// Copyright (c) 2012 The Chromium OS Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "update_engine/utils.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "update_engine/clock_interface.h" #include "update_engine/constants.h" #include "update_engine/file_descriptor.h" #include "update_engine/file_writer.h" #include "update_engine/omaha_request_params.h" #include "update_engine/prefs_interface.h" #include "update_engine/subprocess.h" #include "update_engine/system_state.h" #include "update_engine/update_attempter.h" using base::Time; using base::TimeDelta; using std::min; using std::pair; using std::string; using std::vector; namespace chromeos_update_engine { namespace { // The following constants control how UnmountFilesystem should retry if // umount() fails with an errno EBUSY, i.e. retry 5 times over the course of // one second. const int kUnmountMaxNumOfRetries = 5; const int kUnmountRetryIntervalInMicroseconds = 200 * 1000; // 200 ms // Number of bytes to read from a file to attempt to detect its contents. Used // in GetFileFormat. const int kGetFileFormatMaxHeaderSize = 32; } // namespace namespace utils { // Cgroup container is created in update-engine's upstart script located at // /etc/init/update-engine.conf. static const char kCGroupDir[] = "/sys/fs/cgroup/cpu/update-engine"; string ParseECVersion(string input_line) { base::TrimWhitespaceASCII(input_line, base::TRIM_ALL, &input_line); // At this point we want to convert the format key=value pair from mosys to // a vector of key value pairs. vector> kv_pairs; if (base::SplitStringIntoKeyValuePairs(input_line, '=', ' ', &kv_pairs)) { for (const pair& kv_pair : kv_pairs) { // Finally match against the fw_verion which may have quotes. if (kv_pair.first == "fw_version") { string output; // Trim any quotes. base::TrimString(kv_pair.second, "\"", &output); return output; } } } LOG(ERROR) << "Unable to parse fwid from ec info."; return ""; } const string KernelDeviceOfBootDevice(const string& boot_device) { string kernel_partition_name; string disk_name; int partition_num; if (SplitPartitionName(boot_device, &disk_name, &partition_num)) { if (disk_name == "/dev/ubiblock") { // Special case for NAND devices. // eg: /dev/ubiblock3_0 becomes /dev/mtdblock2 disk_name = "/dev/mtdblock"; } // Currently this assumes the partition number of the boot device is // 3, 5, or 7, and changes it to 2, 4, or 6, respectively, to // get the kernel device. if (partition_num == 3 || partition_num == 5 || partition_num == 7) { kernel_partition_name = MakePartitionName(disk_name, partition_num - 1); } } return kernel_partition_name; } bool WriteFile(const char* path, const char* data, int data_len) { DirectFileWriter writer; TEST_AND_RETURN_FALSE_ERRNO(0 == writer.Open(path, O_WRONLY | O_CREAT | O_TRUNC, 0600)); ScopedFileWriterCloser closer(&writer); TEST_AND_RETURN_FALSE_ERRNO(writer.Write(data, data_len)); return true; } bool WriteAll(int fd, const void* buf, size_t count) { const char* c_buf = static_cast(buf); ssize_t bytes_written = 0; while (bytes_written < static_cast(count)) { ssize_t rc = write(fd, c_buf + bytes_written, count - bytes_written); TEST_AND_RETURN_FALSE_ERRNO(rc >= 0); bytes_written += rc; } return true; } bool PWriteAll(int fd, const void* buf, size_t count, off_t offset) { const char* c_buf = static_cast(buf); size_t bytes_written = 0; int num_attempts = 0; while (bytes_written < count) { num_attempts++; ssize_t rc = pwrite(fd, c_buf + bytes_written, count - bytes_written, offset + bytes_written); // TODO(garnold) for debugging failure in chromium-os:31077; to be removed. if (rc < 0) { PLOG(ERROR) << "pwrite error; num_attempts=" << num_attempts << " bytes_written=" << bytes_written << " count=" << count << " offset=" << offset; } TEST_AND_RETURN_FALSE_ERRNO(rc >= 0); bytes_written += rc; } return true; } bool WriteAll(FileDescriptorPtr fd, const void* buf, size_t count) { const char* c_buf = static_cast(buf); ssize_t bytes_written = 0; while (bytes_written < static_cast(count)) { ssize_t rc = fd->Write(c_buf + bytes_written, count - bytes_written); TEST_AND_RETURN_FALSE_ERRNO(rc >= 0); bytes_written += rc; } return true; } bool PWriteAll(FileDescriptorPtr fd, const void* buf, size_t count, off_t offset) { TEST_AND_RETURN_FALSE_ERRNO(fd->Seek(offset, SEEK_SET)); return WriteAll(fd, buf, count); } bool PReadAll(int fd, void* buf, size_t count, off_t offset, ssize_t* out_bytes_read) { char* c_buf = static_cast(buf); ssize_t bytes_read = 0; while (bytes_read < static_cast(count)) { ssize_t rc = pread(fd, c_buf + bytes_read, count - bytes_read, offset + bytes_read); TEST_AND_RETURN_FALSE_ERRNO(rc >= 0); if (rc == 0) { break; } bytes_read += rc; } *out_bytes_read = bytes_read; return true; } bool PReadAll(FileDescriptorPtr fd, void* buf, size_t count, off_t offset, ssize_t* out_bytes_read) { TEST_AND_RETURN_FALSE_ERRNO(fd->Seek(offset, SEEK_SET)); char* c_buf = static_cast(buf); ssize_t bytes_read = 0; while (bytes_read < static_cast(count)) { ssize_t rc = fd->Read(c_buf + bytes_read, count - bytes_read); TEST_AND_RETURN_FALSE_ERRNO(rc >= 0); if (rc == 0) { break; } bytes_read += rc; } *out_bytes_read = bytes_read; return true; } // Append |nbytes| of content from |buf| to the vector pointed to by either // |vec_p| or |str_p|. static void AppendBytes(const char* buf, size_t nbytes, vector* vec_p) { CHECK(buf); CHECK(vec_p); vec_p->insert(vec_p->end(), buf, buf + nbytes); } static void AppendBytes(const char* buf, size_t nbytes, string* str_p) { CHECK(buf); CHECK(str_p); str_p->append(buf, nbytes); } // Reads from an open file |fp|, appending the read content to the container // pointer to by |out_p|. Returns true upon successful reading all of the // file's content, false otherwise. If |size| is not -1, reads up to |size| // bytes. template static bool Read(FILE* fp, off_t size, T* out_p) { CHECK(fp); CHECK(size == -1 || size >= 0); char buf[1024]; while (size == -1 || size > 0) { off_t bytes_to_read = sizeof(buf); if (size > 0 && bytes_to_read > size) { bytes_to_read = size; } size_t nbytes = fread(buf, 1, bytes_to_read, fp); if (!nbytes) { break; } AppendBytes(buf, nbytes, out_p); if (size != -1) { CHECK(size >= static_cast(nbytes)); size -= nbytes; } } if (ferror(fp)) { return false; } return size == 0 || feof(fp); } // Opens a file |path| for reading and appends its the contents to a container // |out_p|. Starts reading the file from |offset|. If |offset| is beyond the end // of the file, returns success. If |size| is not -1, reads up to |size| bytes. template static bool ReadFileChunkAndAppend(const string& path, off_t offset, off_t size, T* out_p) { CHECK_GE(offset, 0); CHECK(size == -1 || size >= 0); base::ScopedFILE fp(fopen(path.c_str(), "r")); if (!fp.get()) return false; if (offset) { // Return success without appending any data if a chunk beyond the end of // the file is requested. if (offset >= FileSize(path)) { return true; } TEST_AND_RETURN_FALSE_ERRNO(fseek(fp.get(), offset, SEEK_SET) == 0); } return Read(fp.get(), size, out_p); } // TODO(deymo): This is only used in unittest, but requires the private // Read() defined here. Expose Read() or move to base/ version. bool ReadPipe(const string& cmd, string* out_p) { FILE* fp = popen(cmd.c_str(), "r"); if (!fp) return false; bool success = Read(fp, -1, out_p); return (success && pclose(fp) >= 0); } bool ReadFile(const string& path, vector* out_p) { return ReadFileChunkAndAppend(path, 0, -1, out_p); } bool ReadFile(const string& path, string* out_p) { return ReadFileChunkAndAppend(path, 0, -1, out_p); } bool ReadFileChunk(const string& path, off_t offset, off_t size, vector* out_p) { return ReadFileChunkAndAppend(path, offset, size, out_p); } off_t BlockDevSize(int fd) { uint64_t dev_size; int rc = ioctl(fd, BLKGETSIZE64, &dev_size); if (rc == -1) { dev_size = -1; PLOG(ERROR) << "Error running ioctl(BLKGETSIZE64) on " << fd; } return dev_size; } off_t BlockDevSize(const string& path) { int fd = open(path.c_str(), O_RDONLY | O_CLOEXEC); if (fd == -1) { PLOG(ERROR) << "Error opening " << path; return fd; } off_t dev_size = BlockDevSize(fd); if (dev_size == -1) PLOG(ERROR) << "Error getting block device size on " << path; close(fd); return dev_size; } off_t FileSize(int fd) { struct stat stbuf; int rc = fstat(fd, &stbuf); CHECK_EQ(rc, 0); if (rc < 0) { PLOG(ERROR) << "Error stat-ing " << fd; return rc; } if (S_ISREG(stbuf.st_mode)) return stbuf.st_size; if (S_ISBLK(stbuf.st_mode)) return BlockDevSize(fd); LOG(ERROR) << "Couldn't determine the type of " << fd; return -1; } off_t FileSize(const string& path) { int fd = open(path.c_str(), O_RDONLY | O_CLOEXEC); if (fd == -1) { PLOG(ERROR) << "Error opening " << path; return fd; } off_t size = FileSize(fd); if (size == -1) PLOG(ERROR) << "Error getting file size of " << path; close(fd); return size; } void HexDumpArray(const unsigned char* const arr, const size_t length) { const unsigned char* const char_arr = reinterpret_cast(arr); LOG(INFO) << "Logging array of length: " << length; const unsigned int bytes_per_line = 16; for (uint32_t i = 0; i < length; i += bytes_per_line) { const unsigned int bytes_remaining = length - i; const unsigned int bytes_per_this_line = min(bytes_per_line, bytes_remaining); char header[100]; int r = snprintf(header, sizeof(header), "0x%08x : ", i); TEST_AND_RETURN(r == 13); string line = header; for (unsigned int j = 0; j < bytes_per_this_line; j++) { char buf[20]; unsigned char c = char_arr[i + j]; r = snprintf(buf, sizeof(buf), "%02x ", static_cast(c)); TEST_AND_RETURN(r == 3); line += buf; } LOG(INFO) << line; } } string GetDiskName(const string& partition_name) { string disk_name; return SplitPartitionName(partition_name, &disk_name, nullptr) ? disk_name : string(); } int GetPartitionNumber(const string& partition_name) { int partition_num = 0; return SplitPartitionName(partition_name, nullptr, &partition_num) ? partition_num : 0; } bool SplitPartitionName(const string& partition_name, string* out_disk_name, int* out_partition_num) { if (!StartsWithASCII(partition_name, "/dev/", true)) { LOG(ERROR) << "Invalid partition device name: " << partition_name; return false; } size_t last_nondigit_pos = partition_name.find_last_not_of("0123456789"); if (last_nondigit_pos == string::npos || (last_nondigit_pos + 1) == partition_name.size()) { LOG(ERROR) << "Unable to parse partition device name: " << partition_name; return false; } size_t partition_name_len = string::npos; if (partition_name[last_nondigit_pos] == '_') { // NAND block devices have weird naming which could be something // like "/dev/ubiblock2_0". We discard "_0" in such a case. size_t prev_nondigit_pos = partition_name.find_last_not_of("0123456789", last_nondigit_pos - 1); if (prev_nondigit_pos == string::npos || (prev_nondigit_pos + 1) == last_nondigit_pos) { LOG(ERROR) << "Unable to parse partition device name: " << partition_name; return false; } partition_name_len = last_nondigit_pos - prev_nondigit_pos; last_nondigit_pos = prev_nondigit_pos; } if (out_disk_name) { // Special case for MMC devices which have the following naming scheme: // mmcblk0p2 size_t disk_name_len = last_nondigit_pos; if (partition_name[last_nondigit_pos] != 'p' || last_nondigit_pos == 0 || !isdigit(partition_name[last_nondigit_pos - 1])) { disk_name_len++; } *out_disk_name = partition_name.substr(0, disk_name_len); } if (out_partition_num) { string partition_str = partition_name.substr(last_nondigit_pos + 1, partition_name_len); *out_partition_num = atoi(partition_str.c_str()); } return true; } string MakePartitionName(const string& disk_name, int partition_num) { if (!StartsWithASCII(disk_name, "/dev/", true)) { LOG(ERROR) << "Invalid disk name: " << disk_name; return string(); } if (partition_num < 1) { LOG(ERROR) << "Invalid partition