBarrier(const DexCompilationUnit* cu, const CompilerDriver& driver) { + Thread* self = Thread::Current(); + return cu->IsConstructor() + && driver.RequiresConstructorBarrier(self, cu->GetDexFile(), cu->GetClassDefIndex()); +} + +// Returns true if `block` has only one successor which starts at the next +// dex_pc after `instruction` at `dex_pc`. +static bool IsFallthroughInstruction(const Instruction& instruction, + uint32_t dex_pc, + HBasicBlock* block) { + uint32_t next_dex_pc = dex_pc + instruction.SizeInCodeUnits(); + return block->GetSingleSuccessor()->GetDexPc() == next_dex_pc; +} + +void HInstructionBuilder::BuildSwitch(const Instruction& instruction, uint32_t dex_pc) { + HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt); + DexSwitchTable table(instruction, dex_pc); + + if (table.GetNumEntries() == 0) { + // Empty Switch. Code falls through to the next block. + DCHECK(IsFallthroughInstruction(instruction, dex_pc, current_block_)); + AppendInstruction(new (arena_) HGoto(dex_pc)); + } else if (table.ShouldBuildDecisionTree()) { + for (DexSwitchTableIterator it(table); !it.Done(); it.Advance()) { + HInstruction* case_value = graph_->GetIntConstant(it.CurrentKey(), dex_pc); + HEqual* comparison = new (arena_) HEqual(value, case_value, dex_pc); + AppendInstruction(comparison); + AppendInstruction(new (arena_) HIf(comparison, dex_pc)); + + if (!it.IsLast()) { + current_block_ = FindBlockStartingAt(it.GetDexPcForCurrentIndex()); + } + } + } else { + AppendInstruction( + new (arena_) HPackedSwitch(table.GetEntryAt(0), table.GetNumEntries(), value, dex_pc)); + } + + current_block_ = nullptr; +} + +void HInstructionBuilder::BuildReturn(const Instruction& instruction, + Primitive::Type type, + uint32_t dex_pc) { + if (type == Primitive::kPrimVoid) { + if (graph_->ShouldGenerateConstructorBarrier()) { + // The compilation unit is null during testing. + if (dex_compilation_unit_ != nullptr) { + DCHECK(RequiresConstructorBarrier(dex_compilation_unit_, *compiler_driver_)) + << "Inconsistent use of ShouldGenerateConstructorBarrier. Should not generate a barrier."; + } + AppendInstruction(new (arena_) HMemoryBarrier(kStoreStore, dex_pc)); + } + AppendInstruction(new (arena_) HReturnVoid(dex_pc)); + } else { + HInstruction* value = LoadLocal(instruction.VRegA(), type); + AppendInstruction(new (arena_) HReturn(value, dex_pc)); + } + current_block_ = nullptr; +} + +static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) { + switch (opcode) { + case Instruction::INVOKE_STATIC: + case Instruction::INVOKE_STATIC_RANGE: + return kStatic; + case Instruction::INVOKE_DIRECT: + case Instruction::INVOKE_DIRECT_RANGE: + return kDirect; + case Instruction::INVOKE_VIRTUAL: + case Instruction::INVOKE_VIRTUAL_QUICK: + case Instruction::INVOKE_VIRTUAL_RANGE: + case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: + return kVirtual; + case Instruction::INVOKE_INTERFACE: + case Instruction::INVOKE_INTERFACE_RANGE: + return kInterface; + case Instruction::INVOKE_SUPER_RANGE: + case Instruction::INVOKE_SUPER: + return kSuper; + default: + LOG(FATAL) << "Unexpected invoke opcode: " << opcode; + UNREACHABLE(); + } +} + +ArtMethod* HInstructionBuilder::ResolveMethod(uint16_t method_idx, InvokeType invoke_type) { + ScopedObjectAccess soa(Thread::Current()); + StackHandleScope<3> hs(soa.Self()); + + ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker(); + Handle<mirror::ClassLoader> class_loader(hs.NewHandle( + soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader()))); + Handle<mirror::Class> compiling_class(hs.NewHandle(GetCompilingClass())); + + ArtMethod* resolved_method = class_linker->ResolveMethod<ClassLinker::kForceICCECheck>( + *dex_compilation_unit_->GetDexFile(), + method_idx, + dex_compilation_unit_->GetDexCache(), + class_loader, + /* referrer */ nullptr, + invoke_type); + + if (UNLIKELY(resolved_method == nullptr)) { + // Clean up any exception left by type resolution. + soa.Self()->ClearException(); + return nullptr; + } + + // Check access. The class linker has a fast path for looking into the dex cache + // and does not check the access if it hits it. + if (compiling_class.Get() == nullptr) { + if (!resolved_method->IsPublic()) { + return nullptr; + } + } else if (!compiling_class->CanAccessResolvedMethod(resolved_method->GetDeclaringClass(), + resolved_method, + dex_compilation_unit_->GetDexCache().Get(), + method_idx)) { + return nullptr; + } + + // We have to special case the invoke-super case, as ClassLinker::ResolveMethod does not. + // We need to look at the referrer's super class vtable. We need to do this to know if we need to + // make this an invoke-unresolved to handle cross-dex invokes or abstract super methods, both of + // which require runtime handling. + if (invoke_type == kSuper) { + if (compiling_class.Get() == nullptr) { + // We could not determine the method's class we need to wait until runtime. + DCHECK(Runtime::Current()->IsAotCompiler()); + return nullptr; + } + ArtMethod* current_method = graph_->GetArtMethod(); + DCHECK(current_method != nullptr); + Handle<mirror::Class> methods_class(hs.NewHandle( + dex_compilation_unit_->GetClassLinker()->ResolveReferencedClassOfMethod(Thread::Current(), + method_idx, + current_method))); + if (methods_class.Get() == nullptr) { + // Invoking a super method requires knowing the actual super class. If we did not resolve + // the compiling method's declaring class (which only happens for ahead of time + // compilation), bail out. + DCHECK(Runtime::Current()->IsAotCompiler()); + return nullptr; + } else { + ArtMethod* actual_method; + if (methods_class->IsInterface()) { + actual_method = methods_class->FindVirtualMethodForInterfaceSuper( + resolved_method, class_linker->GetImagePointerSize()); + } else { + uint16_t vtable_index = resolved_method->GetMethodIndex(); + actual_method = compiling_class->GetSuperClass()->GetVTableEntry( + vtable_index, class_linker->GetImagePointerSize()); + } + if (actual_method != resolved_method && + !IsSameDexFile(*actual_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) { + // The back-end code generator relies on this check in order to ensure that it will not + // attempt to read the dex_cache with a dex_method_index that is not from the correct + // dex_file. If we didn't do this check then the dex_method_index will not be updated in the + // builder, which means that the code-generator (and compiler driver during sharpening and + // inliner, maybe) might invoke an incorrect method. + // TODO: The actual method could still be referenced in the current dex file, so we + // could try locating it. + // TODO: Remove the dex_file restriction. + return nullptr; + } + if (!actual_method->IsInvokable()) { + // Fail if the actual method cannot be invoked. Otherwise, the runtime resolution stub + // could resolve the callee to the wrong method. + return nullptr; + } + resolved_method = actual_method; + } + } + + // Check for incompatible class changes. The class linker has a fast path for + // looking into the dex cache and does not check incompatible class changes if it hits it. + if (resolved_method->CheckIncompatibleClassChange(invoke_type)) { + return nullptr; + } + + return resolved_method; +} + +bool HInstructionBuilder::BuildInvoke(const Instruction& instruction, + uint32_t dex_pc, + uint32_t method_idx, + uint32_t number_of_vreg_arguments, + bool is_range, + uint32_t* args, + uint32_t register_index) { + InvokeType invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode()); + const char* descriptor = dex_file_->GetMethodShorty(method_idx); + Primitive::Type return_type = Primitive::GetType(descriptor[0]); + + // Remove the return type from the 'proto'. + size_t number_of_arguments = strlen(descriptor) - 1; + if (invoke_type != kStatic) { // instance call + // One extra argument for 'this'. + number_of_arguments++; + } + + MethodReference target_method(dex_file_, method_idx); + + // Special handling for string init. + int32_t string_init_offset = 0; + bool is_string_init = compiler_driver_->IsStringInit(method_idx, + dex_file_, + &string_init_offset); + // Replace calls to String.