summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--benchmarks/src/benchmarks/BigIntegerBenchmark.java235
-rw-r--r--benchmarks/src/benchmarks/SmallBigIntegerBenchmark.java7
-rw-r--r--harmony-tests/src/test/java/org/apache/harmony/tests/java/math/BigIntegerTest.java9
-rw-r--r--luni/src/main/java/java/math/BigDecimal.java2973
-rw-r--r--luni/src/main/java/java/math/BigInt.java346
-rw-r--r--luni/src/main/java/java/math/BigInteger.java1275
-rw-r--r--luni/src/main/java/java/math/BitLevel.java255
-rw-r--r--luni/src/main/java/java/math/Conversion.java461
-rw-r--r--luni/src/main/java/java/math/Division.java91
-rw-r--r--luni/src/main/java/java/math/Logical.java773
-rw-r--r--luni/src/main/java/java/math/MathContext.java249
-rw-r--r--luni/src/main/java/java/math/Multiplication.java187
-rw-r--r--luni/src/main/java/java/math/NativeBN.java136
-rw-r--r--luni/src/main/java/java/math/Primality.java145
-rw-r--r--luni/src/main/java/java/math/RoundingMode.java122
-rw-r--r--luni/src/main/java/libcore/math/NativeBN.java54
-rw-r--r--luni/src/main/native/Android.bp2
-rw-r--r--luni/src/main/native/Register.cpp2
-rw-r--r--luni/src/main/native/java_math_NativeBN.cpp569
-rw-r--r--luni/src/main/native/libcore_math_NativeBN.cpp192
-rw-r--r--non_openjdk_java_files.bp13
-rw-r--r--ojluni/src/main/java/java/math/BigDecimal.java5285
-rw-r--r--ojluni/src/main/java/java/math/BigInteger.java4812
-rw-r--r--ojluni/src/main/java/java/math/BitSieve.java212
-rw-r--r--ojluni/src/main/java/java/math/MathContext.java326
-rw-r--r--ojluni/src/main/java/java/math/MutableBigInteger.java2263
-rw-r--r--ojluni/src/main/java/java/math/RoundingMode.java356
-rw-r--r--ojluni/src/main/java/java/math/SignedMutableBigInteger.java135
-rw-r--r--ojluni/src/main/java/java/math/TEST_MAPPING (renamed from luni/src/main/java/java/math/TEST_MAPPING)0
-rw-r--r--ojluni/src/main/java/java/math/package-info.java45
-rw-r--r--openjdk_java_files.bp7
31 files changed, 13931 insertions, 7606 deletions
diff --git a/benchmarks/src/benchmarks/BigIntegerBenchmark.java b/benchmarks/src/benchmarks/BigIntegerBenchmark.java
new file mode 100644
index 0000000000..2b78c0aa63
--- /dev/null
+++ b/benchmarks/src/benchmarks/BigIntegerBenchmark.java
@@ -0,0 +1,235 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package benchmarks;
+
+import java.math.BigInteger;
+
+/**
+ * Tries to measure important BigInteger operations across a variety of BigInteger sizes.
+ * Note that BigInteger implementations commonly need to use wildly different algorithms
+ * for different sizes, so relative performance may change substantially depending on the
+ * size of the integer.
+ * This is not structured as a proper benchmark; just run main(), e.g. with
+ * vogar libcore/benchmarks/src/benchmarks/BigIntegerBenchmark.java.
+ */
+public class BigIntegerBenchmark {
+ private static final boolean PRINT_TIMES = true;
+
+ private static long getStartTime() {
+ if (PRINT_TIMES) {
+ return System.nanoTime();
+ } else {
+ return 0;
+ }
+ }
+
+ private static void printTime(String s, long startTime, int reps) {
+ if (PRINT_TIMES) {
+ System.out.println(s
+ + (double)(System.nanoTime() - startTime) / 1000.0 / reps + " usecs / iter");
+ }
+ }
+
+ // A simple sum of products computation, mostly so we can check timing in the
+ // absence of any division. Computes the sum from 1 to n of ((10^prec) << 30) + 1)^2,
+ // repeating the multiplication, but not addition of 1, each time through the loop.
+ // Check the last few bits of the result as we go. Assumes n < 2^30.
+ // Note that we're actually squaring values in computing the product.
+ // That affects the algorithm used by some implementations.
+ private static void inner(int n, int prec) {
+ BigInteger big = BigInteger.TEN.pow(prec).shiftLeft(30).add(BigInteger.ONE);
+ BigInteger sum = BigInteger.ZERO;
+ for (int i = 0; i < n; ++i) {
+ sum = sum.add(big.multiply(big));
+ }
+ if (sum.and(BigInteger.valueOf(0x3fffffff)).intValue() != n) {
+ System.out.println("inner() got " + sum.and(BigInteger.valueOf(0x3fffffff))
+ + " instead of " + n);
+ }
+ }
+
+ // Execute the above rep times, optionally timing it.
+ private static void repeatInner(int n, int prec, int rep) {
+ long startTime = getStartTime();
+ for (int i = 0; i < rep; ++i) {
+ inner(n, prec);
+ }
+ printTime("inner(" + n + "," + prec + ") took ", startTime, rep);
+ }
+
+ // Approximate the sum of the first 1000 terms of the harmonic series (sum of 1/m as m
+ // goes from 1 to n) to about prec digits. The result has an implicit decimal point
+ // prec digits from the right.
+ private static BigInteger harmonic1000(int prec) {
+ BigInteger scaledOne = BigInteger.TEN.pow(prec);
+ BigInteger sum = BigInteger.ZERO;
+ for (int i = 1; i <= 1000; ++i) {
+ sum = sum.add(scaledOne.divide(BigInteger.valueOf(i)));
+ }
+ return sum;
+ }
+
+ // Execute the above rep times, optionally timing it.
+ // Check results for equality, and print one, to compaare against reference.
+ private static void repeatHarmonic1000(int prec, int rep) {
+ long startTime = getStartTime();
+ BigInteger refRes = harmonic1000(prec);
+ for (int i = 1; i < rep; ++i) {
+ BigInteger newRes = harmonic1000(prec);
+ if (!newRes.equals(refRes)) {
+ throw new AssertionError(newRes + " != " + refRes);
+ }
+ }
+ printTime("harmonic(1000) to " + prec + " digits took ", startTime, rep);
+ if (prec >= 50 && !refRes.toString()
+ .startsWith("748547086055034491265651820433390017652167916970")) {
+ throw new AssertionError("harmanic(" + prec + ") incorrectly produced " + refRes);
+ }
+ }
+
+ // Repeatedly execute just the base conversion from the last test, allowing
+ // us to time and check it for consistency as well.
+ private static void repeatToString(int prec, int rep) {
+ BigInteger refRes = harmonic1000(prec);
+ long startTime = getStartTime();
+ String refString = refRes.toString();
+ for (int i = 1; i < rep; ++i) {
+ // Disguise refRes to avoid compiler optimization issues.
+ BigInteger newRes = refRes.shiftLeft(30).add(BigInteger.valueOf(i)).shiftRight(30);
+ // The time-consuming part:
+ String newString = newRes.toString();
+ if (!newString.equals(refString)) {
+ System.out.println(newString + " != " + refString);
+ }
+ }
+ printTime("toString(" + prec + ") took ", startTime, rep);
+ }
+
+ // Compute base^exp, where base and result are scaled/multiplied by scaleBy to make them
+ // integers. exp >= 0 .
+ private static BigInteger myPow(BigInteger base, int exp, BigInteger scaleBy) {
+ if (exp == 0) {
+ return scaleBy; // Return one.
+ } else if ((exp & 1) != 0) {
+ BigInteger tmp = myPow(base, exp - 1, scaleBy);
+ return tmp.multiply(base).divide(scaleBy);
+ } else {
+ BigInteger tmp = myPow(base, exp / 2, scaleBy);
+ return tmp.multiply(tmp).divide(scaleBy);
+ }
+ }
+
+ // Approximate e by computing (1 + 1/n)^n to prec decimal digits.
+ // This isn't necessarily a very good approximation to e.
+ // Return the result, scaled by 10^prec.
+ private static BigInteger eApprox(int n, int prec) {
+ BigInteger scaledOne = BigInteger.TEN.pow(prec);
+ BigInteger base = scaledOne.add(scaledOne.divide(BigInteger.valueOf(n)));
+ return myPow(base, n, scaledOne);
+ }
+
+ // Repeatedly execute and check the above, printing one of the results
+ // to compare to reference.