number: " << partition_num; return string(); } string partition_name = disk_name; if (isdigit(partition_name.back())) { // Special case for devices with names ending with a digit. // Add "p" to separate the disk name from partition number, // e.g. "/dev/loop0p2" partition_name += 'p'; } partition_name += std::to_string(partition_num); if (StartsWithASCII(partition_name, "/dev/ubiblock", true)) { // Special case for UBI block devieces that have "_0" suffix. partition_name += "_0"; } return partition_name; } string SysfsBlockDevice(const string& device) { base::FilePath device_path(device); if (device_path.DirName().value() != "/dev") { return ""; } return base::FilePath("/sys/block").Append(device_path.BaseName()).value(); } bool IsRemovableDevice(const string& device) { string sysfs_block = SysfsBlockDevice(device); string removable; if (sysfs_block.empty() || !base::ReadFileToString(base::FilePath(sysfs_block).Append("removable"), &removable)) { return false; } base::TrimWhitespaceASCII(removable, base::TRIM_ALL, &removable); return removable == "1"; } string ErrnoNumberAsString(int err) { char buf[100]; buf[0] = '\0'; return strerror_r(err, buf, sizeof(buf)); } string NormalizePath(const string& path, bool strip_trailing_slash) { string ret; std::unique_copy(path.begin(), path.end(), std::back_inserter(ret), [](char c1, char c2) { return c1 == c2 && c1 == '/'; }); // The above code ensures no "//" is present in the string, so at most one // '/' is present at the end of the line. if (strip_trailing_slash && !ret.empty() && ret.back() == '/') ret.pop_back(); return ret; } bool FileExists(const char* path) { struct stat stbuf; return 0 == lstat(path, &stbuf); } bool IsSymlink(const char* path) { struct stat stbuf; return lstat(path, &stbuf) == 0 && S_ISLNK(stbuf.st_mode) != 0; } bool IsDir(const char* path) { struct stat stbuf; TEST_AND_RETURN_FALSE_ERRNO(lstat(path, &stbuf) == 0); return S_ISDIR(stbuf.st_mode); } // If |path| is absolute, or explicit relative to the current working directory, // leaves it as is. Otherwise, if TMPDIR is defined in the environment and is // non-empty, prepends it to |path|. Otherwise, prepends /tmp. Returns the // resulting path. static const string PrependTmpdir(const string& path) { if (path[0] == '/' || StartsWithASCII(path, "./", true) || StartsWithASCII(path, "../", true)) return path; const char *tmpdir = getenv("TMPDIR"); const string prefix = (tmpdir && *tmpdir ? tmpdir : "/tmp"); return prefix + "/" + path; } bool MakeTempFile(const string& base_filename_template, string* filename, int* fd) { const string filename_template = PrependTmpdir(base_filename_template); DCHECK(filename || fd); vector buf(filename_template.size() + 1); memcpy(&buf[0], filename_template.data(), filename_template.size()); buf[filename_template.size()] = '\0'; int mkstemp_fd = mkstemp(&buf[0]); TEST_AND_RETURN_FALSE_ERRNO(mkstemp_fd >= 0); if (filename) { *filename = &buf[0]; } if (fd) { *fd = mkstemp_fd; } else { close(mkstemp_fd); } return true; } bool MakeTempDirectory(const string& base_dirname_template, string* dirname) { const string dirname_template = PrependTmpdir(base_dirname_template); DCHECK(dirname); vector buf(dirname_template.size() + 1); memcpy(&buf[0], dirname_template.data(), dirname_template.size()); buf[dirname_template.size()] = '\0'; char* return_code = mkdtemp(&buf[0]); TEST_AND_RETURN_FALSE_ERRNO(return_code != nullptr); *dirname = &buf[0]; return true; } bool MountFilesystem(const string& device, const string& mountpoint, unsigned long mountflags) { // NOLINT(runtime/int) // TODO(sosa): Remove "ext3" once crbug.com/208022 is resolved. const vector fstypes{"ext2", "ext3", "squashfs"}; for (const char* fstype : fstypes) { int rc = mount(device.c_str(), mountpoint.c_str(), fstype, mountflags, nullptr); if (rc == 0) return true; PLOG(WARNING) << "Unable to mount destination device " << device << " on " << mountpoint << " as " << fstype; } LOG(ERROR) << "Unable to mount " << device << " with any supported type"; return false; } bool UnmountFilesystem(const string& mountpoint) { for (int num_retries = 0; ; ++num_retries) { if (umount(mountpoint.c_str()) == 0) break; TEST_AND_RETURN_FALSE_ERRNO(errno == EBUSY && num_retries < kUnmountMaxNumOfRetries); g_usleep(kUnmountRetryIntervalInMicroseconds); } return true; } bool GetFilesystemSize(const string& device, int* out_block_count, int* out_block_size) { int fd = HANDLE_EINTR(open(device.c_str(), O_RDONLY)); TEST_AND_RETURN_FALSE_ERRNO(fd >= 0); ScopedFdCloser fd_closer(&fd); return GetFilesystemSizeFromFD(fd, out_block_count, out_block_size); } bool GetFilesystemSizeFromFD(int fd, int* out_block_count, int* out_block_size) { TEST_AND_RETURN_FALSE(fd >= 0); // Determine the filesystem size by directly reading the block count and // block size information from the superblock. Supported FS are ext3 and // squashfs. // Read from the fd only once and detect in memory. The first 2 KiB is enough // to read the ext2 superblock (located at offset 1024) and the squashfs // superblock (located at offset 0). const ssize_t kBufferSize = 2048; uint8_t buffer[kBufferSize]; if (HANDLE_EINTR(pread(fd, buffer, kBufferSize, 0)) != kBufferSize) { PLOG(ERROR) << "Unable to read the file system header:"; return false; } if (GetSquashfs4Size(buffer, kBufferSize, out_block_count, out_block_size)) return true; if (GetExt3Size(buffer, kBufferSize, out_block_count, out_block_size)) return true; LOG(ERROR) << "Unable to determine file system type."; return false; } bool GetExt3Size(const uint8_t* buffer, size_t buffer_size, int* out_block_count, int* out_block_size) { // See include/linux/ext2_fs.h for more details on the structure. We obtain // ext2 constants from ext2fs/ext2fs.h header but we don't link with the // library. if (buffer_size < SUPERBLOCK_OFFSET + SUPERBLOCK_SIZE) return false; const uint8_t* superblock = buffer + SUPERBLOCK_OFFSET; // ext3_fs.h: ext3_super_block.s_blocks_count uint32_t block_count = *reinterpret_cast(superblock + 1 * sizeof(int32_t)); // ext3_fs.h: ext3_super_block.s_log_block_size uint32_t log_block_size = *reinterpret_cast(superblock + 6 * sizeof(int32_t)); // ext3_fs.h: ext3_super_block.s_magic uint16_t magic = *reinterpret_cast(superblock + 14 * sizeof(int32_t)); block_count = le32toh(block_count); log_block_size = le32toh(log_block_size) + EXT2_MIN_BLOCK_LOG_SIZE; magic = le16toh(magic); // Sanity check the parameters. TEST_AND_RETURN_FALSE(magic == EXT2_SUPER_MAGIC); TEST_AND_RETURN_FALSE(log_block_size >= EXT2_MIN_BLOCK_LOG_SIZE && log_block_size <= EXT2_MAX_BLOCK_LOG_SIZE); TEST_AND_RETURN_FALSE(block_count > 0); if (out_block_count) *out_block_count = block_count; if (out_block_size) *out_block_size = 1 << log_block_size; return true; } bool GetSquashfs4Size(const unsigned char* buffer, size_t buffer_size, int* out_block_count, int* out_block_size) { // See fs/squashfs/squashfs_fs.h for format details. We only support // Squashfs 4.x little endian. // sizeof(struct squashfs_super_block) const size_t kSquashfsSuperBlockSize = 96; if (buffer_size < kSquashfsSuperBlockSize) return false; // Check magic, squashfs_fs.h: SQUASHFS_MAGIC if (memcmp(buffer, "hsqs", 4) != 0) return false; // Only little endian is supported. // squashfs_fs.h: struct squashfs_super_block.s_major uint16_t s_major = *reinterpret_cast( buffer + 5 * sizeof(uint32_t) + 4 * sizeof(uint16_t)); if (s_major != 4) { LOG(ERROR) << "Found unsupported squashfs major version " << s_major; return false; } // squashfs_fs.h: struct squashfs_super_block.bytes_used uint64_t bytes_used = *reinterpret_cast( buffer + 5 * sizeof(uint32_t) + 6 * sizeof(uint16_t) + sizeof(uint64_t)); const int block_size = 4096; // The squashfs' bytes_used doesn't need to be aligned with the block boundary // so we round up to the nearest blocksize. if (out_block_count) *out_block_count = (bytes_used + block_size - 1) / block_size; if (out_block_size) *out_block_size = block_size; return true; } string GetPathOnBoard(const string& command) { int return_code = 0; string command_path; // TODO(deymo): prepend SYSROOT to each PATH instead of the result. if (!Subprocess::SynchronousExec( {"which", command}, &return_code, &command_path)) { return command; } if (return_code != 0) return command; base::TrimWhitespaceASCII(command_path, base::TRIM_ALL, &command_path); const char* env_sysroot = getenv("SYSROOT"); if (env_sysroot) { string sysroot_command_path = env_sysroot + command_path; if (utils::FileExists(sysroot_command_path.c_str())) return sysroot_command_path; } return command_path; } // Tries to parse the header of an ELF file to obtain a human-readable // description of it on the |output| string. static bool GetFileFormatELF(const char* buffer, size_t size, string* output) { // 0x00: EI_MAG - ELF magic header, 4 bytes. if (size < SELFMAG || memcmp(buffer, ELFMAG, SELFMAG) != 0) return false; *output = "ELF"; // 0x04: EI_CLASS, 1 byte. if (size < EI_CLASS + 1) return true; switch (buffer[EI_CLASS]) { case ELFCLASS32: *output += " 32-bit"; break; case ELFCLASS64: *output += " 64-bit"; break; default: *output += " ?-bit"; } // 0x05: EI_DATA, endianness, 1 byte. if (size < EI_DATA + 1) return true; char ei_data = buffer[EI_DATA]; switch (ei_data) { case ELFDATA2LSB: *output += " little-endian"; break; case ELFDATA2MSB: *output += " big-endian"; break; default: *output += " ?-endian"; // Don't parse anything after the 0x10 offset if endianness is unknown. return true; } const Elf32_Ehdr* hdr = reinterpret_cast(buffer); // 0x12: e_machine, 2 byte endianness based on ei_data. The position (0x12) // and size is the same for both 32 and 64 bits. if (size < offsetof(Elf32_Ehdr, e_machine) + sizeof(hdr->e_machine)) return true; uint16_t e_machine; // Fix endianess regardless of the host endianess. if (ei_data == ELFDATA2LSB) e_machine = le16toh(hdr->e_machine); else e_machine = be16toh(hdr->e_machine); switch (e_machine) { case EM_386: *output += " x86"; break; case EM_MIPS: *output += " mips"; break; case EM_ARM: *output += " arm"; break; case EM_X86_64: *output += " x86-64"; break; default: *output += " unknown-arch"; } return true; } string GetFileFormat(const string& path) { vector buffer; if (!ReadFileChunkAndAppend(path, 0, kGetFileFormatMaxHeaderSize, &buffer)) return "File not found."; string result; if (GetFileFormatELF(buffer.data(), buffer.size(), &result)) return result; return "data"; } namespace { // Do the actual trigger. We do it as a main-loop callback to (try to) get a // consistent stack trace. gboolean TriggerCrashReporterUpload(void* unused) { pid_t pid = fork(); CHECK_GE(pid, 0) << "fork failed"; // fork() failed. Something is very wrong. if (pid == 0) { // We are the child. Crash. abort(); // never returns } // We are the parent. Wait for child to terminate. pid_t result = waitpid(pid, nullptr, 0); LOG_IF(ERROR, result < 0) << "waitpid() failed"; return FALSE; // Don't call this callback again } } // namespace void ScheduleCrashReporterUpload() { g_idle_add(&TriggerCrashReporterUpload, nullptr); } bool SetCpuShares(CpuShares shares) { string string_shares = base::IntToString(static_cast(shares)); string cpu_shares_file = string(utils::kCGroupDir) + "/cpu.shares"; LOG(INFO) << "Setting cgroup cpu shares to " << string_shares; if (utils::WriteFile(cpu_shares_file.c_str(), string_shares.c_str(), string_shares.size())) { return true; } else { LOG(ERROR) << "Failed to change cgroup cpu shares to "<< string_shares << " using " << cpu_shares_file; return false; } } int FuzzInt(int value, unsigned int range) { int min = value - range / 2; int max = value + range - range / 2; return base::RandInt(min, max); } gboolean GlibRunClosure(gpointer data) { base::Closure* callback = reinterpret_cast(data); callback->Run(); return FALSE; } void