<init> with StringFactory. + if (is_string_init) { + HInvokeStaticOrDirect::DispatchInfo dispatch_info = { + HInvokeStaticOrDirect::MethodLoadKind::kStringInit, + HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod, + dchecked_integral_cast<uint64_t>(string_init_offset), + 0U + }; + HInvoke* invoke = new (arena_) HInvokeStaticOrDirect( + arena_, + number_of_arguments - 1, + Primitive::kPrimNot /*return_type */, + dex_pc, + method_idx, + target_method, + dispatch_info, + invoke_type, + kStatic /* optimized_invoke_type */, + HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit); + return HandleStringInit(invoke, + number_of_vreg_arguments, + args, + register_index, + is_range, + descriptor); + } + + ArtMethod* resolved_method = ResolveMethod(method_idx, invoke_type); + + if (UNLIKELY(resolved_method == nullptr)) { + MaybeRecordStat(MethodCompilationStat::kUnresolvedMethod); + HInvoke* invoke = new (arena_) HInvokeUnresolved(arena_, + number_of_arguments, + return_type, + dex_pc, + method_idx, + invoke_type); + return HandleInvoke(invoke, + number_of_vreg_arguments, + args, + register_index, + is_range, + descriptor, + nullptr /* clinit_check */); + } + + // Potential class initialization check, in the case of a static method call. + HClinitCheck* clinit_check = nullptr; + HInvoke* invoke = nullptr; + if (invoke_type == kDirect || invoke_type == kStatic || invoke_type == kSuper) { + // By default, consider that the called method implicitly requires + // an initialization check of its declaring method. + HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement + = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit; + ScopedObjectAccess soa(Thread::Current()); + if (invoke_type == kStatic) { + clinit_check = ProcessClinitCheckForInvoke( + dex_pc, resolved_method, method_idx, &clinit_check_requirement); + } else if (invoke_type == kSuper) { + if (IsSameDexFile(*resolved_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) { + // Update the target method to the one resolved. Note that this may be a no-op if + // we resolved to the method referenced by the instruction. + method_idx = resolved_method->GetDexMethodIndex(); + target_method = MethodReference(dex_file_, method_idx); + } + } + + HInvokeStaticOrDirect::DispatchInfo dispatch_info = { + HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod, + HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod, + 0u, + 0U + }; + invoke = new (arena_) HInvokeStaticOrDirect(arena_, + number_of_arguments, + return_type, + dex_pc, + method_idx, + target_method, + dispatch_info, + invoke_type, + invoke_type, + clinit_check_requirement); + } else if (invoke_type == kVirtual) { + ScopedObjectAccess soa(Thread::Current()); // Needed for the method index + invoke = new (arena_) HInvokeVirtual(arena_, + number_of_arguments, + return_type, + dex_pc, + method_idx, + resolved_method->GetMethodIndex()); + } else { + DCHECK_EQ(invoke_type, kInterface); + ScopedObjectAccess soa(Thread::Current()); // Needed for the method index + invoke = new (arena_) HInvokeInterface(arena_, + number_of_arguments, + return_type, + dex_pc, + method_idx, + resolved_method->GetDexMethodIndex()); + } + + return HandleInvoke(invoke, + number_of_vreg_arguments, + args, + register_index, + is_range, + descriptor, + clinit_check); +} + +bool HInstructionBuilder::BuildNewInstance(uint16_t type_index, uint32_t dex_pc) { + bool finalizable; + bool can_throw = NeedsAccessCheck(type_index, &finalizable); + + // Only the non-resolved entrypoint handles the finalizable class case. If we + // need access checks, then we haven't resolved the method and the class may + // again be finalizable. + QuickEntrypointEnum entrypoint = (finalizable || can_throw) + ? kQuickAllocObject + : kQuickAllocObjectInitialized; + + ScopedObjectAccess soa(Thread::Current()); + StackHandleScope<3> hs(soa.Self()); + Handle<mirror::DexCache> dex_cache(hs.NewHandle( + dex_compilation_unit_->GetClassLinker()->FindDexCache( + soa.Self(), *dex_compilation_unit_->GetDexFile()))); + Handle<mirror::Class> resolved_class(hs.NewHandle(dex_cache->GetResolvedType(type_index))); + const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile(); + Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle( + outer_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), outer_dex_file))); + + if (outer_dex_cache.Get() != dex_cache.Get()) { + // We currently do not support inlining allocations across dex files. + return false; + } + + HLoadClass* load_class = new (arena_) HLoadClass( + graph_->GetCurrentMethod(), + type_index, + outer_dex_file, + IsOutermostCompilingClass(type_index), + dex_pc, + /*needs_access_check*/ can_throw, + compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_file, type_index)); + + AppendInstruction(load_class); + HInstruction* cls = load_class; + if (!IsInitialized(resolved_class)) { + cls = new (arena_) HClinitCheck(load_class, dex_pc); + AppendInstruction(cls); + } + + AppendInstruction(new (arena_) HNewInstance( + cls, + graph_->GetCurrentMethod(), + dex_pc, + type_index, + *dex_compilation_unit_->GetDexFile(), + can_throw, + finalizable, + entrypoint)); + return true; +} + +static bool IsSubClass(mirror::Class* to_test, mirror::Class* super_class) + SHARED_REQUIRES(Locks::mutator_lock_) { + return to_test != nullptr && !to_test->IsInterface() && to_test->IsSubClass(super_class); +} + +bool HInstructionBuilder::IsInitialized(Handle<mirror::Class> cls) const { + if (cls.Get() == nullptr) { + return false; + } + + // `CanAssumeClassIsLoaded` will return true if we're JITting, or will + // check whether the class is in an image for the AOT compilation. + if (cls->IsInitialized() && + compiler_driver_->CanAssumeClassIsLoaded(cls.Get())) { + return true; + } + + if (IsSubClass(GetOutermostCompilingClass(), cls.Get())) { + return true; + } + + // TODO: We should walk over the inlined methods, but we don't pass + // that information to the builder. + if (IsSubClass(GetCompilingClass(), cls.Get())) { + return true; + } + + return false; +} + +HClinitCheck* HInstructionBuilder::ProcessClinitCheckForInvoke( + uint32_t dex_pc, + ArtMethod* resolved_method, + uint32_t method_idx, + HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) { + const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile(); + Thread* self = Thread::Current(); + StackHandleScope<4> hs(self); + Handle<mirror::DexCache> dex_cache(hs.NewHandle( + dex_compilation_unit_->GetClassLinker()->FindDexCache( + self, *dex_compilation_unit_->GetDexFile()))); + Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle( + outer_compilation_unit_->GetClassLinker()->FindDexCache( + self, outer_dex_file))); + Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass())); + Handle<mirror::Class> resolved_method_class(hs.NewHandle(resolved_method->GetDeclaringClass())); + + // The index at which the method's class is stored in the DexCache's type array. + uint32_t storage_index = DexFile::kDexNoIndex; + bool is_outer_class = (resolved_method->GetDeclaringClass() == outer_class.Get()); + if (is_outer_class) { + storage_index = outer_class->GetDexTypeIndex(); + } else if (outer_dex_cache.Get() == dex_cache.Get()) { + // Get `storage_index` from IsClassOfStaticMethodAvailableToReferrer. + compiler_driver_->IsClassOfStaticMethodAvailableToReferrer(outer_dex_cache.Get(), + GetCompilingClass(), + resolved_method, + method_idx, + &storage_index); + } + + HClinitCheck* clinit_check = nullptr; + + if (IsInitialized(resolved_method_class)) { + *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone; + } else if (storage_index != DexFile::kDexNoIndex) { + *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit; + HLoadClass* load_class = new (arena_) HLoadClass( + graph_->GetCurrentMethod(), + storage_index, + outer_dex_file, + is_outer_class, + dex_pc, + /*needs_access_check*/ false, + compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_file, storage_index)); + AppendInstruction(load_class); + clinit_check = new (arena_) HClinitCheck(load_class, dex_pc); + AppendInstruction(clinit_check); + } + return clinit_check; +} + +bool HInstructionBuilder::SetupInvokeArguments(HInvoke* invoke, + uint32_t number_of_vreg_arguments, + uint32_t* args, + uint32_t register_index, + bool is_range, + const