+ private static void repeatEApprox(int n, int prec, int rep) {
+ long startTime = getStartTime();
+ BigInteger refRes = eApprox(n, prec);
+ for (int i = 1; i < rep; ++i) {
+ BigInteger newRes = eApprox(n, prec);
+ if (!newRes.equals(refRes)) {
+ throw new AssertionError(newRes + " != " + refRes);
+ }
+ }
+ printTime("eApprox(" + n + "," + prec + ") took ", startTime, rep);
+ if (n >= 100000 && prec >= 10 && !refRes.toString().startsWith("271826")) {
+ throw new AssertionError("eApprox(" + n + "," + prec + ") incorrectly produced "
+ + refRes);
+ }
+ }
+
+ // Test / time modPow()
+ private static void repeatModPow(int len, int rep) {
+ BigInteger odd1 = BigInteger.TEN.pow(len / 2).add(BigInteger.ONE);
+ BigInteger odd2 = BigInteger.TEN.pow(len / 2).add(BigInteger.valueOf(17));
+ BigInteger product = odd1.multiply(odd2);
+ BigInteger exponent = BigInteger.TEN.pow(len / 2 - 1);
+ BigInteger base = BigInteger.TEN.pow(len / 4);
+ long startTime = getStartTime();
+ BigInteger lastRes = null;
+ for (int i = 0; i < rep; ++i) {
+ BigInteger newRes = base.modPow(exponent, product);
+ if (i != 0 && !newRes.equals(lastRes)) {
+ System.out.println(newRes + " != " + lastRes);
+ }
+ lastRes = newRes;
+ }
+ printTime("ModPow() at decimal length " + len + " took ", startTime, rep);
+ if (!lastRes.mod(odd1).equals(base.modPow(exponent, odd1))) {
+ throw new AssertionError("ModPow() result incorrect mod odd1:" + odd1
+ + "; lastRes.mod(odd1)=" + lastRes.mod(odd1) + " vs. "
+ + "base.modPow(exponent, odd1)=" + base.modPow(exponent, odd1) + " base="
+ + base + " exponent=" + exponent);
+ }
+ if (!lastRes.mod(odd2).equals(base.modPow(exponent, odd2))) {
+ throw new AssertionError("ModPow() result incorrect mod odd2");
+ }
+ }
+
+ // Test / time modInverse()
+ private static void repeatModInverse(int len, int rep) {
+ BigInteger odd1 = BigInteger.TEN.pow(len / 2).add(BigInteger.ONE);
+ BigInteger odd2 = BigInteger.TEN.pow(len / 2).add(BigInteger.valueOf(17));
+ BigInteger product = odd1.multiply(odd2);
+ BigInteger arg = BigInteger.ONE.shiftLeft(len / 4);
+ long startTime = getStartTime();
+ BigInteger lastRes = null;
+ for (int i = 0; i < rep; ++i) {
+ BigInteger newRes = arg.modInverse(product);
+ if (i != 0 && !newRes.equals(lastRes)) {
+ System.out.println(newRes + " != " + lastRes);
+ }
+ lastRes = newRes;
+ }
+ printTime("ModInverse() at decimal length " + len + " took ", startTime, rep);
+ if (!lastRes.mod(odd1).equals(arg.modInverse(odd1))) {
+ throw new AssertionError("ModInverse() result incorrect mod odd1");
+ }
+ if (!lastRes.mod(odd2).equals(arg.modInverse(odd2))) {
+ throw new AssertionError("ModInverse() result incorrect mod odd2");
+ }
+ }
+
+ public static void main(String[] args) throws Exception {
+ for (int i = 10; i <= 10_000; i *= 10) {
+ repeatInner(1000, i, PRINT_TIMES ? Math.min(20_000 / i, 3_000) : 2);
+ }
+ for (int i = 5; i <= 5_000; i *= 10) {
+ repeatHarmonic1000(i, PRINT_TIMES ? Math.min(20_000 / i, 3_000) : 2);
+ }
+ for (int i = 5; i <= 5_000; i *= 10) {
+ repeatToString(i, PRINT_TIMES ? Math.min(20_000 / i, 3_000) : 2);
+ }
+ for (int i = 10; i <= 10_000; i *= 10) {
+ repeatEApprox(100_000, i, PRINT_TIMES ? 50_000 / i : 2);
+ }
+ for (int i = 5; i <= 5_000; i *= 10) {
+ repeatModPow(i, PRINT_TIMES ? 10_000 / i : 2);
+ }
+ for (int i = 10; i <= 10_000; i *= 10) {
+ repeatModInverse(i, PRINT_TIMES ? 20_000 / i : 2);
+ }
+ }
+}
diff --git a/benchmarks/src/benchmarks/SmallBigIntegerBenchmark.java b/benchmarks/src/benchmarks/SmallBigIntegerBenchmark.java
index 81a3ab55cf..f513bf43a1 100644
--- a/benchmarks/src/benchmarks/SmallBigIntegerBenchmark.java
+++ b/benchmarks/src/benchmarks/SmallBigIntegerBenchmark.java
@@ -20,12 +20,13 @@ import java.math.BigInteger;
import java.util.Random;
/**
- * This pretends to measure performance of operations on small BigIntegers.
- * Given our current implementation, this is really a way to measure performance of
- * finalization and JNI.
+ * This measures performance of operations on small BigIntegers.
* We manually determine the number of iterations so that it should cause total memory
* allocation on the order of a few hundred megabytes. Due to BigInteger's reliance on
* finalization, these may unfortunately all be kept around at once.
+ *
+ * This is not structured as a proper benchmark; just run main(), e.g. with
+ * vogar libcore/benchmarks/src/benchmarks/SmallBigIntegerBenchmark.java
*/
public class SmallBigIntegerBenchmark {
// We allocate about 2 1/3 BigIntegers per iteration.
diff --git a/harmony-tests/src/test/java/org/apache/harmony/tests/java/math/BigIntegerTest.java b/harmony-tests/src/test/java/org/apache/harmony/tests/java/math/BigIntegerTest.java
index b9ee1c614f..cc649463f5 100644
--- a/harmony-tests/src/test/java/org/apache/harmony/tests/java/math/BigIntegerTest.java
+++ b/harmony-tests/src/test/java/org/apache/harmony/tests/java/math/BigIntegerTest.java
@@ -81,13 +81,8 @@ public class BigIntegerTest extends junit.framework.TestCase {
* @tests java.math.BigInteger#BigInteger(int, java.util.Random)
*/
public void test_ConstructorILjava_util_Random() {
- // regression test for HARMONY-1047
- try {
- new BigInteger(Integer.MAX_VALUE, (Random)null);
- fail("NegativeArraySizeException expected");
- } catch (NegativeArraySizeException e) {
- // PASSED
- }
+ // regression test for HARMONY-1047 removed. We were failing this supposed test for RI
+ // behavior in spite of running their code.
bi = new BigInteger(70, rand);
bi2 = new BigInteger(70, rand);
diff --git a/luni/src/main/java/java/math/BigDecimal.java b/luni/src/main/java/java/math/BigDecimal.java
deleted file mode 100644
index 6ba251b8b7..0000000000
--- a/luni/src/main/java/java/math/BigDecimal.java
+++ /dev/null
@@ -1,2973 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package java.math;
-
-import java.io.IOException;
-import java.io.ObjectInputStream;
-import java.io.ObjectOutputStream;
-import java.io.Serializable;
-import java.util.Arrays;
-import libcore.math.MathUtils;
-
-/**
- * An immutable arbitrary-precision signed decimal.
- *
- * <p>A value is represented by an arbitrary-precision "unscaled value" and a signed 32-bit "scale",
- * combined thus: {@code unscaled * 10<sup>-scale</sup>}. See {@link #unscaledValue} and {@link #scale}.
- *
- * <p>Most operations allow you to supply a {@link MathContext} to specify a desired rounding mode.
- */
-public class BigDecimal extends Number implements Comparable<BigDecimal>, Serializable {
-
- /**
- * Rounding mode where positive values are rounded towards positive infinity
- * and negative values towards negative infinity.
- *
- * @see RoundingMode#UP
- */
- public static final int ROUND_UP = 0;
-
- /**
- * Rounding mode where the values are rounded towards zero.
- *
- * @see RoundingMode#DOWN
- */
- public static final int ROUND_DOWN = 1;
-
- /**
- * Rounding mode to round towards positive infinity. For positive values
- * this rounding mode behaves as {@link #ROUND_UP}, for negative values as
- * {@link #ROUND_DOWN}.
- *
- * @see RoundingMode#CEILING
- */
- public static final int ROUND_CEILING = 2;
-
- /**
- * Rounding mode to round towards negative infinity. For positive values
- * this rounding mode behaves as {@link #ROUND_DOWN}, for negative values as
- * {@link #ROUND_UP}.
- *
- * @see RoundingMode#FLOOR
- */
- public static final int ROUND_FLOOR = 3;
-
- /**
- * Rounding mode where values are rounded towards the nearest neighbor.
- * Ties are broken by rounding up.
- *
- * @see RoundingMode#HALF_UP
- */
- public static final int ROUND_HALF_UP = 4;
-
- /**
- * Rounding mode where values are rounded towards the nearest neighbor.
- * Ties are broken by rounding down.
- *
- * @see RoundingMode#HALF_DOWN
- */
- public static final int ROUND_HALF_DOWN = 5;
-
- /**
- * Rounding mode where values are rounded towards the nearest neighbor.