GlibDestroyClosure(gpointer data) { delete reinterpret_cast(data); } string FormatSecs(unsigned secs) { return FormatTimeDelta(TimeDelta::FromSeconds(secs)); } string FormatTimeDelta(TimeDelta delta) { string str; // Handle negative durations by prefixing with a minus. if (delta.ToInternalValue() < 0) { delta *= -1; str = "-"; } // Canonicalize into days, hours, minutes, seconds and microseconds. unsigned days = delta.InDays(); delta -= TimeDelta::FromDays(days); unsigned hours = delta.InHours(); delta -= TimeDelta::FromHours(hours); unsigned mins = delta.InMinutes(); delta -= TimeDelta::FromMinutes(mins); unsigned secs = delta.InSeconds(); delta -= TimeDelta::FromSeconds(secs); unsigned usecs = delta.InMicroseconds(); if (days) base::StringAppendF(&str, "%ud", days); if (days || hours) base::StringAppendF(&str, "%uh", hours); if (days || hours || mins) base::StringAppendF(&str, "%um", mins); base::StringAppendF(&str, "%u", secs); if (usecs) { int width = 6; while ((usecs / 10) * 10 == usecs) { usecs /= 10; width--; } base::StringAppendF(&str, ".%0*u", width, usecs); } base::StringAppendF(&str, "s"); return str; } string ToString(const Time utc_time) { Time::Exploded exp_time; utc_time.UTCExplode(&exp_time); return base::StringPrintf("%d/%d/%d %d:%02d:%02d GMT", exp_time.month, exp_time.day_of_month, exp_time.year, exp_time.hour, exp_time.minute, exp_time.second); } string ToString(bool b) { return (b ? "true" : "false"); } string ToString(DownloadSource source) { switch (source) { case kDownloadSourceHttpsServer: return "HttpsServer"; case kDownloadSourceHttpServer: return "HttpServer"; case kDownloadSourceHttpPeer: return "HttpPeer"; case kNumDownloadSources: return "Unknown"; // Don't add a default case to let the compiler warn about newly added // download sources which should be added here. } return "Unknown"; } string ToString(PayloadType payload_type) { switch (payload_type) { case kPayloadTypeDelta: return "Delta"; case kPayloadTypeFull: return "Full"; case kPayloadTypeForcedFull: return "ForcedFull"; case kNumPayloadTypes: return "Unknown"; // Don't add a default case to let the compiler warn about newly added // payload types which should be added here. } return "Unknown"; } ErrorCode GetBaseErrorCode(ErrorCode code) { // Ignore the higher order bits in the code by applying the mask as // we want the enumerations to be in the small contiguous range // with values less than ErrorCode::kUmaReportedMax. ErrorCode base_code = static_cast( static_cast(code) & ~static_cast(ErrorCode::kSpecialFlags)); // Make additional adjustments required for UMA and error classification. // TODO(jaysri): Move this logic to UeErrorCode.cc when we fix // chromium-os:34369. if (base_code >= ErrorCode::kOmahaRequestHTTPResponseBase) { // Since we want to keep the enums to a small value, aggregate all HTTP // errors into this one bucket for UMA and error classification purposes. LOG(INFO) << "Converting error code " << base_code << " to ErrorCode::kOmahaErrorInHTTPResponse"; base_code = ErrorCode::kOmahaErrorInHTTPResponse; } return base_code; } metrics::AttemptResult GetAttemptResult(ErrorCode code) { ErrorCode base_code = static_cast( static_cast(code) & ~static_cast(ErrorCode::kSpecialFlags)); switch (base_code) { case ErrorCode::kSuccess: return metrics::AttemptResult::kUpdateSucceeded; case ErrorCode::kDownloadTransferError: return metrics::AttemptResult::kPayloadDownloadError; case ErrorCode::kDownloadInvalidMetadataSize: case ErrorCode::kDownloadInvalidMetadataMagicString: case ErrorCode::kDownloadMetadataSignatureError: case ErrorCode::kDownloadMetadataSignatureVerificationError: case ErrorCode::kPayloadMismatchedType: case ErrorCode::kUnsupportedMajorPayloadVersion: case ErrorCode::kUnsupportedMinorPayloadVersion: case ErrorCode::kDownloadNewPartitionInfoError: case ErrorCode::kDownloadSignatureMissingInManifest: case ErrorCode::kDownloadManifestParseError: case ErrorCode::kDownloadOperationHashMissingError: return metrics::AttemptResult::kMetadataMalformed; case ErrorCode::kDownloadOperationHashMismatch: case ErrorCode::kDownloadOperationHashVerificationError: return metrics::AttemptResult::kOperationMalformed; case ErrorCode::kDownloadOperationExecutionError: case ErrorCode::kInstallDeviceOpenError: case ErrorCode::kKernelDeviceOpenError: case ErrorCode::kDownloadWriteError: case ErrorCode::kFilesystemCopierError: return metrics::AttemptResult::kOperationExecutionError; case ErrorCode::kDownloadMetadataSignatureMismatch: return metrics::AttemptResult::kMetadataVerificationFailed; case ErrorCode::kPayloadSizeMismatchError: case ErrorCode::kPayloadHashMismatchError: case ErrorCode::kDownloadPayloadVerificationError: case ErrorCode::kSignedDeltaPayloadExpectedError: case ErrorCode::kDownloadPayloadPubKeyVerificationError: return metrics::AttemptResult::kPayloadVerificationFailed; case ErrorCode::kNewRootfsVerificationError: case ErrorCode::kNewKernelVerificationError: return metrics::AttemptResult::kVerificationFailed; case ErrorCode::kPostinstallRunnerError: case ErrorCode::kPostinstallBootedFromFirmwareB: case ErrorCode::kPostinstallFirmwareRONotUpdatable: return metrics::AttemptResult::kPostInstallFailed; // We should never get these errors in the update-attempt stage so // return internal error if this happens. case ErrorCode::kError: case ErrorCode::kOmahaRequestXMLParseError: case ErrorCode::kOmahaRequestError: case ErrorCode::kOmahaResponseHandlerError: case ErrorCode::kDownloadStateInitializationError: case ErrorCode::kOmahaRequestEmptyResponseError: case ErrorCode::kDownloadInvalidMetadataSignature: case ErrorCode::kOmahaResponseInvalid: case ErrorCode::kOmahaUpdateIgnoredPerPolicy: case ErrorCode::kOmahaUpdateDeferredPerPolicy: case ErrorCode::kOmahaErrorInHTTPResponse: case ErrorCode::kDownloadMetadataSignatureMissingError: case ErrorCode::kOmahaUpdateDeferredForBackoff: case