// // Copyright (C) 2012 The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "update_engine/payload_consumer/filesystem_verifier_action.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "payload_generator/delta_diff_generator.h" #include "update_engine/common/utils.h" #include "update_engine/payload_consumer/file_descriptor.h" using brillo::data_encoding::Base64Encode; using std::string; // On a partition with verity enabled, we expect to see the following format: // =================================================== // Normal Filesystem Data // (this should take most of the space, like over 90%) // =================================================== // Hash tree // ~0.8% (e.g. 16M for 2GB image) // =================================================== // FEC data // ~0.8% // =================================================== // Footer // 4K // =================================================== // For OTA that doesn't do on device verity computation, hash tree and fec data // are written during DownloadAction as a regular InstallOp, so no special // handling needed, we can just read the entire partition in 1 go. // Verity enabled case: Only Normal FS data is written during download action. // When hasing the entire partition, we will need to build the hash tree, write // it to disk, then build FEC, and write it to disk. Therefore, it is important // that we finish writing hash tree before we attempt to read & hash it. The // same principal applies to FEC data. // |verity_writer_| handles building and // writing of FEC/HashTree, we just need to be careful when reading. // Specifically, we must stop at beginning of Hash tree, let |verity_writer_| // write both hash tree and FEC, then continue reading the remaining part of // partition. namespace chromeos_update_engine { namespace { const off_t kReadFileBufferSize = 128 * 1024; } // namespace void FilesystemVerifierAction::PerformAction() { // Will tell the ActionProcessor we've failed if we return. ScopedActionCompleter abort_action_completer(processor_, this); if (!HasInputObject()) { LOG(ERROR) << "FilesystemVerifierAction missing input object."; return; } install_plan_ = GetInputObject(); if (install_plan_.partitions.empty()) { LOG(INFO) << "No partitions to verify."; if (HasOutputPipe()) SetOutputObject(install_plan_); abort_action_completer.set_code(ErrorCode::kSuccess); return; } install_plan_.Dump(); StartPartitionHashing(); abort_action_completer.set_should_complete(false); } void FilesystemVerifierAction::TerminateProcessing() { brillo::MessageLoop::current()->CancelTask(pending_task_id_); cancelled_ = true; Cleanup(ErrorCode::kSuccess); // error code is ignored if canceled_ is true. } void FilesystemVerifierAction::Cleanup(ErrorCode code) { partition_fd_.reset(); // This memory is not used anymore. buffer_.clear(); // If we didn't write verity, partitions were maped. Releaase resource now. if (!install_plan_.write_verity && dynamic_control_->UpdateUsesSnapshotCompression()) { LOG(INFO) << "Not writing verity and VABC is enabled, unmapping all " "partitions"; dynamic_control_->UnmapAllPartitions(); } if (cancelled_) return; if (code == ErrorCode::kSuccess && HasOutputPipe()) SetOutputObject(install_plan_); UpdateProgress(1.0); processor_->ActionComplete(this, code); } void FilesystemVerifierAction::UpdateProgress(double progress) { if (delegate_ != nullptr) { delegate_->OnVerifyProgressUpdate(progress); } } bool FilesystemVerifierAction::InitializeFdVABC() { const InstallPlan::Partition& partition = install_plan_.partitions[partition_index_]; if (!ShouldWriteVerity()) { // In VABC, if we are not writing verity, just map all partitions, // and read using regular fd on |postinstall_mount_device| . // All read will go through snapuserd, which provides a consistent // view: device will use snapuserd to read partition during boot. // b/186196758 // Call UnmapAllPartitions() first, because if we wrote verity before, these // writes won't be visible to previously opened snapuserd daemon. To ensure // that we will see the most up to date data from partitions, call Unmap() // then Map() to re-spin daemon. dynamic_control_->UnmapAllPartitions(); dynamic_control_->MapAllPartitions(); return InitializeFd(partition.readonly_target_path); } // FilesystemVerifierAction need the read_fd_. partition_fd_ = dynamic_control_->OpenCowFd(partition.name, partition.source_path, true); if (!partition_fd_) { LOG(ERROR) << "OpenCowReader(" << partition.name << ", " << partition.source_path << ") failed."; return false; } partition_size_ = partition.target_size; return true; } bool FilesystemVerifierAction::InitializeFd(const