- * Ties are broken by rounding to the even neighbor.
- *
- * @see RoundingMode#HALF_EVEN
- */
- public static final int ROUND_HALF_EVEN = 6;
-
- /**
- * Rounding mode where the rounding operations throws an {@code
- * ArithmeticException} for the case that rounding is necessary, i.e. for
- * the case that the value cannot be represented exactly.
- *
- * @see RoundingMode#UNNECESSARY
- */
- public static final int ROUND_UNNECESSARY = 7;
-
- /** This is the serialVersionUID used by the sun implementation. */
- private static final long serialVersionUID = 6108874887143696463L;
-
- /** The double closest to {@code Log10(2)}. */
- private static final double LOG10_2 = 0.3010299956639812;
-
- /** The <code>String</code> representation is cached. */
- private transient String toStringImage = null;
-
- /** Cache for the hash code. */
- private transient int hashCode = 0;
-
- /**
- * An array with powers of five that fit in the type <code>long</code>
- * (<code>5^0,5^1,...,5^27</code>).
- */
- private static final BigInteger[] FIVE_POW;
-
- /**
- * An array with powers of ten that fit in the type <code>long</code>
- * (<code>10^0,10^1,...,10^18</code>).
- */
- private static final BigInteger[] TEN_POW;
-
- private static final long[] LONG_FIVE_POW = new long[]
- { 1L,
- 5L,
- 25L,
- 125L,
- 625L,
- 3125L,
- 15625L,
- 78125L,
- 390625L,
- 1953125L,
- 9765625L,
- 48828125L,
- 244140625L,
- 1220703125L,
- 6103515625L,
- 30517578125L,
- 152587890625L,
- 762939453125L,
- 3814697265625L,
- 19073486328125L,
- 95367431640625L,
- 476837158203125L,
- 2384185791015625L,
- 11920928955078125L,
- 59604644775390625L,
- 298023223876953125L,
- 1490116119384765625L,
- 7450580596923828125L, };
-
- private static final int[] LONG_FIVE_POW_BIT_LENGTH = new int[LONG_FIVE_POW.length];
- private static final int[] LONG_POWERS_OF_TEN_BIT_LENGTH = new int[MathUtils.LONG_POWERS_OF_TEN.length];
-
- private static final int BI_SCALED_BY_ZERO_LENGTH = 11;
-
- /**
- * An array with the first <code>BigInteger</code> scaled by zero.
- * (<code>[0,0],[1,0],...,[10,0]</code>).
- */
- private static final BigDecimal[] BI_SCALED_BY_ZERO = new BigDecimal[BI_SCALED_BY_ZERO_LENGTH];
-
- /**
- * An array with the zero number scaled by the first positive scales.
- * (<code>0*10^0, 0*10^1, ..., 0*10^10</code>).
- */
- private static final BigDecimal[] ZERO_SCALED_BY = new BigDecimal[11];
-
- /** An array filled with characters <code>'0'</code>. */
- private static final char[] CH_ZEROS = new char[100];
-
- static {
- Arrays.fill(CH_ZEROS, '0');
-
- for (int i = 0; i < ZERO_SCALED_BY.length; ++i) {
- BI_SCALED_BY_ZERO[i] = new BigDecimal(i, 0);
- ZERO_SCALED_BY[i] = new BigDecimal(0, i);
- }
- for (int i = 0; i < LONG_FIVE_POW_BIT_LENGTH.length; ++i) {
- LONG_FIVE_POW_BIT_LENGTH[i] = bitLength(LONG_FIVE_POW[i]);
- }
- for (int i = 0; i < LONG_POWERS_OF_TEN_BIT_LENGTH.length; ++i) {
- LONG_POWERS_OF_TEN_BIT_LENGTH[i] = bitLength(MathUtils.LONG_POWERS_OF_TEN[i]);
- }
-
- // Taking the references of useful powers.
- TEN_POW = Multiplication.bigTenPows;
- FIVE_POW = Multiplication.bigFivePows;
- }
-
- /**
- * The constant zero as a {@code BigDecimal}.
- */
- public static final BigDecimal ZERO = new BigDecimal(0, 0);
-
- /**
- * The constant one as a {@code BigDecimal}.
- */
- public static final BigDecimal ONE = new BigDecimal(1, 0);
-
- /**
- * The constant ten as a {@code BigDecimal}.
- */
- public static final BigDecimal TEN = new BigDecimal(10, 0);
-
- /**
- * The arbitrary precision integer (unscaled value) in the internal
- * representation of {@code BigDecimal}.
- */
- private BigInteger intVal;
-
- private transient int bitLength;
-
- private transient long smallValue;
-
- /**
- * The 32-bit integer scale in the internal representation of {@code BigDecimal}.
- */
- private int scale;
-
- /**
- * Represent the number of decimal digits in the unscaled value. This
- * precision is calculated the first time, and used in the following calls
- * of method <code>precision()</code>. Note that some call to the private
- * method <code>inplaceRound()</code> could update this field.
- *
- * @see #precision()
- * @see #inplaceRound(MathContext)
- */
- private transient int precision = 0;
-
- private BigDecimal(long smallValue, int scale){
- this.smallValue = smallValue;
- this.scale = scale;
- this.bitLength = bitLength(smallValue);
- }
-
- private BigDecimal(int smallValue, int scale){
- this.smallValue = smallValue;
- this.scale = scale;
- this.bitLength = bitLength(smallValue);
- }
-
- /**
- * Constructs a new {@code BigDecimal} instance from a string representation
- * given as a character array.
- *
- * @param in
- * array of characters containing the string representation of
- * this {@code BigDecimal}.
- * @param offset
- * first index to be copied.
- * @param len
- * number of characters to be used.
- * @throws NumberFormatException
- * if {@code offset < 0 || len <= 0 || offset+len-1 < 0 ||
- * offset+len-1 >= in.length}, or if {@code in} does not
- * contain a valid string representation of a big decimal.
- */
- public BigDecimal(char[] in, int offset, int len) {
- int begin = offset; // first index to be copied
- int last = offset + (len - 1); // last index to be copied
- String scaleString; // buffer for scale
- StringBuilder unscaledBuffer; // buffer for unscaled value
- long newScale; // the new scale
-
- if (in == null) {
- throw new NullPointerException("in == null");
- }
- if ((last >= in.length) || (offset < 0) || (len <= 0) || (last < 0)) {
- throw new NumberFormatException("Bad offset/length: offset=" + offset +
- " len=" + len + " in.length=" + in.length);
- }
- unscaledBuffer = new StringBuilder(len);
- int bufLength = 0;
- // To skip a possible '+' symbol
- if ((offset <= last) && (in[offset] == '+')) {
- offset++;
- begin++;
- }
- int counter = 0;
- boolean wasNonZero = false;
- // Accumulating all digits until a possible decimal point
- for (; (offset <= last) && (in[offset] != '.') && (in[offset] != 'e') && (in[offset] != 'E'); offset++) {
- if (!wasNonZero) {
- if (in[offset] == '0') {
- counter++;
- } else {
- wasNonZero = true;
- }
- }
-
- }
- unscaledBuffer.append(in, begin, offset - begin);
- bufLength += offset - begin;
- // A decimal point was found
- if ((offset <= last) && (in[offset] == '.')) {
- offset++;
- // Accumulating all digits until a possible exponent
- begin = offset;
- for (; (offset <= last) && (in[offset] != 'e')
- && (in[offset] != 'E'); offset++) {
- if (!wasNonZero) {
- if (in[offset] == '0') {
- counter++;
- } else {
- wasNonZero = true;
- }
- }
- }
- scale = offset - begin;
- bufLength +=scale;
- unscaledBuffer.append(in, begin, scale);
- } else {
- scale = 0;
- }
- // An exponent was found
- if ((offset <= last) && ((in[offset] == 'e') || (in[offset] == 'E'))) {
- offset++;
- // Checking for a possible sign of scale
- begin = offset;
- if ((offset <= last) && (in[offset] == '+')) {
- offset++;
- if ((offset <= last) && (in[offset] != '-')) {
- begin++;
- }
- }
- // Accumulating all remaining digits
- scaleString = String.valueOf(in, begin, last + 1 - begin);
- // Checking if the scale is defined
- newScale = (long)scale - Integer.parseInt(scaleString);
- scale = (int)newScale;
- if (newScale != scale) {
- throw new NumberFormatException("Scale out of range");
- }
- }
- // Parsing the unscaled value
- if (bufLength < 19) {
- smallValue = Long.parseLong(unscaledBuffer.toString());
- bitLength = bitLength(smallValue);
- } else {
- setUnscaledValue(new BigInteger(unscaledBuffer.toString()));
- }
- }
-
- /**
- * Constructs a new {@code BigDecimal} instance from a string representation
- * given as a character array.
- *
- * @param in
- * array of characters containing the string representation of
- * this {@code BigDecimal}.
- * @param offset
- * first index to be copied.
- * @param len
- * number of characters to be used.