char* descriptor, + size_t start_index, + size_t* argument_index) { + uint32_t descriptor_index = 1; // Skip the return type. + + for (size_t i = start_index; + // Make sure we don't go over the expected arguments or over the number of + // dex registers given. If the instruction was seen as dead by the verifier, + // it hasn't been properly checked. + (i < number_of_vreg_arguments) && (*argument_index < invoke->GetNumberOfArguments()); + i++, (*argument_index)++) { + Primitive::Type type = Primitive::GetType(descriptor[descriptor_index++]); + bool is_wide = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble); + if (!is_range + && is_wide + && ((i + 1 == number_of_vreg_arguments) || (args[i] + 1 != args[i + 1]))) { + // Longs and doubles should be in pairs, that is, sequential registers. The verifier should + // reject any class where this is violated. However, the verifier only does these checks + // on non trivially dead instructions, so we just bailout the compilation. + VLOG(compiler) << "Did not compile " + << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_) + << " because of non-sequential dex register pair in wide argument"; + MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode); + return false; + } + HInstruction* arg = LoadLocal(is_range ? register_index + i : args[i], type); + invoke->SetArgumentAt(*argument_index, arg); + if (is_wide) { + i++; + } + } + + if (*argument_index != invoke->GetNumberOfArguments()) { + VLOG(compiler) << "Did not compile " + << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_) + << " because of wrong number of arguments in invoke instruction"; + MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode); + return false; + } + + if (invoke->IsInvokeStaticOrDirect() && + HInvokeStaticOrDirect::NeedsCurrentMethodInput( + invoke->AsInvokeStaticOrDirect()->GetMethodLoadKind())) { + invoke->SetArgumentAt(*argument_index, graph_->GetCurrentMethod()); + (*argument_index)++; + } + + return true; +} + +bool HInstructionBuilder::HandleInvoke(HInvoke* invoke, + uint32_t number_of_vreg_arguments, + uint32_t* args, + uint32_t register_index, + bool is_range, + const char* descriptor, + HClinitCheck* clinit_check) { + DCHECK(!invoke->IsInvokeStaticOrDirect() || !invoke->AsInvokeStaticOrDirect()->IsStringInit()); + + size_t start_index = 0; + size_t argument_index = 0; + if (invoke->GetOriginalInvokeType() != InvokeType::kStatic) { // Instance call. + HInstruction* arg = LoadLocal(is_range ? register_index : args[0], Primitive::kPrimNot); + HNullCheck* null_check = new (arena_) HNullCheck(arg, invoke->GetDexPc()); + AppendInstruction(null_check); + invoke->SetArgumentAt(0, null_check); + start_index = 1; + argument_index = 1; + } + + if (!SetupInvokeArguments(invoke, + number_of_vreg_arguments, + args, + register_index, + is_range, + descriptor, + start_index, + &argument_index)) { + return false; + } + + if (clinit_check != nullptr) { + // Add the class initialization check as last input of `invoke`. + DCHECK(invoke->IsInvokeStaticOrDirect()); + DCHECK(invoke->AsInvokeStaticOrDirect()->GetClinitCheckRequirement() + == HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit); + invoke->SetArgumentAt(argument_index, clinit_check); + argument_index++; + } + + AppendInstruction(invoke); + latest_result_ = invoke; + + return true; +} + +bool HInstructionBuilder::HandleStringInit(HInvoke* invoke, + uint32_t number_of_vreg_arguments, + uint32_t* args, + uint32_t register_index, + bool is_range, + const char* descriptor) { + DCHECK(invoke->IsInvokeStaticOrDirect()); + DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit()); + + size_t start_index = 1; + size_t argument_index = 0; + if (!SetupInvokeArguments(invoke, + number_of_vreg_arguments, + args, + register_index, + is_range, + descriptor, + start_index, + &argument_index)) { + return false; + } + + AppendInstruction(invoke); + + // This is a StringFactory call, not an actual String constructor. Its result + // replaces the empty String pre-allocated by NewInstance. + uint32_t orig_this_reg = is_range ? register_index : args[0]; + HInstruction* arg_this = LoadLocal(orig_this_reg, Primitive::kPrimNot); + + // Replacing the NewInstance might render it redundant. Keep a list of these + // to be visited once it is clear whether it is has remaining uses. + if (arg_this->IsNewInstance()) { + ssa_builder_->AddUninitializedString(arg_this->AsNewInstance()); + } else { + DCHECK(arg_this->IsPhi()); + // NewInstance is not the direct input of the StringFactory call. It might + // be redundant but optimizing this case is not worth the effort. + } + + // Walk over all vregs and replace any occurrence of `arg_this` with `invoke`. + for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) { + if ((*current_locals_)[vreg] == arg_this) { + (*current_locals_)[vreg] = invoke; + } + } + + return true; +} + +static Primitive::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) { + const DexFile::FieldId& field_id = dex_file.GetFieldId(field_index); + const char* type = dex_file.GetFieldTypeDescriptor(field_id); + return Primitive::GetType(type[0]); +} + +bool HInstructionBuilder::BuildInstanceFieldAccess(const Instruction& instruction, + uint32_t dex_pc, + bool is_put) { + uint32_t source_or_dest_reg = instruction.VRegA_22c(); + uint32_t obj_reg = instruction.VRegB_22c(); + uint16_t field_index; + if (instruction.IsQuickened()) { + if (!CanDecodeQuickenedInfo()) { + return false; + } + field_index = LookupQuickenedInfo(dex_pc); + } else { + field_index = instruction.VRegC_22c(); + } + + ScopedObjectAccess soa(Thread::Current()); + ArtField* resolved_field = + compiler_driver_->ComputeInstanceFieldInfo(field_index, dex_compilation_unit_, is_put, soa); + + + HInstruction* object = LoadLocal(obj_reg, Primitive::kPrimNot); + HInstruction* null_check = new (arena_) HNullCheck(object, dex_pc); + AppendInstruction(null_check); + + Primitive::Type field_type = (resolved_field == nullptr) + ? GetFieldAccessType(*dex_file_, field_index) + : resolved_field->GetTypeAsPrimitiveType(); + if (is_put) { + HInstruction* value = LoadLocal(source_or_dest_reg, field_type); + HInstruction* field_set = nullptr; + if (resolved_field == nullptr) { + MaybeRecordStat(MethodCompilationStat::kUnresolvedField); + field_set = new (arena_) HUnresolvedInstanceFieldSet(null_check, + value, + field_type, + field_index, + dex_pc); + } else { + uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex(); + field_set = new (arena_) HInstanceFieldSet(null_check, + value, + field_type, + resolved_field->GetOffset(), + resolved_field->IsVolatile(), + field_index, + class_def_index, + *dex_file_, + dex_compilation_unit_->GetDexCache(), + dex_pc); + } + AppendInstruction(field_set); + } else { + HInstruction* field_get = nullptr; + if (resolved_field == nullptr) { + MaybeRecordStat(MethodCompilationStat::kUnresolvedField); + field_get = new (arena_) HUnresolvedInstanceFieldGet(null_check, + field_type, + field_index, + dex_pc); + } else { + uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex(); + field_get = new (arena_) HInstanceFieldGet(null_check, + field_type, + resolved_field->GetOffset(), + resolved_field->IsVolatile(), + field_index, + class_def_index, + *dex_file_, + dex_compilation_unit_->GetDexCache(), + dex_pc); + } + AppendInstruction(field_get); + UpdateLocal(source_or_dest_reg, field_get); + } + + return true; +} + +static mirror::Class* GetClassFrom(CompilerDriver* driver, + const DexCompilationUnit& compilation_unit) { + ScopedObjectAccess soa(Thread::Current()); + StackHandleScope<2> hs(soa.Self()); + const DexFile& dex_file = *compilation_unit.GetDexFile(); + Handle<mirror::ClassLoader> class_loader(hs.NewHandle( + soa.Decode<mirror::ClassLoader*>(compilation_unit.GetClassLoader()))); + Handle<mirror::DexCache> dex_cache(hs.NewHandle( + compilation_unit.GetClassLinker()->FindDexCache(soa.Self(), dex_file))); + + return driver->ResolveCompilingMethodsClass(soa, dex_cache, class_loader, &compilation_unit); +} + +mirror::Class* HInstructionBuilder::GetOutermostCompilingClass() const { + return GetClassFrom(compiler_driver_, *outer_compilation_unit_); +} + +mirror::Class* HInstructionBuilder::GetCompilingClass() const { + return GetClassFrom(compiler_driver_, *dex_compilation_unit_); +} + +bool HInstructionBuilder::IsOutermostCompilingClass(uint16_t type_index) const { + ScopedObjectAccess soa(Thread::Current()); + StackHandleScope<4> hs(soa.Self()); + Handle<mirror::DexCache> dex_cache(hs.NewHandle( + dex_compilation_unit_->GetClassLinker()->FindDexCache( + soa.Self(), *dex_compilation_unit_->GetDexFile()))); + Handle<mirror::ClassLoader> class_loader(hs.NewHandle( + soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader()))); + Handle<mirror::Class> cls(hs.NewHandle(compiler_driver_->ResolveClass( + soa, dex_cache, class_loader, type_index, dex_compilation_unit_))); + Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass())); + + // GetOutermostCompilingClass returns null when the class is unresolved + // (e.g. if it derives from an unresolved class). This is bogus knowing that + // we are compiling it. + // When this happens we cannot establish a direct relation between the current + // class and the outer class, so we return false. + // (Note that this is only used for optimizing invokes and field accesses) + return (cls.Get() != nullptr) && (outer_class.Get() == cls.Get()); +} + +void HInstructionBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction, + uint32_t dex_pc, + bool is_put, + Primitive::Type field_type) { + uint32_t source_or_dest_reg = instruction.VRegA_21c(); + uint16_t field_index = instruction.VRegB_21c(); + + if (is_put) { + HInstruction* value = LoadLocal(source_or_dest_reg, field_type); + AppendInstruction( + new (arena_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc)); + } else { + AppendInstruction(new (arena_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc)); + UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); + } +} + +bool HInstructionBuilder::BuildStaticFieldAccess(const Instruction& instruction, + uint32_t dex_pc, + bool is_put) { + uint32_t source_or_dest_reg = instruction.VRegA_21c(); + uint16_t field_index = instruction.VRegB_21c(); + + ScopedObjectAccess soa(Thread::Current()); + StackHandleScope<5> hs(soa.Self()); + Handle<mirror::DexCache> dex_cache(hs.NewHandle( + dex_compilation_unit_->GetClassLinker()->FindDexCache( + soa.Self(), *dex_compilation_unit_->GetDexFile()))); + Handle<mirror::ClassLoader> class_loader(hs.NewHandle( + soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader()))); + ArtField* resolved_field = compiler_driver_->ResolveField( + soa, dex_cache, class_loader, dex_compilation_unit_, field_index, true); + + if (resolved_field == nullptr) { + MaybeRecordStat(MethodCompilationStat::kUnresolvedField); + Primitive::Type field_type = GetFieldAccessType(*dex_file_, field_index); + BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type); + return true; + } + + Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType(); + const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile(); + Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle( + outer_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), outer_dex_file))); + Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass())); + + // The index at which the field's class is stored in the DexCache's type array. + uint32_t storage_index; + bool is_outer_class = (outer_class.Get() == resolved_field->GetDeclaringClass()); + if (is_outer_class) { + storage_index = outer_class->GetDexTypeIndex(); + } else if (outer_dex_cache.Get() != dex_cache.Get()) { + // The compiler driver cannot currently understand multiple dex caches involved. Just bailout. + return false; + } else { + // TODO: This is rather expensive. Perf it and cache the results if needed. + std::pair<bool, bool> pair = compiler_driver_->IsFastStaticField( + outer_dex_cache.Get(), + GetCompilingClass(), + resolved_field, + field_index, + &storage_index); + bool can_easily_access = is_put ? pair.second : pair.first; + if (!can_easily_access) { + MaybeRecordStat(MethodCompilationStat::kUnresolvedFieldNotAFastAccess); + BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type); + return true; + } + } + + bool is_in_cache = + compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_file, storage_index); + HLoadClass* constant = new (arena_) HLoadClass(graph_->GetCurrentMethod(), + storage_index, + outer_dex_file, + is_outer_class, + dex_pc, + /*needs_access_check*/ false, + is_in_cache); + AppendInstruction(constant); + + HInstruction* cls = constant; + + Handle<mirror::Class> klass(hs.NewHandle(resolved_field->GetDeclaringClass())); + if (!IsInitialized(klass)) { + cls = new (arena_) HClinitCheck(constant, dex_pc); + AppendInstruction(cls); + } + + uint16_t class_def_index = klass->GetDexClassDefIndex(); + if (is_put) { + // We need to keep the class alive before loading the value. + HInstruction* value = LoadLocal(source_or_dest_reg, field_type); + DCHECK_EQ(HPhi::ToPhiType(value->GetType()), HPhi::ToPhiType(field_type)); + AppendInstruction(new (arena_) HStaticFieldSet(cls, + value, + field_type, + resolved_field->GetOffset(), + resolved_field->IsVolatile(), + field_index, + class_def_index, + *dex_file_, + dex_cache_, + dex_pc)); + } else { + AppendInstruction(new (arena_) HStaticFieldGet(cls, + field_type, + resolved_field->GetOffset(), + resolved_field->IsVolatile(), + field_index, + class_def_index, + *dex_file_, + dex_cache_, + dex_pc)); + UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); + } + return true; +} + +void HInstructionBuilder::BuildCheckedDivRem(uint16_t out_vreg, + uint16_t first_vreg, + int64_t second_vreg_or_constant, + uint32_t dex_pc, + Primitive::Type type, + bool second_is_constant, + bool isDiv) { + DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong); + + HInstruction* first = LoadLocal(first_vreg, type); + HInstruction* second = nullptr; + if (second_is_constant) { + if (type == Primitive::kPrimInt) { + second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc); + } else { + second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc); + } + } else { + second = LoadLocal(second_vreg_or_constant, type); + } + + if (!second_is_constant + || (type == Primitive::kPrimInt && second->AsIntConstant()->GetValue() == 0) + || (type == Primitive::kPrimLong && second->AsLongConstant()->GetValue() == 0)) { + second = new (arena_) HDivZeroCheck(second, dex_pc); + AppendInstruction(second); + } + + if (isDiv) { + AppendInstruction(new (arena_) HDiv(type, first, second, dex_pc)); + } else { + AppendInstruction(new (arena_) HRem(type, first, second, dex_pc)); + } + UpdateLocal(out_vreg, current_block_->GetLastInstruction()); +} + +void HInstructionBuilder::BuildArrayAccess(const Instruction& instruction, + uint32_t dex_pc, + bool is_put, + Primitive::Type anticipated_type) { + uint8_t source_or_dest_reg = instruction.VRegA_23x(); + uint8_t array_reg = instruction.VRegB_23x(); + uint8_t index_reg = instruction.VRegC_23x(); + + HInstruction* object = LoadLocal(array_reg, Primitive::kPrimNot); + object = new (arena_) HNullCheck(object, dex_pc); + AppendInstruction(object); + + HInstruction* length = new (arena_) HArrayLength(object, dex_pc); + AppendInstruction(length); + HInstruction* index = LoadLocal(index_reg, Primitive::kPrimInt); + index = new (arena_) HBoundsCheck(index, length, dex_pc); + AppendInstruction(index); + if (is_put) { + HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type); + // TODO: Insert a type check node if the type is Object. + HArraySet* aset = new (arena_) HArraySet(object, index, value, anticipated_type, dex_pc); + ssa_builder_->MaybeAddAmbiguousArraySet(aset); + AppendInstruction(aset); + } else { + HArrayGet* aget = new (arena_) HArrayGet(object, index, anticipated_type, dex_pc); + ssa_builder_->MaybeAddAmbiguousArrayGet(aget); + AppendInstruction(aget); + UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); + } + graph_->SetHasBoundsChecks(true); +} + +void HInstructionBuilder::BuildFilledNewArray(uint32_t dex_pc, + uint32_t type_index, + uint32_t number_of_vreg_arguments, + bool is_range, + uint32_t* args, + uint32_t register_index) { + HInstruction* length = graph_->GetIntConstant(number_of_vreg_arguments, dex_pc); + bool