std::string& part_path) { partition_fd_ = FileDescriptorPtr(new EintrSafeFileDescriptor()); const bool write_verity = ShouldWriteVerity(); int flags = write_verity ? O_RDWR : O_RDONLY; if (!utils::SetBlockDeviceReadOnly(part_path, !write_verity)) { LOG(WARNING) << "Failed to set block device " << part_path << " as " << (write_verity ? "writable" : "readonly"); } if (!partition_fd_->Open(part_path.c_str(), flags)) { LOG(ERROR) << "Unable to open " << part_path << " for reading."; return false; } return true; } void FilesystemVerifierAction::StartPartitionHashing() { if (partition_index_ == install_plan_.partitions.size()) { if (!install_plan_.untouched_dynamic_partitions.empty()) { LOG(INFO) << "Verifying extents of untouched dynamic partitions [" << base::JoinString(install_plan_.untouched_dynamic_partitions, ", ") << "]"; if (!dynamic_control_->VerifyExtentsForUntouchedPartitions( install_plan_.source_slot, install_plan_.target_slot, install_plan_.untouched_dynamic_partitions)) { Cleanup(ErrorCode::kFilesystemVerifierError); return; } } Cleanup(ErrorCode::kSuccess); return; } const InstallPlan::Partition& partition = install_plan_.partitions[partition_index_]; string part_path; switch (verifier_step_) { case VerifierStep::kVerifySourceHash: part_path = partition.source_path; partition_size_ = partition.source_size; break; case VerifierStep::kVerifyTargetHash: part_path = partition.target_path; partition_size_ = partition.target_size; break; } LOG(INFO) << "Hashing partition " << partition_index_ << " (" << partition.name << ") on device " << part_path; auto success = false; if (dynamic_control_->UpdateUsesSnapshotCompression() && verifier_step_ == VerifierStep::kVerifyTargetHash && dynamic_control_->IsDynamicPartition(partition.name, install_plan_.target_slot)) { success = InitializeFdVABC(); } else { if (part_path.empty()) { if (partition_size_ == 0) { LOG(INFO) << "Skip hashing partition " << partition_index_ << " (" << partition.name << ") because size is 0."; partition_index_++; StartPartitionHashing(); return; } LOG(ERROR) << "Cannot hash partition " << partition_index_ << " (" << partition.name << ") because its device path cannot be determined."; Cleanup(ErrorCode::kFilesystemVerifierError); return; } success = InitializeFd(part_path); } if (!success) { Cleanup(ErrorCode::kFilesystemVerifierError); return; } buffer_.resize(kReadFileBufferSize); hasher_ = std::make_unique(); offset_ = 0; filesystem_data_end_ = partition_size_; CHECK_LE(partition.hash_tree_offset, partition.fec_offset) << " Hash tree is expected to come before FEC data"; if (partition.hash_tree_offset != 0) { filesystem_data_end_ = partition.hash_tree_offset; } else if (partition.fec_offset != 0) { filesystem_data_end_ = partition.fec_offset; } if (ShouldWriteVerity()) { if (!verity_writer_->Init(partition)) { LOG(INFO) << "Verity writes enabled on partition " << partition.name; Cleanup(ErrorCode::kVerityCalculationError); return; } } else { LOG(INFO) << "Verity writes disabled on partition " << partition.name; } // Start the first read. ScheduleFileSystemRead(); } bool FilesystemVerifierAction::ShouldWriteVerity() { const InstallPlan::Partition& partition = install_plan_.partitions[partition_index_]; return verifier_step_ == VerifierStep::kVerifyTargetHash && install_plan_.write_verity && (partition.hash_tree_size > 0 || partition.fec_size > 0); } void FilesystemVerifierAction::ReadVerityAndFooter() { if (ShouldWriteVerity()) { if (!verity_writer_->Finalize(partition_fd_, partition_fd_)) { LOG(ERROR) << "Failed to write hashtree/FEC data."; Cleanup(ErrorCode::kFilesystemVerifierError); return; } } // Since we handed our |read_fd_| to verity_writer_ during |Finalize()| // call, fd's position could have been changed. Re-seek. partition_fd_->Seek(filesystem_data_end_, SEEK_SET); auto bytes_to_read = partition_size_ - filesystem_data_end_; while (bytes_to_read > 0) { const auto read_size = std::min(buffer_.size(), bytes_to_read); auto bytes_read = partition_fd_->Read(buffer_.data(), read_size); if (bytes_read <= 0) { PLOG(ERROR) << "Failed to read hash tree " << bytes_read; Cleanup(ErrorCode::kFilesystemVerifierError); return; } if (!hasher_->Update(buffer_.data(), bytes_read)) { LOG(ERROR) << "Unable to update the hash."; Cleanup(ErrorCode::kError); return; } bytes_to_read -= bytes_read; } FinishPartitionHashing(); } void FilesystemVerifierAction::ScheduleFileSystemRead() { // We can only start reading anything past |hash_tree_offset| after we have // already read all the data blocks that the hash tree covers. The same // applies to FEC. size_t bytes_to_read = std::min(static_cast(buffer_.size()), filesystem_data_end_ - offset_); if (!bytes_to_read) { ReadVerityAndFooter(); return; } partition_fd_->Seek(offset_, SEEK_SET); auto bytes_read = partition_fd_->Read(buffer_.data(), bytes_to_read); if (bytes_read < 0) { LOG(ERROR) << "Unable to schedule an asynchronous read from the stream. " << bytes_read; Cleanup(ErrorCode::kError); } else { // We could just invoke |OnReadDoneCallback()|, it works. But |PostTask| // is used so that users can cancel updates. pending_task_id_ = brillo::MessageLoop::current()->PostTask( base::Bind(&FilesystemVerifierAction::OnReadDone, base::Unretained(this), bytes_read)); } } void FilesystemVerifierAction::OnReadDone(size_t bytes_read) { if (cancelled_) { Cleanup(ErrorCode::kError); return; } if (bytes_read == 0) { LOG(ERROR) << "Failed to read the remaining " << partition_size_ - offset_ << " bytes from partition " << install_plan_.partitions[partition_index_].name; Cleanup(ErrorCode::kFilesystemVerifierError); return; } if (!hasher_->Update(buffer_.data(), bytes_read)) { LOG(ERROR) << "Unable to update the hash."; Cleanup(ErrorCode::kError); return; } // WE don't consider sizes of each partition. Every partition // has the same length on progress bar. // TODO(zhangkelvin) Take sizes of each partition into account UpdateProgress( (static_cast(offset_) / partition_size_ + partition_index_) / install_plan_.partitions.size()); if (ShouldWriteVerity()) { if (!verity_writer_->Update(offset_, buffer_.data(), bytes_read)) { LOG(ERROR) << "Unable to update verity"; Cleanup(ErrorCode::kVerityCalculationError); return; } } offset_ += bytes_read; if (offset_ == filesystem_data_end_) { ReadVerityAndFooter(); return; } ScheduleFileSystemRead(); } void FilesystemVerifierAction::FinishPartitionHashing() { if (!hasher_->Finalize()) { LOG(ERROR) << "Unable to finalize the hash."; Cleanup(ErrorCode::kError); return; } InstallPlan::Partition& partition = install_plan_.partitions[partition_index_]; LOG(INFO) << "Hash of " << partition.name << ": " << Base64Encode(hasher_->raw_hash()); switch (verifier_step_) { case VerifierStep::kVerifyTargetHash: if (partition.target_hash != hasher_->raw_hash()) { LOG(ERROR) << "New '" << partition.name << "' partition verification failed."; if (partition.source_hash.empty()) { // No need to verify source if it is a full payload. Cleanup(ErrorCode::kNewRootfsVerificationError); return; } // If we have not verified source partition yet, now that the target // partition does not match, and it's not a full payload, we need to // switch to kVerifySourceHash step to check if it's because the // source partition does not match either. verifier_step_ = VerifierStep::kVerifySourceHash; } else { partition_index_++; } break; case VerifierStep::kVerifySourceHash: if (partition.source_hash != hasher_->raw_hash()) { LOG(ERROR) << "Old '" << partition.name << "' partition verification failed."; LOG(ERROR) << "This is a server-side error due to mismatched delta" << " update image!"; LOG(ERROR) << "The delta I've been given contains a " << partition.name << " delta update that must be applied over a " << partition.name << " with a specific checksum, but the " << partition.name << " we're starting with doesn't have that checksum! This" " means that the delta I've been given doesn't match my" " existing system. The " << partition.name << " partition I have has hash: " << Base64Encode(hasher_->raw_hash()) << " but the update expected me to have " << Base64Encode(partition.source_hash) << " ."; LOG(INFO) << "To get the checksum of the " << partition.name << " partition run this command: dd if=" << partition.source_path << " bs=1M count=" << partition.source_size << " iflag=count_bytes 2>/dev/null | openssl dgst -sha256 " "-binary | openssl base64"; LOG(INFO) << "To get the checksum of partitions in a bin file, " << "run: .../src/scripts/sha256_partitions.sh .../file.bin"; Cleanup(ErrorCode::kDownloadStateInitializationError); return; } // The action will skip kVerifySourceHash step if target partition hash // matches, if we are in this step, it means target hash does not match, // and now that the source partition hash matches, we should set the // error code to reflect the error in target partition. We only need to // verify the source partition which the target hash does not match, the // rest of the partitions don't matter. Cleanup(ErrorCode::kNewRootfsVerificationError); return; } // Start hashing the next partition, if any. hasher_.reset(); buffer_.clear(); if (partition_fd_) { partition_fd_.reset(); } StartPartitionHashing(); } } // namespace chromeos_update_engine