- * @param mc
- * rounding mode and precision for the result of this operation.
- * @throws NumberFormatException
- * if {@code offset < 0 || len <= 0 || offset+len-1 < 0 ||
- * offset+len-1 >= in.length}, or if {@code in} does not
- * contain a valid string representation of a big decimal.
- * @throws ArithmeticException
- * if {@code mc.precision > 0} and {@code mc.roundingMode ==
- * UNNECESSARY} and the new big decimal cannot be represented
- * within the given precision without rounding.
- */
- public BigDecimal(char[] in, int offset, int len, MathContext mc) {
- this(in, offset, len);
- inplaceRound(mc);
- }
-
- /**
- * Constructs a new {@code BigDecimal} instance from a string representation
- * given as a character array.
- *
- * @param in
- * array of characters containing the string representation of
- * this {@code BigDecimal}.
- * @throws NumberFormatException
- * if {@code in} does not contain a valid string representation
- * of a big decimal.
- */
- public BigDecimal(char[] in) {
- this(in, 0, in.length);
- }
-
- /**
- * Constructs a new {@code BigDecimal} instance from a string representation
- * given as a character array. The result is rounded according to the
- * specified math context.
- *
- * @param in
- * array of characters containing the string representation of
- * this {@code BigDecimal}.
- * @param mc
- * rounding mode and precision for the result of this operation.
- * @throws NumberFormatException
- * if {@code in} does not contain a valid string representation
- * of a big decimal.
- * @throws ArithmeticException
- * if {@code mc.precision > 0} and {@code mc.roundingMode ==
- * UNNECESSARY} and the new big decimal cannot be represented
- * within the given precision without rounding.
- */
- public BigDecimal(char[] in, MathContext mc) {
- this(in, 0, in.length);
- inplaceRound(mc);
- }
-
- /**
- * Constructs a new {@code BigDecimal} instance from a string
- * representation.
- *
- * @throws NumberFormatException
- * if {@code val} does not contain a valid string representation
- * of a big decimal.
- */
- public BigDecimal(String val) {
- this(val.toCharArray(), 0, val.length());
- }
-
- /**
- * Constructs a new {@code BigDecimal} instance from a string
- * representation. The result is rounded according to the specified math
- * context.
- *
- * @param mc
- * rounding mode and precision for the result of this operation.
- * @throws NumberFormatException
- * if {@code val} does not contain a valid string representation
- * of a big decimal.
- * @throws ArithmeticException
- * if {@code mc.precision > 0} and {@code mc.roundingMode ==
- * UNNECESSARY} and the new big decimal cannot be represented
- * within the given precision without rounding.
- */
- public BigDecimal(String val, MathContext mc) {
- this(val.toCharArray(), 0, val.length());
- inplaceRound(mc);
- }
-
- /**
- * Constructs a new {@code BigDecimal} instance from the 64bit double
- * {@code val}. The constructed big decimal is equivalent to the given
- * double. For example, {@code new BigDecimal(0.1)} is equal to {@code
- * 0.1000000000000000055511151231257827021181583404541015625}. This happens
- * as {@code 0.1} cannot be represented exactly in binary.
- * <p>
- * To generate a big decimal instance which is equivalent to {@code 0.1} use
- * the {@code BigDecimal(String)} constructor.
- *
- * @param val
- * double value to be converted to a {@code BigDecimal} instance.
- * @throws NumberFormatException
- * if {@code val} is infinity or not a number.
- */
- public BigDecimal(double val) {
- if (Double.isInfinite(val) || Double.isNaN(val)) {
- throw new NumberFormatException("Infinity or NaN: " + val);
- }
- long bits = Double.doubleToLongBits(val); // IEEE-754
- long mantissa;
- int trailingZeros;
- // Extracting the exponent, note that the bias is 1023
- scale = 1075 - (int)((bits >> 52) & 0x7FFL);
- // Extracting the 52 bits of the mantissa.
- mantissa = (scale == 1075) ? (bits & 0xFFFFFFFFFFFFFL) << 1
- : (bits & 0xFFFFFFFFFFFFFL) | 0x10000000000000L;
- if (mantissa == 0) {
- scale = 0;
- precision = 1;
- }
- // To simplify all factors '2' in the mantissa
- if (scale > 0) {
- trailingZeros = Math.min(scale, Long.numberOfTrailingZeros(mantissa));
- mantissa >>>= trailingZeros;
- scale -= trailingZeros;
- }
- // Calculating the new unscaled value and the new scale
- if((bits >> 63) != 0) {
- mantissa = -mantissa;
- }
- int mantissaBits = bitLength(mantissa);
- if (scale < 0) {
- bitLength = mantissaBits == 0 ? 0 : mantissaBits - scale;
- if(bitLength < 64) {
- smallValue = mantissa << (-scale);
- } else {
- BigInt bi = new BigInt();
- bi.putLongInt(mantissa);
- bi.shift(-scale);
- intVal = new BigInteger(bi);
- }
- scale = 0;
- } else if (scale > 0) {
- // m * 2^e = (m * 5^(-e)) * 10^e
- if(scale < LONG_FIVE_POW.length
- && mantissaBits+LONG_FIVE_POW_BIT_LENGTH[scale] < 64) {
- smallValue = mantissa * LONG_FIVE_POW[scale];
- bitLength = bitLength(smallValue);
- } else {
- setUnscaledValue(Multiplication.multiplyByFivePow(BigInteger.valueOf(mantissa), scale));
- }
- } else { // scale == 0
- smallValue = mantissa;
- bitLength = mantissaBits;
- }
- }
-
- /**
- * Constructs a new {@code BigDecimal} instance from the 64bit double
- * {@code val}. The constructed big decimal is equivalent to the given
- * double. For example, {@code new BigDecimal(0.1)} is equal to {@code
- * 0.1000000000000000055511151231257827021181583404541015625}. This happens
- * as {@code 0.1} cannot be represented exactly in binary.
- * <p>
- * To generate a big decimal instance which is equivalent to {@code 0.1} use
- * the {@code BigDecimal(String)} constructor.
- *
- * @param val
- * double value to be converted to a {@code BigDecimal} instance.
- * @param mc
- * rounding mode and precision for the result of this operation.
- * @throws NumberFormatException
- * if {@code val} is infinity or not a number.
- * @throws ArithmeticException
- * if {@code mc.precision > 0} and {@code mc.roundingMode ==
- * UNNECESSARY} and the new big decimal cannot be represented
- * within the given precision without rounding.
- */
- public BigDecimal(double val, MathContext mc) {
- this(val);
- inplaceRound(mc);
- }
-
- /**
- * Constructs a new {@code BigDecimal} instance from the given big integer
- * {@code val}. The scale of the result is {@code 0}.
- */
- public BigDecimal(BigInteger val) {
- this(val, 0);
- }
-
- /**
- * Constructs a new {@code BigDecimal} instance from the given big integer
- * {@code val}. The scale of the result is {@code 0}.
- *
- * @param mc
- * rounding mode and precision for the result of this operation.
- * @throws ArithmeticException
- * if {@code mc.precision > 0} and {@code mc.roundingMode ==
- * UNNECESSARY} and the new big decimal cannot be represented
- * within the given precision without rounding.
- */
- public BigDecimal(BigInteger val, MathContext mc) {
- this(val);
- inplaceRound(mc);
- }
-
- /**
- * Constructs a new {@code BigDecimal} instance from a given unscaled value
- * {@code unscaledVal} and a given scale. The value of this instance is
- * {@code unscaledVal * 10<sup>-scale</sup>}).
- *
- * @throws NullPointerException
- * if {@code unscaledVal == null}.
- */
- public BigDecimal(BigInteger unscaledVal, int scale) {
- if (unscaledVal == null) {
- throw new NullPointerException("unscaledVal == null");
- }
- this.scale = scale;
- setUnscaledValue(unscaledVal);
- }
-
- /**
- * Constructs a new {@code BigDecimal} instance from a given unscaled value
- * {@code unscaledVal} and a given scale. The value of this instance is
- * {@code unscaledVal * 10<sup>-scale</sup>). The result is rounded according
- * to the specified math context.
- *
- * @param mc
- * rounding mode and precision for the result of this operation.
- * @throws ArithmeticException
- * if {@code mc.precision > 0} and {@code mc.roundingMode ==
- * UNNECESSARY} and the new big decimal cannot be represented
- * within the given precision without rounding.
- * @throws NullPointerException
- * if {@code unscaledVal == null}.
- */
- public BigDecimal(BigInteger unscaledVal, int scale, MathContext mc) {
- this(unscaledVal, scale);
- inplaceRound(mc);
- }
-
- /**
- * Constructs a new {@code BigDecimal} instance from the given int
- * {@code val}. The scale of the result is 0.
- *
- * @param val
- * int value to be converted to a {@code BigDecimal} instance.
- */
- public BigDecimal(int val) {
- this(val,0);
- }
-
- /**
- * Constructs a new {@code BigDecimal} instance from the given int {@code
- * val}. The scale of the result is {@code 0}. The result is rounded
- * according to the specified math context.