ErrorCode::kPostinstallPowerwashError: case ErrorCode::kUpdateCanceledByChannelChange: case ErrorCode::kOmahaRequestXMLHasEntityDecl: return metrics::AttemptResult::kInternalError; // Special flags. These can't happen (we mask them out above) but // the compiler doesn't know that. Just break out so we can warn and // return |kInternalError|. case ErrorCode::kUmaReportedMax: case ErrorCode::kOmahaRequestHTTPResponseBase: case ErrorCode::kDevModeFlag: case ErrorCode::kResumedFlag: case ErrorCode::kTestImageFlag: case ErrorCode::kTestOmahaUrlFlag: case ErrorCode::kSpecialFlags: break; } LOG(ERROR) << "Unexpected error code " << base_code; return metrics::AttemptResult::kInternalError; } metrics::DownloadErrorCode GetDownloadErrorCode(ErrorCode code) { ErrorCode base_code = static_cast( static_cast(code) & ~static_cast(ErrorCode::kSpecialFlags)); if (base_code >= ErrorCode::kOmahaRequestHTTPResponseBase) { int http_status = static_cast(base_code) - static_cast(ErrorCode::kOmahaRequestHTTPResponseBase); if (http_status >= 200 && http_status <= 599) { return static_cast( static_cast(metrics::DownloadErrorCode::kHttpStatus200) + http_status - 200); } else if (http_status == 0) { // The code is using HTTP Status 0 for "Unable to get http // response code." return metrics::DownloadErrorCode::kDownloadError; } LOG(WARNING) << "Unexpected HTTP status code " << http_status; return metrics::DownloadErrorCode::kHttpStatusOther; } switch (base_code) { // Unfortunately, ErrorCode::kDownloadTransferError is returned for a wide // variety of errors (proxy errors, host not reachable, timeouts etc.). // // For now just map that to kDownloading. See http://crbug.com/355745 // for how we plan to add more detail in the future. case ErrorCode::kDownloadTransferError: return metrics::DownloadErrorCode::kDownloadError; // All of these error codes are not related to downloading so break // out so we can warn and return InputMalformed. case ErrorCode::kSuccess: case ErrorCode::kError: case ErrorCode::kOmahaRequestError: case ErrorCode::kOmahaResponseHandlerError: case ErrorCode::kFilesystemCopierError: case ErrorCode::kPostinstallRunnerError: case ErrorCode::kPayloadMismatchedType: case ErrorCode::kInstallDeviceOpenError: case ErrorCode::kKernelDeviceOpenError: case ErrorCode::kPayloadHashMismatchError: case ErrorCode::kPayloadSizeMismatchError: case ErrorCode::kDownloadPayloadVerificationError: case ErrorCode::kDownloadNewPartitionInfoError: case ErrorCode::kDownloadWriteError: case ErrorCode::kNewRootfsVerificationError: case ErrorCode::kNewKernelVerificationError: case ErrorCode::kSignedDeltaPayloadExpectedError: case ErrorCode::kDownloadPayloadPubKeyVerificationError: case ErrorCode::kPostinstallBootedFromFirmwareB: case ErrorCode::kDownloadStateInitializationError: case ErrorCode::kDownloadInvalidMetadataMagicString: case ErrorCode::kDownloadSignatureMissingInManifest: case ErrorCode::kDownloadManifestParseError: case ErrorCode::kDownloadMetadataSignatureError: case ErrorCode::kDownloadMetadataSignatureVerificationError: case ErrorCode::kDownloadMetadataSignatureMismatch: case ErrorCode::kDownloadOperationHashVerificationError: case ErrorCode::kDownloadOperationExecutionError: case ErrorCode::kDownloadOperationHashMismatch: case ErrorCode::kOmahaRequestEmptyResponseError: case ErrorCode::kOmahaRequestXMLParseError: case ErrorCode::kDownloadInvalidMetadataSize: case ErrorCode::kDownloadInvalidMetadataSignature: case ErrorCode::kOmahaResponseInvalid: case ErrorCode::kOmahaUpdateIgnoredPerPolicy: case ErrorCode::kOmahaUpdateDeferredPerPolicy: case ErrorCode::kOmahaErrorInHTTPResponse: case ErrorCode::kDownloadOperationHashMissingError: case ErrorCode::kDownloadMetadataSignatureMissingError: case ErrorCode::kOmahaUpdateDeferredForBackoff: case ErrorCode::kPostinstallPowerwashError: case ErrorCode::kUpdateCanceledByChannelChange: case ErrorCode::kPostinstallFirmwareRONotUpdatable: case ErrorCode::kUnsupportedMajorPayloadVersion: case ErrorCode::kUnsupportedMinorPayloadVersion: case ErrorCode::kOmahaRequestXMLHasEntityDecl: break; // Special flags. These can't happen (we mask them out above) but // the compiler doesn't know that. Just break out so we can warn and // return |kInputMalformed|. case ErrorCode::kUmaReportedMax: case ErrorCode::kOmahaRequestHTTPResponseBase: case ErrorCode::kDevModeFlag: case ErrorCode::kResumedFlag: case ErrorCode::kTestImageFlag: case ErrorCode::kTestOmahaUrlFlag: case ErrorCode::kSpecialFlags: LOG(ERROR) << "Unexpected error code " << base_code; break; } return metrics::DownloadErrorCode::kInputMalformed; } metrics::ConnectionType GetConnectionType( NetworkConnectionType type, NetworkTethering tethering) { switch (type) { case kNetUnknown: return metrics::ConnectionType::kUnknown; case kNetEthernet: if (tethering == NetworkTethering::kConfirmed) return metrics::ConnectionType::kTetheredEthernet; else return metrics::ConnectionType::kEthernet; case kNetWifi: if (tethering == NetworkTethering::kConfirmed) return metrics::ConnectionType::kTetheredWifi; else return metrics::ConnectionType::kWifi; case kNetWimax: return metrics::ConnectionType::kWimax; case kNetBluetooth: return metrics::ConnectionType::kBluetooth; case kNetCellular: return metrics::ConnectionType::kCellular; } LOG(ERROR) << "Unexpected network connection type: type=" << type << ", tethering=" << static_cast(tethering); return metrics::ConnectionType::kUnknown; } // Returns a printable version of the various flags denoted in the higher order // bits of the given code. Returns an empty string if none of those bits are // set. string GetFlagNames(uint32_t code) { uint32_t flags = (static_cast(code) & static_cast(ErrorCode::kSpecialFlags)); string flag_names; string separator = ""; for (size_t i = 0; i < sizeof(flags) * 8; i++) { uint32_t flag = flags & (1 << i); if (flag) { flag_names += separator + CodeToString(static_cast(flag)); separator = ", "; } } return flag_names; } void SendErrorCodeToUma(SystemState* system_state, ErrorCode code) { if (!system_state) return; ErrorCode uma_error_code = GetBaseErrorCode(code); // If the code doesn't have flags computed already, compute them now based on // the state of the current update attempt. uint32_t flags = static_cast(code) & static_cast(ErrorCode::kSpecialFlags); if (!flags) flags = system_state->update_attempter()->GetErrorCodeFlags(); // Determine the UMA bucket depending on the flags. But, ignore the resumed // flag, as it's perfectly normal for production devices to resume their // downloads and so we want to record those cases also in NormalErrorCodes // bucket. string metric = flags & ~static_cast(ErrorCode::kResumedFlag) ? "Installer.DevModeErrorCodes" : "Installer.NormalErrorCodes"; LOG(INFO) << "Sending error code " << uma_error_code << " (" << CodeToString(uma_error_code) << ")" << " to UMA metric: " << metric << ". Flags = " << (flags ? GetFlagNames(flags) : "None"); system_state->metrics_lib()->SendEnumToUMA( metric, static_cast(uma_error_code), static_cast(ErrorCode::kUmaReportedMax)); } string CodeToString(ErrorCode code) { // If the given code has both parts (i.e. the error code part and the flags // part) then strip off the flags part since the switch statement below // has case statements only for the base error code or a single flag but // doesn't support any combinations of those. if ((static_cast(code) & static_cast(ErrorCode::kSpecialFlags)) && (static_cast(code) & ~static_cast(ErrorCode::kSpecialFlags))) code = static_cast( static_cast(code) & ~static_cast(ErrorCode::kSpecialFlags)); switch (code) { case ErrorCode::kSuccess: return "ErrorCode::kSuccess"; case ErrorCode::kError: return "ErrorCode::kError"; case ErrorCode::kOmahaRequestError: return "ErrorCode::kOmahaRequestError"; case ErrorCode::kOmahaResponseHandlerError: return "ErrorCode::kOmahaResponseHandlerError"; case ErrorCode::kFilesystemCopierError: return "ErrorCode::kFilesystemCopierError"; case ErrorCode::kPostinstallRunnerError: return "ErrorCode::kPostinstallRunnerError"; case ErrorCode::kPayloadMismatchedType: return "ErrorCode::kPayloadMismatchedType"; case ErrorCode::kInstallDeviceOpenError: return "ErrorCode::kInstallDeviceOpenError"; case ErrorCode::kKernelDeviceOpenError: return "ErrorCode::kKernelDeviceOpenError"; case ErrorCode::kDownloadTransferError: return "ErrorCode::kDownloadTransferError"; case ErrorCode::kPayloadHashMismatchError: return "ErrorCode::kPayloadHashMismatchError"; case ErrorCode::kPayloadSizeMismatchError: return "ErrorCode::kPayloadSizeMismatchError"; case ErrorCode::kDownloadPayloadVerificationError: return "ErrorCode::kDownloadPayloadVerificationError"; case ErrorCode::kDownloadNewPartitionInfoError: return "ErrorCode::kDownloadNewPartitionInfoError"; case ErrorCode::kDownloadWriteError: return "ErrorCode::kDownloadWriteError"; case ErrorCode::kNewRootfsVerificationError: return "ErrorCode::kNewRootfsVerificationError"; case ErrorCode::kNewKernelVerificationError: return "ErrorCode::kNewKernelVerificationError"; case ErrorCode::kSignedDeltaPayloadExpectedError: return "ErrorCode::kSignedDeltaPayloadExpectedError"; case ErrorCode::kDownloadPayloadPubKeyVerificationError: return "ErrorCode::kDownloadPayloadPubKeyVerificationError"; case ErrorCode::kPostinstallBootedFromFirmwareB: return "ErrorCode::kPostinstallBootedFromFirmwareB"; case ErrorCode::kDownloadStateInitializationError: return "ErrorCode::kDownloadStateInitializationError"; case ErrorCode::kDownloadInvalidMetadataMagicString: return "ErrorCode::kDownloadInvalidMetadataMagicString"; case ErrorCode::kDownloadSignatureMissingInManifest: return "ErrorCode::kDownloadSignatureMissingInManifest"; case ErrorCode::kDownloadManifestParseError: return "ErrorCode::kDownloadManifestParseError"; case ErrorCode::kDownloadMetadataSignatureError: return "ErrorCode::kDownloadMetadataSignatureError"; case ErrorCode::kDownloadMetadataSignatureVerificationError: return "ErrorCode::kDownloadMetadataSignatureVerificationError"; case ErrorCode::kDownloadMetadataSignatureMismatch: return "ErrorCode::kDownloadMetadataSignatureMismatch"; case ErrorCode::kDownloadOperationHashVerificationError: return "ErrorCode::kDownloadOperationHashVerificationError"; case ErrorCode::kDownloadOperationExecutionError: return "ErrorCode::kDownloadOperationExecutionError"; case ErrorCode::kDownloadOperationHashMismatch: return "ErrorCode::kDownloadOperationHashMismatch"; case ErrorCode::kOmahaRequestEmptyResponseError: return "ErrorCode::kOmahaRequestEmptyResponseError"; case ErrorCode::kOmahaRequestXMLParseError: return "ErrorCode::kOmahaRequestXMLParseError"; case ErrorCode::kDownloadInvalidMetadataSize: return "ErrorCode::kDownloadInvalidMetadataSize"; case ErrorCode::kDownloadInvalidMetadataSignature: return "ErrorCode::kDownloadInvalidMetadataSignature"; case ErrorCode::kOmahaResponseInvalid: return "ErrorCode::kOmahaResponseInvalid"; case ErrorCode::kOmahaUpdateIgnoredPerPolicy: return "ErrorCode::kOmahaUpdateIgnoredPerPolicy"; case ErrorCode::kOmahaUpdateDeferredPerPolicy: return "ErrorCode::kOmahaUpdateDeferredPerPolicy"; case ErrorCode::kOmahaErrorInHTTPResponse: return "ErrorCode::kOmahaErrorInHTTPResponse"; case ErrorCode::kDownloadOperationHashMissingError: return "ErrorCode::kDownloadOperationHashMissingError"; case ErrorCode::kDownloadMetadataSignatureMissingError: return "ErrorCode::kDownloadMetadataSignatureMissingError"; case ErrorCode::kOmahaUpdateDeferredForBackoff: return "ErrorCode::kOmahaUpdateDeferredForBackoff"; case ErrorCode::kPostinstallPowerwashError: return "ErrorCode::kPostinstallPowerwashError"; case ErrorCode::kUpdateCanceledByChannelChange: return "ErrorCode::kUpdateCanceledByChannelChange"; case ErrorCode::kUmaReportedMax: return "ErrorCode::kUmaReportedMax"; case ErrorCode::kOmahaRequestHTTPResponseBase: return "ErrorCode::kOmahaRequestHTTPResponseBase"; case ErrorCode::kResumedFlag: return "Resumed"; case ErrorCode::kDevModeFlag: return "DevMode"; case ErrorCode::kTestImageFlag: return "TestImage"; case ErrorCode::kTestOmahaUrlFlag: return "TestOmahaUrl"; case ErrorCode::kSpecialFlags: return "ErrorCode::kSpecialFlags"; case ErrorCode::kPostinstallFirmwareRONotUpdatable: return "ErrorCode::kPostinstallFirmwareRONotUpdatable"; case ErrorCode::kUnsupportedMajorPayloadVersion: return "ErrorCode::kUnsupportedMajorPayloadVersion"; case ErrorCode::kUnsupportedMinorPayloadVersion: return "ErrorCode::kUnsupportedMinorPayloadVersion"; case ErrorCode::kOmahaRequestXMLHasEntityDecl: return "ErrorCode::kOmahaRequestXMLHasEntityDecl"; // Don't add a default case to let the compiler warn about newly added // error codes which should be added here. } return "Unknown error: " + base::UintToString(static_cast(code)); } bool CreatePowerwashMarkerFile(const char* file_path) { const char* marker_file = file_path ? file_path : kPowerwashMarkerFile; bool result = utils::WriteFile(marker_file, kPowerwashCommand, strlen(kPowerwashCommand)); if (result) { LOG(INFO) << "Created " << marker_file << " to powerwash on next reboot"; } else { PLOG(ERROR) << "Error in creating powerwash marker file: " << marker_file; } return result; } bool DeletePowerwashMarkerFile(const char* file_path) { const char* marker_file = file_path ? file_path : kPowerwashMarkerFile; const base::FilePath kPowerwashMarkerPath(marker_file); bool result = base::DeleteFile(kPowerwashMarkerPath, false); if (result) LOG(INFO) << "Successfully deleted the powerwash marker file : " << marker_file; else PLOG(ERROR) << "Could not delete the powerwash marker file : " << marker_file; return result; } bool GetInstallDev(const string& boot_dev, string* install_dev) { string disk_name; int partition_num; if (!SplitPartitionName(boot_dev, &disk_name, &partition_num)) return false; // Right now, we just switch '3' and '5' partition numbers. if (partition_num == 3) { partition_num = 5; } else if (partition_num == 5) { partition_num = 3; } else { return false; } if (install_dev) *install_dev = MakePartitionName(disk_name, partition_num); return true; } Time TimeFromStructTimespec(struct timespec *ts) { int64_t us = static_cast(ts->tv_sec) * Time::kMicrosecondsPerSecond + static_cast(ts->tv_nsec) / Time::kNanosecondsPerMicrosecond; return Time::UnixEpoch() + TimeDelta::FromMicroseconds(us); } gchar** StringVectorToGStrv(const vector &vec_str) { GPtrArray *p = g_ptr_array_new(); for (const string& str : vec_str) { g_ptr_array_add(p, g_strdup(str.c_str())); } g_ptr_array_add(p, nullptr); return reinterpret_cast(g_ptr_array_free(p, FALSE)); } string StringVectorToString(const vector &vec_str) { string str = "["; for (vector::const_iterator i = vec_str.begin(); i != vec_str.end(); ++i) { if (i != vec_str.begin()) str += ", "; str += '"'; str += *i; str += '"'; } str += "]"; return str; } string CalculateP2PFileId(const string& payload_hash, size_t payload_size) { string encoded_hash; OmahaHashCalculator::Base64Encode(payload_hash.c_str(), payload_hash.size(), &encoded_hash); return base::StringPrintf("cros_update_size_%zu_hash_%s", payload_size, encoded_hash.c_str()); } bool DecodeAndStoreBase64String(const string& base64_encoded, base::FilePath *out_path) { vector contents; out_path->clear(); if (base64_encoded.size() == 0) { LOG(ERROR) << "Can't decode empty string."; return false; } if (!OmahaHashCalculator::Base64Decode(base64_encoded, &contents) || contents.size() == 0) { LOG(ERROR) << "Error decoding base64."; return false; } FILE *file = base::CreateAndOpenTemporaryFile(out_path); if (file == nullptr) { LOG(ERROR) << "Error creating temporary file."; return false; } if (fwrite(&contents[0], 1, contents.size(), file) != contents.size()) { PLOG(ERROR) << "Error writing to temporary file."; if (fclose(file) != 0) PLOG(ERROR) << "Error closing temporary file."; if (unlink(out_path->value().c_str()) != 0) PLOG(ERROR) << "Error unlinking temporary file."; out_path->clear(); return false; } if (fclose(file) != 0) { PLOG(ERROR) << "Error closing temporary file."; out_path->clear(); return false; } return true; } bool ConvertToOmahaInstallDate(Time time, int *out_num_days) { time_t unix_time = time.ToTimeT(); // Output of: date +"%s" --date="Jan 1, 2007 0:00 PST". const time_t kOmahaEpoch = 1167638400; const int64_t kNumSecondsPerWeek = 7*24*3600; const int64_t kNumDaysPerWeek = 7; time_t omaha_time = unix_time - kOmahaEpoch; if (omaha_time < 0) return false; // Note, as per the comment in utils.h we are deliberately not // handling DST correctly. int64_t num_weeks_since_omaha_epoch = omaha_time / kNumSecondsPerWeek; *out_num_days = num_weeks_since_omaha_epoch * kNumDaysPerWeek; return true; } bool WallclockDurationHelper(SystemState* system_state, const string& state_variable_key, TimeDelta* out_duration) { bool ret = false; Time now = system_state->clock()->GetWallclockTime(); int64_t stored_value; if (system_state->prefs()->GetInt64(state_variable_key, &stored_value)) { Time stored_time = Time::FromInternalValue(stored_value); if (stored_time > now) { LOG(ERROR) << "Stored time-stamp used for " << state_variable_key << " is in the future."; } else { *out_duration = now - stored_time; ret = true; } } if (!system_state->prefs()->SetInt64(state_variable_key, now.ToInternalValue())) { LOG(ERROR) << "Error storing time-stamp in " << state_variable_key; } return ret; } bool MonotonicDurationHelper(SystemState* system_state, int64_t* storage, TimeDelta* out_duration) { bool ret = false; Time now = system_state->clock()->GetMonotonicTime(); if (*storage != 0) { Time stored_time = Time::FromInternalValue(*storage); *out_duration = now - stored_time; ret = true; } *storage = now.ToInternalValue(); return ret; } } // namespace utils } // namespace chromeos_update_engine