finalizable; + QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index, &finalizable) + ? kQuickAllocArrayWithAccessCheck + : kQuickAllocArray; + HInstruction* object = new (arena_) HNewArray(length, + graph_->GetCurrentMethod(), + dex_pc, + type_index, + *dex_compilation_unit_->GetDexFile(), + entrypoint); + AppendInstruction(object); + + const char* descriptor = dex_file_->StringByTypeIdx(type_index); + DCHECK_EQ(descriptor[0], '[') << descriptor; + char primitive = descriptor[1]; + DCHECK(primitive == 'I' + || primitive == 'L' + || primitive == '[') << descriptor; + bool is_reference_array = (primitive == 'L') || (primitive == '['); + Primitive::Type type = is_reference_array ? Primitive::kPrimNot : Primitive::kPrimInt; + + for (size_t i = 0; i < number_of_vreg_arguments; ++i) { + HInstruction* value = LoadLocal(is_range ? register_index + i : args[i], type); + HInstruction* index = graph_->GetIntConstant(i, dex_pc); + HArraySet* aset = new (arena_) HArraySet(object, index, value, type, dex_pc); + ssa_builder_->MaybeAddAmbiguousArraySet(aset); + AppendInstruction(aset); + } + latest_result_ = object; +} + +template <typename T> +void HInstructionBuilder::BuildFillArrayData(HInstruction* object, + const T* data, + uint32_t element_count, + Primitive::Type anticipated_type, + uint32_t dex_pc) { + for (uint32_t i = 0; i < element_count; ++i) { + HInstruction* index = graph_->GetIntConstant(i, dex_pc); + HInstruction* value = graph_->GetIntConstant(data[i], dex_pc); + HArraySet* aset = new (arena_) HArraySet(object, index, value, anticipated_type, dex_pc); + ssa_builder_->MaybeAddAmbiguousArraySet(aset); + AppendInstruction(aset); + } +} + +void HInstructionBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) { + HInstruction* array = LoadLocal(instruction.VRegA_31t(), Primitive::kPrimNot); + HNullCheck* null_check = new (arena_) HNullCheck(array, dex_pc); + AppendInstruction(null_check); + + HInstruction* length = new (arena_) HArrayLength(null_check, dex_pc); + AppendInstruction(length); + + int32_t payload_offset = instruction.VRegB_31t() + dex_pc; + const Instruction::ArrayDataPayload* payload = + reinterpret_cast<const Instruction::ArrayDataPayload*>(code_item_.insns_ + payload_offset); + const uint8_t* data = payload->data; + uint32_t element_count = payload->element_count; + + // Implementation of this DEX instruction seems to be that the bounds check is + // done before doing any stores. + HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc); + AppendInstruction(new (arena_) HBoundsCheck(last_index, length, dex_pc)); + + switch (payload->element_width) { + case 1: + BuildFillArrayData(null_check, + reinterpret_cast<const int8_t*>(data), + element_count, + Primitive::kPrimByte, + dex_pc); + break; + case 2: + BuildFillArrayData(null_check, + reinterpret_cast<const int16_t*>(data), + element_count, + Primitive::kPrimShort, + dex_pc); + break; + case 4: + BuildFillArrayData(null_check, + reinterpret_cast<const int32_t*>(data), + element_count, + Primitive::kPrimInt, + dex_pc); + break; + case 8: + BuildFillWideArrayData(null_check, + reinterpret_cast<const int64_t*>(data), + element_count, + dex_pc); + break; + default: + LOG(FATAL) << "Unknown element width for " << payload->element_width; + } + graph_->SetHasBoundsChecks(true); +} + +void HInstructionBuilder::BuildFillWideArrayData(HInstruction* object, + const int64_t* data, + uint32_t element_count, + uint32_t dex_pc) { + for (uint32_t i = 0; i < element_count; ++i) { + HInstruction* index = graph_->GetIntConstant(i, dex_pc); + HInstruction* value = graph_->GetLongConstant(data[i], dex_pc); + HArraySet* aset = new (arena_) HArraySet(object, index, value, Primitive::kPrimLong, dex_pc); + ssa_builder_->MaybeAddAmbiguousArraySet(aset); + AppendInstruction(aset); + } +} + +static TypeCheckKind ComputeTypeCheckKind(Handle<mirror::Class> cls) + SHARED_REQUIRES(Locks::mutator_lock_) { + if (cls.Get() == nullptr) { + return TypeCheckKind::kUnresolvedCheck; + } else if (cls->IsInterface()) { + return TypeCheckKind::kInterfaceCheck; + } else if (cls->IsArrayClass()) { + if (cls->GetComponentType()->IsObjectClass()) { + return TypeCheckKind::kArrayObjectCheck; + } else if (cls->CannotBeAssignedFromOtherTypes()) { + return TypeCheckKind::kExactCheck; + } else { + return TypeCheckKind::kArrayCheck; + } + } else if (cls->IsFinal()) { + return TypeCheckKind::kExactCheck; + } else if (cls->IsAbstract()) { + return TypeCheckKind::kAbstractClassCheck; + } else { + return TypeCheckKind::kClassHierarchyCheck; + } +} + +void HInstructionBuilder::BuildTypeCheck(const Instruction& instruction, + uint8_t destination, + uint8_t reference, + uint16_t type_index, + uint32_t dex_pc) { + bool type_known_final, type_known_abstract, use_declaring_class; + bool can_access = compiler_driver_->CanAccessTypeWithoutChecks( + dex_compilation_unit_->GetDexMethodIndex(), + *dex_compilation_unit_->GetDexFile(), + type_index, + &type_known_final, + &type_known_abstract, + &use_declaring_class); + + ScopedObjectAccess soa(Thread::Current()); + StackHandleScope<2> hs(soa.Self()); + const DexFile& dex_file = *dex_compilation_unit_->GetDexFile(); + Handle<mirror::DexCache> dex_cache(hs.NewHandle( + dex_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), dex_file))); + Handle<mirror::Class> resolved_class(hs.NewHandle(dex_cache->GetResolvedType(type_index))); + + HInstruction* object = LoadLocal(reference, Primitive::kPrimNot); + HLoadClass* cls = new (arena_) HLoadClass( + graph_->GetCurrentMethod(), + type_index, + dex_file, + IsOutermostCompilingClass(type_index), + dex_pc, + !can_access, + compiler_driver_->CanAssumeTypeIsPresentInDexCache(dex_file, type_index)); + AppendInstruction(cls); + + TypeCheckKind check_kind = ComputeTypeCheckKind(resolved_class); + if (instruction.Opcode() == Instruction::INSTANCE_OF) { + AppendInstruction(new (arena_) HInstanceOf(object, cls, check_kind, dex_pc)); + UpdateLocal(destination, current_block_->GetLastInstruction()); + } else { + DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST); + // We emit a CheckCast followed by a BoundType. CheckCast is a statement + // which may throw. If it succeeds BoundType sets the new type of `object` + // for all subsequent uses. + AppendInstruction(new (arena_) HCheckCast(object, cls, check_kind, dex_pc)); + AppendInstruction(new (arena_) HBoundType(object, dex_pc)); + UpdateLocal(reference, current_block_->GetLastInstruction()); + } +} + +bool HInstructionBuilder::NeedsAccessCheck(uint32_t type_index, bool* finalizable) const { + return !compiler_driver_->CanAccessInstantiableTypeWithoutChecks( + dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index, finalizable); +} + +bool HInstructionBuilder::CanDecodeQuickenedInfo() const { + return interpreter_metadata_ != nullptr; +} + +uint16_t HInstructionBuilder::LookupQuickenedInfo(uint32_t dex_pc) { + DCHECK(interpreter_metadata_ != nullptr); + uint32_t dex_pc_in_map = DecodeUnsignedLeb128(&interpreter_metadata_); + DCHECK_EQ(dex_pc, dex_pc_in_map); + return DecodeUnsignedLeb128(&interpreter_metadata_); +} + +bool HInstructionBuilder::ProcessDexInstruction(const Instruction& instruction, uint32_t dex_pc) { + switch (instruction.Opcode()) { + case Instruction::CONST_4: { + int32_t register_index = instruction.VRegA(); + HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc); + UpdateLocal(register_index, constant); + break; + } + + case Instruction::CONST_16: { + int32_t register_index = instruction.VRegA(); + HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc); + UpdateLocal(register_index, constant); + break; + } + + case Instruction::CONST: { + int32_t register_index = instruction.VRegA(); + HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc); + UpdateLocal(register_index, constant); + break; + } + + case Instruction::CONST_HIGH16: { + int32_t register_index = instruction.VRegA(); + HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc); + UpdateLocal(register_index, constant); + break; + } + + case Instruction::CONST_WIDE_16: { + int32_t register_index = instruction.VRegA(); + // Get 16 bits of constant value, sign extended to 64 bits. + int64_t value = instruction.VRegB_21s(); + value <<= 48; + value >>= 48; + HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); + UpdateLocal(register_index, constant); + break; + } + + case Instruction::CONST_WIDE_32: { + int32_t register_index = instruction.VRegA(); + // Get 32 bits of constant value, sign extended to 64 bits. + int64_t value = instruction.VRegB_31i(); + value <<= 32; + value >>= 32; + HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); + UpdateLocal(register_index, constant); + break; + } + + case Instruction::CONST_WIDE: { + int32_t register_index = instruction.VRegA(); + HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc); + UpdateLocal(register_index, constant); + break; + } + + case Instruction::CONST_WIDE_HIGH16: { + int32_t register_index = instruction.VRegA(); + int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48; + HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); + UpdateLocal(register_index, constant); + break; + } + + // Note that the SSA building will refine the types. + case Instruction::MOVE: + case Instruction::MOVE_FROM16: + case Instruction::MOVE_16: { + HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); + UpdateLocal(instruction.VRegA(), value); + break; + } + + // Note that the SSA building will refine the types. + case Instruction::MOVE_WIDE: + case Instruction::MOVE_WIDE_FROM16: + case Instruction::MOVE_WIDE_16: { + HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimLong); + UpdateLocal(instruction.VRegA(), value); + break; + } + + case Instruction::MOVE_OBJECT: + case Instruction::MOVE_OBJECT_16: + case Instruction::MOVE_OBJECT_FROM16: { + HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimNot); + UpdateLocal(instruction.VRegA(), value); + break; + } + + case Instruction::RETURN_VOID_NO_BARRIER: + case Instruction::RETURN_VOID: { + BuildReturn(instruction, Primitive::kPrimVoid, dex_pc); + break; + } + +#define IF_XX(comparison, cond) \ + case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \ + case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break + + IF_XX(HEqual, EQ); + IF_XX(HNotEqual, NE); + IF_XX(HLessThan, LT); + IF_XX(HLessThanOrEqual, LE); + IF_XX(HGreaterThan, GT); + IF_XX(HGreaterThanOrEqual, GE); + + case Instruction::GOTO: + case Instruction::GOTO_16: + case Instruction::GOTO_32: { + AppendInstruction(new (arena_) HGoto(dex_pc)); + current_block_ = nullptr; + break; + } + + case Instruction::RETURN: { + BuildReturn(instruction, return_type_, dex_pc); + break; + } + + case Instruction::RETURN_OBJECT: { + BuildReturn(instruction, return_type_, dex_pc); + break; + } + + case Instruction::RETURN_WIDE: { + BuildReturn(instruction, return_type_, dex_pc); + break; + } + + case Instruction::INVOKE_DIRECT: + case Instruction::INVOKE_INTERFACE: + case Instruction::INVOKE_STATIC: + case Instruction::INVOKE_SUPER: + case Instruction::INVOKE_VIRTUAL: + case Instruction::INVOKE_VIRTUAL_QUICK: { + uint16_t method_idx; + if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_QUICK) { + if (!CanDecodeQuickenedInfo()) { + return false; + } + method_idx = LookupQuickenedInfo(dex_pc); + } else { + method_idx = instruction.VRegB_35c(); + } + uint32_t number_of_vreg_arguments = instruction.VRegA_35c(); + uint32_t args[5]; + instruction.GetVarArgs(args); + if (!BuildInvoke(instruction, dex_pc, method_idx, + number_of_vreg_arguments, false, args, -1)) { + return false; + } + break; + } + + case Instruction::INVOKE_DIRECT_RANGE: + case Instruction::INVOKE_INTERFACE_RANGE: + case Instruction::INVOKE_STATIC_RANGE: + case Instruction::INVOKE_SUPER_RANGE: + case Instruction::INVOKE_VIRTUAL_RANGE: + case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: { + uint16_t method_idx; + if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK) { + if (!CanDecodeQuickenedInfo()) { + return false; + } + method_idx = LookupQuickenedInfo(dex_pc); + } else { + method_idx = instruction.VRegB_3rc(); + } + uint32_t number_of_vreg_arguments = instruction.VRegA_3rc(); + uint32_t register_index = instruction.VRegC(); + if (!BuildInvoke(instruction, dex_pc, method_idx, + number_of_vreg_arguments, true, nullptr, register_index)) { + return false; + } + break; + } + + case Instruction::NEG_INT: { + Unop_12x<HNeg>(instruction, Primitive::kPrimInt, dex_pc); + break; + } + + case Instruction::NEG_LONG: { + Unop_12x<HNeg>(instruction, Primitive::kPrimLong, dex_pc); + break; + } + + case Instruction::NEG_FLOAT: { + Unop_12x<HNeg>(instruction, Primitive::kPrimFloat, dex_pc); + break; + } + + case Instruction::NEG_DOUBLE: { + Unop_12x<HNeg>(instruction, Primitive::kPrimDouble, dex_pc); + break; + } + + case Instruction::NOT_INT: { + Unop_12x<HNot>(instruction, Primitive::kPrimInt, dex_pc); + break; + } + + case Instruction::NOT_LONG: { + Unop_12x<HNot>(instruction, Primitive::kPrimLong, dex_pc); + break; + } + + case Instruction::INT_TO_LONG: { + Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimLong, dex_pc); + break; + } + + case Instruction::INT_TO_FLOAT: { + Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimFloat, dex_pc); + break; + } + + case Instruction::INT_TO_DOUBLE: { + Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimDouble, dex_pc); + break; + } + + case Instruction::LONG_TO_INT: { + Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimInt, dex_pc); + break; + } + + case Instruction::LONG_TO_FLOAT: { + Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimFloat, dex_pc); + break; + } + + case Instruction::LONG_TO_DOUBLE: { + Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimDouble, dex_pc); + break; + } + + case Instruction::FLOAT_TO_INT: { + Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimInt, dex_pc); + break; + } + + case Instruction::FLOAT_TO_LONG: { + Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimLong, dex_pc); + break; + } + + case Instruction::FLOAT_TO_DOUBLE: { + Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimDouble, dex_pc); + break; + } + + case Instruction::DOUBLE_TO_INT: { + Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimInt, dex_pc); + break; + } + + case Instruction::DOUBLE_TO_LONG: { + Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimLong, dex_pc); + break; + } + + case Instruction::DOUBLE_TO_FLOAT: { + Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimFloat, dex_pc); + break; + } + + case Instruction::INT_TO_BYTE: { + Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimByte, dex_pc); + break; + } + + case Instruction::INT_TO_SHORT: { + Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimShort, dex_pc); + break; + } + + case Instruction::INT_TO_CHAR: { + Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimChar, dex_pc); + break; + } + + case Instruction::ADD_INT: { + Binop_23x<HAdd>(instruction, Primitive::kPrimInt, dex_pc); + break; + } + + case Instruction::ADD_LONG: { + Binop_23x<HAdd>(instruction, Primitive::kPrimLong, dex_pc); + break; + } + + case Instruction::ADD_DOUBLE: { + Binop_23x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc); + break; + } + + case Instruction::ADD_FLOAT: { + Binop_23x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc); + break; + } + + case Instruction::SUB_INT: { + Binop_23x<HSub>(instruction, Primitive::kPrimInt, dex_pc); + break; + } + + case Instruction::SUB_LONG: { + Binop_23x<HSub>(instruction, Primitive::kPrimLong, dex_pc); + break; + } + + case Instruction::SUB_FLOAT: { + Binop_23x<HSub>(instruction, Primitive::kPrimFloat, dex_pc); + break; + } + + case Instruction::SUB_DOUBLE: { + Binop_23x<HSub>(instruction, Primitive::kPrimDouble, dex_pc); + break; + } + + case Instruction::ADD_INT_2ADDR: { + Binop_12x<HAdd>(instruction, Primitive::kPrimInt, dex_pc); + break; + } + + case Instruction::MUL_INT: { + Binop_23x<HMul>(instruction, Primitive::kPrimInt, dex_pc); + break; + } + + case Instruction::MUL_LONG: { + Binop_23x<HMul>(instruction, Primitive::kPrimLong, dex_pc); + break; + } + + case Instruction::MUL_FLOAT: { + Binop_23x<HMul>(instruction, Primitive::kPrimFloat, dex_pc); + break; + } + + case Instruction::MUL_DOUBLE: { + Binop_23x<HMul>(instruction, Primitive::kPrimDouble, dex_pc); + break; + } + + case Instruction::DIV_INT: { + BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), + dex_pc, Primitive::kPrimInt, false, true); + break; + } + + case Instruction::DIV_LONG: { + BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), + dex_pc, Primitive::kPrimLong, false, true); + break; + } + + case Instruction::DIV_FLOAT: { + Binop_23x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc); + break; + } + + case Instruction::DIV_DOUBLE: { + Binop_23x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc); + break; + } + + case Instruction::REM_INT: { + BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), + dex_pc, Primitive::kPrimInt, false, false); + break; + } + + case Instruction::REM_LONG: { + BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), + dex_pc, Primitive::kPrimLong, false, false); + break; + } + + case Instruction::REM_FLOAT: { + Binop_23x<HRem>(instruction, Primitive::kPrimFloat, dex_pc); + break; + } + + case Instruction::REM_DOUBLE: { + Binop_23x<HRem>(instruction, Primitive::kPrimDouble, dex_pc); + break; + } + + case Instruction::AND_INT: { + Binop_23x<HAnd>(instruction, Primitive::kPrimInt, dex_pc); + break; + } + + case Instruction::AND_LONG: { + Binop_23x<HAnd>(instruction, Primitive::kPrimLong, dex_pc); + break; + } + + case Instruction::SHL_INT: { + Binop_23x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc); + break; + } + + case Instruction::SHL_LONG: { + Binop_23x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc); + break; + } + + case Instruction::SHR_INT: { + Binop_23x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc); + break; + } + + case Instruction::SHR_LONG: { + Binop_23x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc); + break; + } + + case Instruction::USHR_INT: { + Binop_23x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc); + break; + } + + case Instruction::USHR_LONG: { + Binop_23x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc); + break; + } + + case Instruction::OR_INT: { + Binop_23x<HOr>(instruction, Primitive::kPrimInt, dex_pc); + break; + } + + case Instruction::OR_LONG: { + Binop_23x<HOr>(instruction, Primitive::kPrimLong, dex_pc); + break; + } + + case Instruction::XOR_INT: { + Binop_23x<HXor>(instruction, Primitive::kPrimInt, dex_pc); + break; + } + + case Instruction::XOR_LONG: { + Binop_23x<HXor>(instruction, Primitive::kPrimLong, dex_pc); + break; + } + + case Instruction::ADD_LONG_2ADDR: { + Binop_12x<HAdd>(instruction, Primitive::kPrimLong, dex_pc); + break; + } + + case Instruction::ADD_DOUBLE_2ADDR: { + Binop_12x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc); + break; + } + + case Instruction::ADD_FLOAT_2ADDR: { + Binop_12x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc); + break; + } + + case Instruction::SUB_INT_2ADDR: { + Binop_12x<HSub>(instruction, Primitive::kPrimInt, dex_pc); + break; + } + + case Instruction::SUB_LONG_2ADDR: { + Binop_12x<HSub>(instruction, Primitive::kPrimLong, dex_pc); + break; + } + + case Instruction::SUB_FLOAT_2ADDR: { + Binop_12x<HSub>(instruction, Primitive::kPrimFloat, dex_pc); + break; + } + + case Instruction::SUB_DOUBLE_2ADDR: { + Binop_12x<HSub>(instruction, Primitive::kPrimDouble, dex_pc); + break; + } + + case Instruction::MUL_INT_2ADDR: { + Binop_12x<HMul>(instruction, Primitive::kPrimInt, dex_pc); + break; + } + + case Instruction::MUL_LONG_2ADDR: { + Binop_12x<HMul>(instruction, Primitive::kPrimLong, dex_pc); + break; + } + + case Instruction::MUL_FLOAT_2ADDR: { + Binop_12x<HMul>(instruction, Primitive::kPrimFloat, dex_pc); + break; + } + + case Instruction::MUL_DOUBLE_2ADDR: { + Binop_12x<HMul>(instruction, Primitive::kPrimDouble, dex_pc); + break; + } + + case Instruction::DIV_INT_2ADDR: { + BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), + dex_pc, Primitive::kPrimInt, false, true); + break; + } + + case Instruction::DIV_LONG_2ADDR: { + BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), + dex_pc, Primitive::kPrimLong, false, true); + break; + } + + case Instruction::REM_INT_2ADDR: { + BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), + dex_pc, Primitive::kPrimInt, false, false); + break; + } + + case Instruction::REM_LONG_2ADDR: { + BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), + dex_pc, Primitive::kPrimLong, false, false); + break; + } + + case Instruction::REM_FLOAT_2ADDR: { + Binop_12x<HRem>(instruction, Primitive::kPrimFloat, dex_pc); + break; + } + + case Instruction::REM_DOUBLE_2ADDR: { + Binop_12x<HRem>(instruction, Primitive::kPrimDouble, dex_pc); + break; + } + + case Instruction::SHL_INT_2ADDR: { + Binop_12x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc); + break; + } + + case Instruction::SHL_LONG_2ADDR: { + Binop_12x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc); + break; + } + + case Instruction::SHR_INT_2ADDR: { + Binop_12x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc); + break; + } + + case Instruction::SHR_LONG_2ADDR: { + Binop_12x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc); + break; + } + + case Instruction::USHR_INT_2ADDR: { + Binop_12x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc); + break; + } + + case Instruction::USHR_LONG_2ADDR: { + Binop_12x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc); + break; + } + + case Instruction::DIV_FLOAT_2ADDR: { + Binop_12x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc); + break; + } + + case Instruction::DIV_DOUBLE_2ADDR: { + Binop_12x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc); + break; + } + + case Instruction::AND_INT_2ADDR: { + Binop_12x<HAnd>(instruction, Primitive::kPrimInt, dex_pc); + break; + } + + case Instruction::AND_LONG_2ADDR: { + Binop_12x<HAnd>(instruction, Primitive::kPrimLong, dex_pc); + break; + } + + case Instruction::OR_INT_2ADDR: { + Binop_12x<HOr>(instruction, Primitive::kPrimInt, dex_pc); + break; + } + + case Instruction::OR_LONG_2ADDR: { + Binop_12x<HOr>(instruction, Primitive::kPrimLong, dex_pc); + break; + } + + case Instruction::XOR_INT_2ADDR: { + Binop_12x<HXor>(instruction, Primitive::kPrimInt, dex_pc); + break; + } + + case Instruction::XOR_LONG_2ADDR: { + Binop_12x<HXor>(instruction, Primitive::kPrimLong, dex_pc); + break; + } + + case Instruction::ADD_INT_LIT16: { + Binop_22s<HAdd>(instruction, false, dex_pc); + break; + } + + case Instruction::AND_INT_LIT16: { + Binop_22s<HAnd>(instruction, false, dex_pc); + break; + } + + case Instruction::OR_INT_LIT16: { + Binop_22s<HOr>(instruction, false, dex_pc); + break; + } + + case Instruction::XOR_INT_LIT16: { + Binop_22s<HXor>(instruction, false, dex_pc); + break; + } + + case Instruction::RSUB_INT: { + Binop_22s<HSub>(instruction, true, dex_pc); + break; + } + + case Instruction::MUL_INT_LIT16: { + Binop_22s<HMul>(instruction, false, dex_pc); + break; + } + + case Instruction::ADD_INT_LIT8: { + Binop_22b<HAdd>(instruction, false, dex_pc); + break; + } + + case Instruction::AND_INT_LIT8: { + Binop_22b<HAnd>(instruction, false, dex_pc); + break; + } + + case Instruction::OR_INT_LIT8: { + Binop_22b<HOr>(instruction, false, dex_pc); + break; + } + + case Instruction::XOR_INT_LIT8: { + Binop_22b<HXor>(instruction, false, dex_pc); + break; + } + + case Instruction::RSUB_INT_LIT8: { + Binop_22b<HSub>(instruction, true, dex_pc); + break; + } + + case Instruction::MUL_INT_LIT8: { + Binop_22b<HMul>(instruction, false, dex_pc); + break; + } + + case Instruction::DIV_INT_LIT16: + case Instruction::DIV_INT_LIT8: { + BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), + dex_pc, Primitive::kPrimInt, true, true); + break; + } + + case Instruction::REM_INT_LIT16: + case Instruction::REM_INT_LIT8: { + BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), + dex_pc, Primitive::kPrimInt, true, false); + break; + } + + case Instruction::SHL_INT_LIT8: { + Binop_22b<HShl>(instruction, false, dex_pc); + break; + } + + case Instruction::SHR_INT_LIT8: { + Binop_22b<HShr>(instruction, false, dex_pc); + break; + } + + case Instruction::USHR_INT_LIT8: { + Binop_22b<HUShr>(instruction, false, dex_pc); + break; + } + + case Instruction::NEW_INSTANCE: { + if (!BuildNewInstance(instruction.VRegB_21c(), dex_pc)) { + return false; + } + UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); + break; + } + + case Instruction::NEW_ARRAY: { + uint16_t type_index = instruction.VRegC_22c(); + HInstruction* length = LoadLocal(instruction.VRegB_22c(), Primitive::kPrimInt); + bool