- *
- * @param val
- * int value to be converted to a {@code BigDecimal} instance.
- * @param mc
- * rounding mode and precision for the result of this operation.
- * @throws ArithmeticException
- * if {@code mc.precision > 0} and {@code c.roundingMode ==
- * UNNECESSARY} and the new big decimal cannot be represented
- * within the given precision without rounding.
- */
- public BigDecimal(int val, MathContext mc) {
- this(val,0);
- inplaceRound(mc);
- }
-
- /**
- * Constructs a new {@code BigDecimal} instance from the given long {@code
- * val}. The scale of the result is {@code 0}.
- *
- * @param val
- * long value to be converted to a {@code BigDecimal} instance.
- */
- public BigDecimal(long val) {
- this(val,0);
- }
-
- /**
- * Constructs a new {@code BigDecimal} instance from the given long {@code
- * val}. The scale of the result is {@code 0}. The result is rounded
- * according to the specified math context.
- *
- * @param val
- * long value to be converted to a {@code BigDecimal} instance.
- * @param mc
- * rounding mode and precision for the result of this operation.
- * @throws ArithmeticException
- * if {@code mc.precision > 0} and {@code mc.roundingMode ==
- * UNNECESSARY} and the new big decimal cannot be represented
- * within the given precision without rounding.
- */
- public BigDecimal(long val, MathContext mc) {
- this(val);
- inplaceRound(mc);
- }
-
- /* Public Methods */
-
- /**
- * Returns a new {@code BigDecimal} instance whose value is equal to {@code
- * unscaledVal * 10<sup>-scale</sup>}). The scale of the result is {@code
- * scale}, and its unscaled value is {@code unscaledVal}.
- */
- public static BigDecimal valueOf(long unscaledVal, int scale) {
- if (scale == 0) {
- return valueOf(unscaledVal);
- }
- if ((unscaledVal == 0) && (scale >= 0)
- && (scale < ZERO_SCALED_BY.length)) {
- return ZERO_SCALED_BY[scale];
- }
- return new BigDecimal(unscaledVal, scale);
- }
-
- /**
- * Returns a new {@code BigDecimal} instance whose value is equal to {@code
- * unscaledVal}. The scale of the result is {@code 0}, and its unscaled
- * value is {@code unscaledVal}.
- *
- * @param unscaledVal
- * value to be converted to a {@code BigDecimal}.
- * @return {@code BigDecimal} instance with the value {@code unscaledVal}.
- */
- public static BigDecimal valueOf(long unscaledVal) {
- if ((unscaledVal >= 0) && (unscaledVal < BI_SCALED_BY_ZERO_LENGTH)) {
- return BI_SCALED_BY_ZERO[(int)unscaledVal];
- }
- return new BigDecimal(unscaledVal,0);
- }
-
- /**
- * Returns a new {@code BigDecimal} instance whose value is equal to {@code
- * val}. The new decimal is constructed as if the {@code BigDecimal(String)}
- * constructor is called with an argument which is equal to {@code
- * Double.toString(val)}. For example, {@code valueOf("0.1")} is converted to
- * (unscaled=1, scale=1), although the double {@code 0.1} cannot be
- * represented exactly as a double value. In contrast to that, a new {@code
- * BigDecimal(0.1)} instance has the value {@code
- * 0.1000000000000000055511151231257827021181583404541015625} with an
- * unscaled value {@code 1000000000000000055511151231257827021181583404541015625}
- * and the scale {@code 55}.
- *
- * @param val
- * double value to be converted to a {@code BigDecimal}.
- * @return {@code BigDecimal} instance with the value {@code val}.
- * @throws NumberFormatException
- * if {@code val} is infinite or {@code val} is not a number
- */
- public static BigDecimal valueOf(double val) {
- if (Double.isInfinite(val) || Double.isNaN(val)) {
- throw new NumberFormatException("Infinity or NaN: " + val);
- }
- return new BigDecimal(Double.toString(val));
- }
-
- /**
- * Returns a new {@code BigDecimal} whose value is {@code this + augend}.
- * The scale of the result is the maximum of the scales of the two
- * arguments.
- *
- * @param augend
- * value to be added to {@code this}.
- * @return {@code this + augend}.
- * @throws NullPointerException
- * if {@code augend == null}.
- */
- public BigDecimal add(BigDecimal augend) {
- int diffScale = this.scale - augend.scale;
- // Fast return when some operand is zero
- if (this.isZero()) {
- if (diffScale <= 0) {
- return augend;
- }
- if (augend.isZero()) {
- return this;
- }
- } else if (augend.isZero()) {
- if (diffScale >= 0) {
- return this;
- }
- }
- // Let be: this = [u1,s1] and augend = [u2,s2]
- if (diffScale == 0) {
- // case s1 == s2: [u1 + u2 , s1]
- if (Math.max(this.bitLength, augend.bitLength) + 1 < 64) {
- return valueOf(this.smallValue + augend.smallValue, this.scale);
- }
- return new BigDecimal(this.getUnscaledValue().add(augend.getUnscaledValue()), this.scale);
- } else if (diffScale > 0) {
- // case s1 > s2 : [(u1 + u2) * 10 ^ (s1 - s2) , s1]
- return addAndMult10(this, augend, diffScale);
- } else {// case s2 > s1 : [(u2 + u1) * 10 ^ (s2 - s1) , s2]
- return addAndMult10(augend, this, -diffScale);
- }
- }
-
- private static BigDecimal addAndMult10(BigDecimal thisValue,BigDecimal augend, int diffScale) {
- if(diffScale < MathUtils.LONG_POWERS_OF_TEN.length &&
- Math.max(thisValue.bitLength,augend.bitLength+LONG_POWERS_OF_TEN_BIT_LENGTH[diffScale])+1<64) {
- return valueOf(thisValue.smallValue+augend.smallValue*MathUtils.LONG_POWERS_OF_TEN[diffScale],thisValue.scale);
- } else {
- BigInt bi = Multiplication.multiplyByTenPow(augend.getUnscaledValue(),diffScale).getBigInt();
- bi.add(thisValue.getUnscaledValue().getBigInt());
- return new BigDecimal(new BigInteger(bi), thisValue.scale);
- }
- }
-
- /**
- * Returns a new {@code BigDecimal} whose value is {@code this + augend}.
- * The result is rounded according to the passed context {@code mc}.
- *
- * @param augend
- * value to be added to {@code this}.
- * @param mc
- * rounding mode and precision for the result of this operation.
- * @return {@code this + augend}.
- * @throws NullPointerException
- * if {@code augend == null} or {@code mc == null}.
- */
- public BigDecimal add(BigDecimal augend, MathContext mc) {
- BigDecimal larger; // operand with the largest unscaled value
- BigDecimal smaller; // operand with the smallest unscaled value
- BigInteger tempBI;
- long diffScale = (long)this.scale - augend.scale;
- int largerSignum;
- // Some operand is zero or the precision is infinity
- if ((augend.isZero()) || (this.isZero())
- || (mc.getPrecision() == 0)) {
- return add(augend).round(mc);
- }
- // Cases where there is room for optimizations
- if (this.approxPrecision() < diffScale - 1) {
- larger = augend;
- smaller = this;
- } else if (augend.approxPrecision() < -diffScale - 1) {
- larger = this;
- smaller = augend;
- } else {// No optimization is done
- return add(augend).round(mc);
- }
- if (mc.getPrecision() >= larger.approxPrecision()) {
- // No optimization is done
- return add(augend).round(mc);
- }
- // Cases where it's unnecessary to add two numbers with very different scales
- largerSignum = larger.signum();
- if (largerSignum == smaller.signum()) {
- tempBI = Multiplication.multiplyByPositiveInt(larger.getUnscaledValue(),10)
- .add(BigInteger.valueOf(largerSignum));
- } else {
- tempBI = larger.getUnscaledValue().subtract(
- BigInteger.valueOf(largerSignum));
- tempBI = Multiplication.multiplyByPositiveInt(tempBI,10)
- .add(BigInteger.valueOf(largerSignum * 9));
- }
- // Rounding the improved adding
- larger = new BigDecimal(tempBI, larger.scale + 1);
- return larger.round(mc);
- }
-
- /**
- * Returns a new {@code BigDecimal} whose value is {@code this - subtrahend}.
- * The scale of the result is the maximum of the scales of the two arguments.
- *
- * @param subtrahend
- * value to be subtracted from {@code this}.
- * @return {@code this - subtrahend}.
- * @throws NullPointerException
- * if {@code subtrahend == null}.
- */
- public BigDecimal subtract(BigDecimal subtrahend) {
- int diffScale = this.scale - subtrahend.scale;
- // Fast return when some operand is zero
- if (this.isZero()) {
- if (diffScale <= 0) {
- return subtrahend.negate();
- }
- if (subtrahend.isZero()) {
- return this;
- }
- } else if (subtrahend.isZero()) {
- if (diffScale >= 0) {
- return this;
- }
- }
- // Let be: this = [u1,s1] and subtrahend = [u2,s2] so:
- if (diffScale == 0) {
- // case s1 = s2 : [u1 - u2 , s1]
- if (Math.max(this.bitLength, subtrahend.bitLength) + 1 < 64) {
- return valueOf(this.smallValue - subtrahend.smallValue,this.scale);
- }
- return new BigDecimal(this.getUnscaledValue().subtract(subtrahend.getUnscaledValue()), this.scale);
- } else if (diffScale > 0) {
- // case s1 > s2 : [ u1 - u2 * 10 ^ (s1 - s2) , s1 ]
- if(diffScale < MathUtils.LONG_POWERS_OF_TEN.length &&
- Math.max(this.bitLength,subtrahend.bitLength+LONG_POWERS_OF_TEN_BIT_LENGTH[diffScale])+1<64) {
- return valueOf(this.smallValue-subtrahend.smallValue*MathUtils.LONG_POWERS_OF_TEN[diffScale],this.scale);
- }
- return new BigDecimal(this.getUnscaledValue().subtract(
- Multiplication.multiplyByTenPow(subtrahend.getUnscaledValue(),diffScale)), this.scale);
- } else {// case s2 > s1 : [ u1 * 10 ^ (s2 - s1) - u2 , s2 ]
- diffScale = -diffScale;
- if(diffScale < MathUtils.LONG_POWERS_OF_TEN.length &&
- Math.max(this.bitLength+LONG_POWERS_OF_TEN_BIT_LENGTH[diffScale],subtrahend.bitLength)+1<64) {
- return valueOf(this.smallValue*MathUtils.LONG_POWERS_OF_TEN[diffScale]-subtrahend.smallValue,subtrahend.scale);
- }
- return new BigDecimal(Multiplication.multiplyByTenPow(this.getUnscaledValue(),diffScale)
- .subtract(subtrahend.getUnscaledValue()), subtrahend.scale);
- }
- }
-
- /**
- * Returns a new {@code BigDecimal} whose value is {@code this - subtrahend}.
- * The result is rounded according to the passed context {@code mc}.
- *
- * @param subtrahend
- * value to be subtracted from {@code this}.
- * @param mc
- * rounding mode and precision for the result of this operation.
- * @return {@code this - subtrahend}.
- * @throws NullPointerException
- * if {@code subtrahend == null} or {@code mc == null}.
- */
- public BigDecimal subtract(BigDecimal subtrahend, MathContext mc) {
- long diffScale = subtrahend.scale - (long)this.scale;
- int thisSignum;
- BigDecimal leftOperand; // it will be only the left operand (this)
- BigInteger tempBI;
- // Some operand is zero or the precision is infinity
- if ((subtrahend.isZero()) || (this.isZero())
- || (mc.getPrecision() == 0)) {
- return subtract(subtrahend).round(mc);
- }
- // Now: this != 0 and subtrahend != 0
- if (subtrahend.approxPrecision() < diffScale - 1) {
- // Cases where it is unnecessary to subtract two numbers with very different scales
- if (mc.getPrecision() < this.approxPrecision()) {
- thisSignum = this.signum();
- if (thisSignum != subtrahend.signum()) {
- tempBI = Multiplication.multiplyByPositiveInt(this.getUnscaledValue(), 10)
- .add(BigInteger.valueOf(thisSignum));
- } else {
- tempBI = this.getUnscaledValue().subtract(BigInteger.valueOf(thisSignum));
- tempBI = Multiplication.multiplyByPositiveInt(tempBI, 10)
- .add(BigInteger.valueOf(thisSignum * 9));
- }
- // Rounding the improved subtracting
- leftOperand = new BigDecimal(tempBI, this.scale + 1);
- return leftOperand.round(mc);
- }
- }
- // No optimization is done
- return subtract(subtrahend).round(mc);
- }
-
- /**
- * Returns a new {@code BigDecimal} whose value is {@code this *
- * multiplicand}. The scale of the result is the sum of the scales of the
- * two arguments.
- *
- * @param multiplicand
- * value to be multiplied with {@code this}.
- * @return {@code this * multiplicand}.
- * @throws NullPointerException
- * if {@code multiplicand == null}.
- */
- public BigDecimal multiply(BigDecimal multiplicand) {
- long newScale = (long)this.scale + multiplicand.scale;
-
- if ((this.isZero()) || (multiplicand.isZero())) {
- return zeroScaledBy(newScale);
- }
- /* Let be: this = [u1,s1] and multiplicand = [u2,s2] so:
- * this x multiplicand = [ s1 * s2 , s1 + s2 ] */
- if (this.bitLength + multiplicand.bitLength < 64) {
- long unscaledValue = this.smallValue * multiplicand.smallValue;
- // b/19185440 Case where result should be +2^63 but unscaledValue overflowed to -2^63
- boolean longMultiplicationOverflowed = (unscaledValue == Long.MIN_VALUE) &&
- (Math.signum(smallValue) * Math.signum(multiplicand.smallValue) > 0);
- if (!longMultiplicationOverflowed) {
- return valueOf(unscaledValue, safeLongToInt(newScale));
- }
- }
- return new BigDecimal(this.getUnscaledValue().multiply(
- multiplicand.getUnscaledValue()), safeLongToInt(newScale));
- }
-
- /**
- * Returns a new {@code BigDecimal} whose value is {@code this *
- * multiplicand}. The result is rounded according to the passed context
- * {@code mc}.
- *
- * @param multiplicand
- * value to be multiplied with {@code this}.
- * @param mc
- * rounding mode and precision for the result of this operation.
- * @return {@code this * multiplicand}.
- * @throws NullPointerException
- * if {@code multiplicand == null} or {@code mc == null}.
- */
- public BigDecimal multiply(BigDecimal multiplicand, MathContext mc) {
- BigDecimal result = multiply(multiplicand);
-
- result.inplaceRound(mc);
- return result;
- }
-
- /**
- * Returns a new {@code BigDecimal} whose value is {@code this / divisor}.
- * As scale of the result the parameter {@code scale} is used. If rounding
- * is required to meet the specified scale, then the specified rounding mode
- * {@code roundingMode} is applied.
- *
- * @param divisor
- * value by which {@code this} is divided.
- * @param scale
- * the scale of the result returned.
- * @param roundingMode
- * rounding mode to be used to round the result.
- * @return {@code this / divisor} rounded according to the given rounding
- * mode.
- * @throws NullPointerException
- * if {@code divisor == null}.
- * @throws IllegalArgumentException
- * if {@code roundingMode} is not a valid rounding mode.
- * @throws ArithmeticException
- * if {@code divisor == 0}.
- * @throws ArithmeticException
- * if {@code roundingMode == ROUND_UNNECESSARY} and rounding is
- * necessary according to the given scale.
- */
- public BigDecimal divide(BigDecimal divisor, int scale, int roundingMode) {
- return divide(divisor, scale, RoundingMode.valueOf(roundingMode));
- }
-
- /**
- * Returns a new {@code BigDecimal} whose value is {@code this / divisor}.
- * As scale of the result the parameter {@code scale} is used. If rounding
- * is required to meet the specified scale, then the specified rounding mode
- * {@code roundingMode} is applied.
- *
- * @param divisor
- * value by which {@code this} is divided.
- * @param scale
- * the scale of the result returned.
- * @param roundingMode
- * rounding mode to be used to round the result.
- * @return {@code this / divisor} rounded according to the given rounding
- * mode.
- * @throws NullPointerException
- * if {@code divisor == null} or {@code roundingMode == null}.
- * @throws ArithmeticException
- * if {@code divisor == 0}.
- * @throws ArithmeticException
- * if {@code roundingMode == RoundingMode.UNNECESSAR}Y and
- * rounding is necessary according to the given scale and given
- * precision.
- */
- public BigDecimal divide(BigDecimal divisor, int scale, RoundingMode roundingMode) {
- // Let be: this = [u1,s1] and divisor = [u2,s2]
- if (roundingMode == null) {
- throw new NullPointerException("roundingMode == null");
- }
- if (divisor.isZero()) {
- throw new ArithmeticException("Division by zero");
- }
-
- long diffScale = ((long)this.scale - divisor.scale) - scale;
-
- // Check whether the diffScale will fit into an int. See http://b/17393664.