finalizable; + QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index, &finalizable) + ? kQuickAllocArrayWithAccessCheck + : kQuickAllocArray; + AppendInstruction(new (arena_) HNewArray(length, + graph_->GetCurrentMethod(), + dex_pc, + type_index, + *dex_compilation_unit_->GetDexFile(), + entrypoint)); + UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction()); + break; + } + + case Instruction::FILLED_NEW_ARRAY: { + uint32_t number_of_vreg_arguments = instruction.VRegA_35c(); + uint32_t type_index = instruction.VRegB_35c(); + uint32_t args[5]; + instruction.GetVarArgs(args); + BuildFilledNewArray(dex_pc, type_index, number_of_vreg_arguments, false, args, 0); + break; + } + + case Instruction::FILLED_NEW_ARRAY_RANGE: { + uint32_t number_of_vreg_arguments = instruction.VRegA_3rc(); + uint32_t type_index = instruction.VRegB_3rc(); + uint32_t register_index = instruction.VRegC_3rc(); + BuildFilledNewArray( + dex_pc, type_index, number_of_vreg_arguments, true, nullptr, register_index); + break; + } + + case Instruction::FILL_ARRAY_DATA: { + BuildFillArrayData(instruction, dex_pc); + break; + } + + case Instruction::MOVE_RESULT: + case Instruction::MOVE_RESULT_WIDE: + case Instruction::MOVE_RESULT_OBJECT: { + DCHECK(latest_result_ != nullptr); + UpdateLocal(instruction.VRegA(), latest_result_); + latest_result_ = nullptr; + break; + } + + case Instruction::CMP_LONG: { + Binop_23x_cmp(instruction, Primitive::kPrimLong, ComparisonBias::kNoBias, dex_pc); + break; + } + + case Instruction::CMPG_FLOAT: { + Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kGtBias, dex_pc); + break; + } + + case Instruction::CMPG_DOUBLE: { + Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kGtBias, dex_pc); + break; + } + + case Instruction::CMPL_FLOAT: { + Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kLtBias, dex_pc); + break; + } + + case Instruction::CMPL_DOUBLE: { + Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kLtBias, dex_pc); + break; + } + + case Instruction::NOP: + break; + + case Instruction::IGET: + case Instruction::IGET_QUICK: + case Instruction::IGET_WIDE: + case Instruction::IGET_WIDE_QUICK: + case Instruction::IGET_OBJECT: + case Instruction::IGET_OBJECT_QUICK: + case Instruction::IGET_BOOLEAN: + case Instruction::IGET_BOOLEAN_QUICK: + case Instruction::IGET_BYTE: + case Instruction::IGET_BYTE_QUICK: + case Instruction::IGET_CHAR: + case Instruction::IGET_CHAR_QUICK: + case Instruction::IGET_SHORT: + case Instruction::IGET_SHORT_QUICK: { + if (!BuildInstanceFieldAccess(instruction, dex_pc, false)) { + return false; + } + break; + } + + case Instruction::IPUT: + case Instruction::IPUT_QUICK: + case Instruction::IPUT_WIDE: + case Instruction::IPUT_WIDE_QUICK: + case Instruction::IPUT_OBJECT: + case Instruction::IPUT_OBJECT_QUICK: + case Instruction::IPUT_BOOLEAN: + case Instruction::IPUT_BOOLEAN_QUICK: + case Instruction::IPUT_BYTE: + case Instruction::IPUT_BYTE_QUICK: + case Instruction::IPUT_CHAR: + case Instruction::IPUT_CHAR_QUICK: + case Instruction::IPUT_SHORT: + case Instruction::IPUT_SHORT_QUICK: { + if (!BuildInstanceFieldAccess(instruction, dex_pc, true)) { + return false; + } + break; + } + + case Instruction::SGET: + case Instruction::SGET_WIDE: + case Instruction::SGET_OBJECT: + case Instruction::SGET_BOOLEAN: + case Instruction::SGET_BYTE: + case Instruction::SGET_CHAR: + case Instruction::SGET_SHORT: { + if (!BuildStaticFieldAccess(instruction, dex_pc, false)) { + return false; + } + break; + } + + case Instruction::SPUT: + case Instruction::SPUT_WIDE: + case Instruction::SPUT_OBJECT: + case Instruction::SPUT_BOOLEAN: + case Instruction::SPUT_BYTE: + case Instruction::SPUT_CHAR: + case Instruction::SPUT_SHORT: { + if (!BuildStaticFieldAccess(instruction, dex_pc, true)) { + return false; + } + break; + } + +#define ARRAY_XX(kind, anticipated_type) \ + case Instruction::AGET##kind: { \ + BuildArrayAccess(instruction, dex_pc, false, anticipated_type); \ + break; \ + } \ + case Instruction::APUT##kind: { \ + BuildArrayAccess(instruction, dex_pc, true, anticipated_type); \ + break; \ + } + + ARRAY_XX(, Primitive::kPrimInt); + ARRAY_XX(_WIDE, Primitive::kPrimLong); + ARRAY_XX(_OBJECT, Primitive::kPrimNot); + ARRAY_XX(_BOOLEAN, Primitive::kPrimBoolean); + ARRAY_XX(_BYTE, Primitive::kPrimByte); + ARRAY_XX(_CHAR, Primitive::kPrimChar); + ARRAY_XX(_SHORT, Primitive::kPrimShort); + + case Instruction::ARRAY_LENGTH: { + HInstruction* object = LoadLocal(instruction.VRegB_12x(), Primitive::kPrimNot); + object = new (arena_) HNullCheck(object, dex_pc); + AppendInstruction(object); + AppendInstruction(new (arena_) HArrayLength(object, dex_pc)); + UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction()); + break; + } + + case Instruction::CONST_STRING: { + uint32_t string_index = instruction.VRegB_21c(); + AppendInstruction( + new (arena_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc)); + UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction()); + break; + } + + case Instruction::CONST_STRING_JUMBO: { + uint32_t string_index = instruction.VRegB_31c(); + AppendInstruction( + new (arena_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc)); + UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction()); + break; + } + + case Instruction::CONST_CLASS: { + uint16_t type_index = instruction.VRegB_21c(); + bool type_known_final; + bool type_known_abstract; + bool dont_use_is_referrers_class; + // `CanAccessTypeWithoutChecks` will tell whether the method being + // built is trying to access its own class, so that the generated + // code can optimize for this case. However, the optimization does not + // work for inlining, so we use `IsOutermostCompilingClass` instead. + bool can_access = compiler_driver_->CanAccessTypeWithoutChecks( + dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index, + &type_known_final, &type_known_abstract, &dont_use_is_referrers_class); + AppendInstruction(new (arena_) HLoadClass( + graph_->GetCurrentMethod(), + type_index, + *dex_file_, + IsOutermostCompilingClass(type_index), + dex_pc, + !can_access, + compiler_driver_->CanAssumeTypeIsPresentInDexCache(*dex_file_, type_index))); + UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction()); + break; + } + + case Instruction::MOVE_EXCEPTION: { + AppendInstruction(new (arena_) HLoadException(dex_pc)); + UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction()); + AppendInstruction(new (arena_) HClearException(dex_pc)); + break; + } + + case Instruction::THROW: { + HInstruction* exception = LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot); + AppendInstruction(new (arena_) HThrow(exception, dex_pc)); + // We finished building this block. Set the current block to null to avoid + // adding dead instructions to it. + current_block_ = nullptr; + break; + } + + case Instruction::INSTANCE_OF: { + uint8_t destination = instruction.VRegA_22c(); + uint8_t reference = instruction.VRegB_22c(); + uint16_t type_index = instruction.VRegC_22c(); + BuildTypeCheck(instruction, destination, reference, type_index, dex_pc); + break; + } + + case Instruction::CHECK_CAST: { + uint8_t reference = instruction.VRegA_21c(); + uint16_t type_index = instruction.VRegB_21c(); + BuildTypeCheck(instruction, -1, reference, type_index, dex_pc); + break; + } + + case Instruction::MONITOR_ENTER: { + AppendInstruction(new (arena_) HMonitorOperation( + LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot), + HMonitorOperation::OperationKind::kEnter, + dex_pc)); + break; + } + + case Instruction::MONITOR_EXIT: { + AppendInstruction(new (arena_) HMonitorOperation( + LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot), + HMonitorOperation::OperationKind::kExit, + dex_pc)); + break; + } + + case Instruction::SPARSE_SWITCH: + case Instruction::PACKED_SWITCH: { + BuildSwitch(instruction, dex_pc); + break; + } + + default: + VLOG(compiler) << "Did not compile " + << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_) + << " because of unhandled instruction " + << instruction.Name(); + MaybeRecordStat(MethodCompilationStat::kNotCompiledUnhandledInstruction); + return false; + } + return true; +} // NOLINT(readability/fn_size) + +} // namespace art |