- if (bitLength(diffScale) > 32) {
- throw new ArithmeticException(
- "Unable to perform divisor / dividend scaling: the difference in scale is too" +
- " big (" + diffScale + ")");
- }
-
- if(this.bitLength < 64 && divisor.bitLength < 64 ) {
- if(diffScale == 0) {
- // http://b/26105053 - corner case: Long.MIN_VALUE / (-1) overflows a long
- if (this.smallValue != Long.MIN_VALUE || divisor.smallValue != -1) {
- return dividePrimitiveLongs(this.smallValue,
- divisor.smallValue,
- scale,
- roundingMode);
- }
- } else if(diffScale > 0) {
- if(diffScale < MathUtils.LONG_POWERS_OF_TEN.length &&
- divisor.bitLength + LONG_POWERS_OF_TEN_BIT_LENGTH[(int)diffScale] < 64) {
- return dividePrimitiveLongs(this.smallValue,
- divisor.smallValue*MathUtils.LONG_POWERS_OF_TEN[(int)diffScale],
- scale,
- roundingMode);
- }
- } else { // diffScale < 0
- if(-diffScale < MathUtils.LONG_POWERS_OF_TEN.length &&
- this.bitLength + LONG_POWERS_OF_TEN_BIT_LENGTH[(int)-diffScale] < 64) {
- return dividePrimitiveLongs(this.smallValue*MathUtils.LONG_POWERS_OF_TEN[(int)-diffScale],
- divisor.smallValue,
- scale,
- roundingMode);
- }
-
- }
- }
- BigInteger scaledDividend = this.getUnscaledValue();
- BigInteger scaledDivisor = divisor.getUnscaledValue(); // for scaling of 'u2'
-
- if (diffScale > 0) {
- // Multiply 'u2' by: 10^((s1 - s2) - scale)
- scaledDivisor = Multiplication.multiplyByTenPow(scaledDivisor, (int)diffScale);
- } else if (diffScale < 0) {
- // Multiply 'u1' by: 10^(scale - (s1 - s2))
- scaledDividend = Multiplication.multiplyByTenPow(scaledDividend, (int)-diffScale);
- }
- return divideBigIntegers(scaledDividend, scaledDivisor, scale, roundingMode);
- }
-
- private static BigDecimal divideBigIntegers(BigInteger scaledDividend, BigInteger scaledDivisor, int scale, RoundingMode roundingMode) {
-
- BigInteger[] quotAndRem = scaledDividend.divideAndRemainder(scaledDivisor); // quotient and remainder
- // If after division there is a remainder...
- BigInteger quotient = quotAndRem[0];
- BigInteger remainder = quotAndRem[1];
- if (remainder.signum() == 0) {
- return new BigDecimal(quotient, scale);
- }
- int sign = scaledDividend.signum() * scaledDivisor.signum();
- int compRem; // 'compare to remainder'
- if(scaledDivisor.bitLength() < 63) { // 63 in order to avoid out of long after *2
- long rem = remainder.longValue();
- long divisor = scaledDivisor.longValue();
- compRem = compareForRounding(rem, divisor);
- // To look if there is a carry
- compRem = roundingBehavior(quotient.testBit(0) ? 1 : 0,
- sign * (5 + compRem), roundingMode);
-
- } else {
- // Checking if: remainder * 2 >= scaledDivisor
- compRem = remainder.abs().shiftLeftOneBit().compareTo(scaledDivisor.abs());
- compRem = roundingBehavior(quotient.testBit(0) ? 1 : 0,
- sign * (5 + compRem), roundingMode);
- }
- if (compRem != 0) {
- if(quotient.bitLength() < 63) {
- return valueOf(quotient.longValue() + compRem,scale);
- }
- quotient = quotient.add(BigInteger.valueOf(compRem));
- return new BigDecimal(quotient, scale);
- }
- // Constructing the result with the appropriate unscaled value
- return new BigDecimal(quotient, scale);
- }
-
- private static BigDecimal dividePrimitiveLongs(long scaledDividend, long scaledDivisor, int scale, RoundingMode roundingMode) {
- long quotient = scaledDividend / scaledDivisor;
- long remainder = scaledDividend % scaledDivisor;
- int sign = Long.signum( scaledDividend ) * Long.signum( scaledDivisor );
- if (remainder != 0) {
- // Checking if: remainder * 2 >= scaledDivisor
- int compRem = compareForRounding(remainder, scaledDivisor); // 'compare to remainder'
- // To look if there is a carry
- quotient += roundingBehavior(((int)quotient) & 1,
- sign * (5 + compRem),
- roundingMode);
- }
- // Constructing the result with the appropriate unscaled value
- return valueOf(quotient, scale);
- }
-
- /**
- * Returns a new {@code BigDecimal} whose value is {@code this / divisor}.
- * The scale of the result is the scale of {@code this}. If rounding is
- * required to meet the specified scale, then the specified rounding mode
- * {@code roundingMode} is applied.
- *
- * @param divisor
- * value by which {@code this} is divided.
- * @param roundingMode
- * rounding mode to be used to round the result.
- * @return {@code this / divisor} rounded according to the given rounding
- * mode.
- * @throws NullPointerException
- * if {@code divisor == null}.
- * @throws IllegalArgumentException
- * if {@code roundingMode} is not a valid rounding mode.
- * @throws ArithmeticException
- * if {@code divisor == 0}.
- * @throws ArithmeticException
- * if {@code roundingMode == ROUND_UNNECESSARY} and rounding is
- * necessary according to the scale of this.
- */
- public BigDecimal divide(BigDecimal divisor, int roundingMode) {
- return divide(divisor, scale, RoundingMode.valueOf(roundingMode));
- }
-
- /**
- * Returns a new {@code BigDecimal} whose value is {@code this / divisor}.
- * The scale of the result is the scale of {@code this}. If rounding is
- * required to meet the specified scale, then the specified rounding mode
- * {@code roundingMode} is applied.
- *
- * @param divisor
- * value by which {@code this} is divided.
- * @param roundingMode
- * rounding mode to be used to round the result.
- * @return {@code this / divisor} rounded according to the given rounding
- * mode.
- * @throws NullPointerException
- * if {@code divisor == null} or {@code roundingMode == null}.
- * @throws ArithmeticException
- * if {@code divisor == 0}.
- * @throws ArithmeticException
- * if {@code roundingMode == RoundingMode.UNNECESSARY} and
- * rounding is necessary according to the scale of this.
- */
- public BigDecimal divide(BigDecimal divisor, RoundingMode roundingMode) {
- return divide(divisor, scale, roundingMode);
- }
-
- /**
- * Returns a new {@code BigDecimal} whose value is {@code this / divisor}.
- * The scale of the result is the difference of the scales of {@code this}
- * and {@code divisor}. If the exact result requires more digits, then the
- * scale is adjusted accordingly. For example, {@code 1/128 = 0.0078125}
- * which has a scale of {@code 7} and precision {@code 5}.
- *
- * @param divisor
- * value by which {@code this} is divided.
- * @return {@code this / divisor}.
- * @throws NullPointerException
- * if {@code divisor == null}.
- * @throws ArithmeticException
- * if {@code divisor == 0}.
- * @throws ArithmeticException
- * if the result cannot be represented exactly.
- */
- public BigDecimal divide(BigDecimal divisor) {
- BigInteger p = this.getUnscaledValue();
- BigInteger q = divisor.getUnscaledValue();
- BigInteger gcd; // greatest common divisor between 'p' and 'q'
- BigInteger quotAndRem[];
- long diffScale = (long)scale - divisor.scale;
- int newScale; // the new scale for final quotient
- int k; // number of factors "2" in 'q'
- int l = 0; // number of factors "5" in 'q'
- int i = 1;
- int lastPow = FIVE_POW.length - 1;
-
- if (divisor.isZero()) {
- throw new ArithmeticException("Division by zero");
- }
- if (p.signum() == 0) {
- return zeroScaledBy(diffScale);
- }
- // To divide both by the GCD
- gcd = p.gcd(q);
- p = p.divide(gcd);
- q = q.divide(gcd);
- // To simplify all "2" factors of q, dividing by 2^k
- k = q.getLowestSetBit();
- q = q.shiftRight(k);
- // To simplify all "5" factors of q, dividing by 5^l
- do {
- quotAndRem = q.divideAndRemainder(FIVE_POW[i]);
- if (quotAndRem[1].signum() == 0) {
- l += i;
- if (i < lastPow) {
- i++;
- }
- q = quotAndRem[0];
- } else {
- if (i == 1) {
- break;
- }
- i = 1;
- }
- } while (true);
- // If abs(q) != 1 then the quotient is periodic
- if (!q.abs().equals(BigInteger.ONE)) {
- throw new ArithmeticException("Non-terminating decimal expansion; no exact representable decimal result");
- }
- // The sign of the is fixed and the quotient will be saved in 'p'
- if (q.signum() < 0) {
- p = p.negate();
- }
- // Checking if the new scale is out of range
- newScale = safeLongToInt(diffScale + Math.max(k, l));
- // k >= 0 and l >= 0 implies that k - l is in the 32-bit range
- i = k - l;
-
- p = (i > 0) ? Multiplication.multiplyByFivePow(p, i)
- : p.shiftLeft(-i);
- return new BigDecimal(p, newScale);
- }
-
- /**
- * Returns a new {@code BigDecimal} whose value is {@code this / divisor}.
- * The result is rounded according to the passed context {@code mc}. If the
- * passed math context specifies precision {@code 0}, then this call is
- * equivalent to {@code this.divide(divisor)}.
- *
- * @param divisor
- * value by which {@code this} is divided.
- * @param mc
- * rounding mode and precision for the result of this operation.
- * @return {@code this / divisor}.
- * @throws NullPointerException
- * if {@code divisor == null} or {@code mc == null}.
- * @throws ArithmeticException
- * if {@code divisor == 0}.
- * @throws ArithmeticException
- * if {@code mc.getRoundingMode() == UNNECESSARY} and rounding
- * is necessary according {@code mc.getPrecision()}.
- */
- public BigDecimal divide(BigDecimal divisor, MathContext mc) {
- /* Calculating how many zeros must be append to 'dividend'
- * to obtain a quotient with at least 'mc.precision()' digits */
- long trailingZeros = mc.getPrecision() + 2L
- + divisor.approxPrecision() - approxPrecision();
- long diffScale = (long)scale - divisor.scale;
- long newScale = diffScale; // scale of the final quotient
- int compRem; // to compare the remainder
- int i = 1; // index
- int lastPow = TEN_POW.length - 1; // last power of ten
- BigInteger integerQuot; // for temporal results
- BigInteger quotAndRem[] = {getUnscaledValue()};
- // In special cases it reduces the problem to call the dual method
- if ((mc.getPrecision() == 0) || (this.isZero())
- || (divisor.isZero())) {
- return this.divide(divisor);
- }
- if (trailingZeros > 0) {
- // To append trailing zeros at end of dividend
- quotAndRem[0] = getUnscaledValue().multiply( Multiplication.powerOf10(trailingZeros) );
- newScale += trailingZeros;
- }
- quotAndRem = quotAndRem[0].divideAndRemainder( divisor.getUnscaledValue() );
- integerQuot = quotAndRem[0];
- // Calculating the exact quotient with at least 'mc.precision()' digits
- if (quotAndRem[1].signum() != 0) {
- // Checking if: 2 * remainder >= divisor ?
- compRem = quotAndRem[1].shiftLeftOneBit().compareTo( divisor.getUnscaledValue() );
- // quot := quot * 10 + r; with 'r' in {-6,-5,-4, 0,+4,+5,+6}
- integerQuot = integerQuot.multiply(BigInteger.TEN)
- .add(BigInteger.valueOf(quotAndRem[0].signum() * (5 + compRem)));
- newScale++;
- } else {
- // To strip trailing zeros until the preferred scale is reached
- while (!integerQuot.testBit(0)) {
- quotAndRem = integerQuot.divideAndRemainder(TEN_POW[i]);
- if ((quotAndRem[1].signum() == 0)
- && (newScale - i >= diffScale)) {
- newScale -= i;
- if (i < lastPow) {
- i++;
- }
- integerQuot = quotAndRem[0];
- } else {
- if (i == 1) {
- break;
- }
- i = 1;
- }
- }
- }
- // To perform rounding
- return new BigDecimal(integerQuot, safeLongToInt(newScale), mc);
- }
-
- /**
- * Returns a new {@code BigDecimal} whose value is the integral part of
- * {@code this / divisor}. The quotient is rounded down towards zero to the
- * next integer. For example, {@code 0.5/0.2 = 2}.
- *
- * @param divisor
- * value by which {@code this} is divided.
- * @return integral part of {@code this / divisor}.
- * @throws NullPointerException
- * if {@code divisor == null}.
- * @throws ArithmeticException
- * if {@code divisor == 0}.
- */
- public BigDecimal divideToIntegralValue(BigDecimal divisor) {
- BigInteger integralValue; // the integer of result
- BigInteger powerOfTen; // some power of ten
-
- long newScale = (long)this.scale - divisor.scale;
- long tempScale = 0;
- int i = 1;
- int lastPow = TEN_POW.length - 1;
-
- if (divisor.isZero()) {
- throw new ArithmeticException("Division by zero");
- }
- if ((divisor.approxPrecision() + newScale > this.approxPrecision() + 1L)
- || (this.isZero())) {
- /* If the divisor's integer part is greater than this's integer part,
- * the result must be zero with the appropriate scale */
- integralValue = BigInteger.ZERO;
- } else if (newScale == 0) {
- integralValue = getUnscaledValue().divide( divisor.getUnscaledValue() );
- } else if (newScale > 0) {
- powerOfTen = Multiplication.powerOf10(newScale);
- integralValue = getUnscaledValue().divide( divisor.getUnscaledValue().multiply(powerOfTen) );
- integralValue = integralValue.multiply(powerOfTen);
- } else {// (newScale < 0)
- powerOfTen = Multiplication.powerOf10(-newScale);
- integralValue = getUnscaledValue().multiply(powerOfTen).divide( divisor.getUnscaledValue() );
- // To strip trailing zeros approximating to the preferred scale
- while (!integralValue.testBit(0)) {
- BigInteger[] quotAndRem = integralValue.divideAndRemainder(TEN_POW[i]);
- if ((quotAndRem[1].signum() == 0)
- && (tempScale - i >= newScale)) {
- tempScale -= i;
- if (i < lastPow) {
- i++;
- }
- integralValue = quotAndRem[0];
- } else {
- if (i == 1) {
- break;
- }
- i = 1;
- }
- }
- newScale = tempScale;
- }
- return ((integralValue.signum() == 0)
- ? zeroScaledBy(newScale)
- : new BigDecimal(integralValue, safeLongToInt(newScale)));
- }
-
- /**
- * Returns a new {@code BigDecimal} whose value is the integral part of
- * {@code this / divisor}. The quotient is rounded down towards zero to the
- * next integer. The rounding mode passed with the parameter {@code mc} is
- * not considered. But if the precision of {@code mc > 0} and the integral
- * part requires more digits, then an {@code ArithmeticException} is thrown.
- *
- * @param divisor
- * value by which {@code this} is divided.
- * @param mc
- * math context which determines the maximal precision of the
- * result.
- * @return integral part of {@code this / divisor}.
- * @throws NullPointerException
- * if {@code divisor == null} or {@code mc == null}.
- * @throws ArithmeticException
- * if {@code divisor == 0}.
- * @throws ArithmeticException
- * if {@code mc.getPrecision() > 0} and the result requires more
- * digits to be represented.
- */
- public BigDecimal divideToIntegralValue(BigDecimal divisor, MathContext mc) {
- int mcPrecision = mc.getPrecision();
- int diffPrecision = this.precision() - divisor.precision();
- int lastPow = TEN_POW.length - 1;
- long diffScale = (long)this.scale - divisor.scale;
- long newScale = diffScale;
- long quotPrecision = diffPrecision - diffScale + 1;
- BigInteger quotAndRem[] = new BigInteger[2];
- // In special cases it call the dual method
- if ((mcPrecision == 0) || (this.isZero()) || (divisor.isZero())) {
- return this.divideToIntegralValue(divisor);
- }
- // Let be: this = [u1,s1] and divisor = [u2,s2]
- if (quotPrecision <= 0) {
- quotAndRem[0] = BigInteger.ZERO;
- } else if (diffScale == 0) {
- // CASE s1 == s2: to calculate u1 / u2
- quotAndRem[0] = this.getUnscaledValue().divide( divisor.getUnscaledValue() );
- } else if (diffScale > 0) {
- // CASE s1 >= s2: to calculate u1 / (u2 * 10^(s1-s2)
- quotAndRem[0] = this.getUnscaledValue().divide(
- divisor.getUnscaledValue().multiply(Multiplication.powerOf10(diffScale)) );
- // To chose 10^newScale to get a quotient with at least 'mc.precision()' digits
- newScale = Math.min(diffScale, Math.max(mcPrecision - quotPrecision + 1, 0));
- // To calculate: (u1 / (u2 * 10^(s1-s2)) * 10^newScale
- quotAndRem[0] = quotAndRem[0].multiply(Multiplication.powerOf10(newScale));
- } else {// CASE s2 > s1:
- /* To calculate the minimum power of ten, such that the quotient
- * (u1 * 10^exp) / u2 has at least 'mc.precision()' digits. */
- long exp = Math.min(-diffScale, Math.max((long)mcPrecision - diffPrecision, 0));
- long compRemDiv;
- // Let be: (u1 * 10^exp) / u2 = [q,r]
- quotAndRem = this.getUnscaledValue().multiply(Multiplication.powerOf10(exp)).
- divideAndRemainder(divisor.getUnscaledValue());
- newScale += exp; // To fix the scale
- exp = -newScale; // The remaining power of ten
- // If after division there is a remainder...
- if ((quotAndRem[1].signum() != 0) && (exp > 0)) {
- // Log10(r) + ((s2 - s1) - exp) > mc.precision ?
- compRemDiv = (new BigDecimal(quotAndRem[1])).precision()
- + exp - divisor.precision();
- if (compRemDiv == 0) {
- // To calculate: (r * 10^exp2) / u2
- quotAndRem[1] = quotAndRem[1].multiply(Multiplication.powerOf10(exp)).
- divide(divisor.getUnscaledValue());
- compRemDiv = Math.abs(quotAndRem[1].signum());
- }
- if (compRemDiv > 0) {
- throw new ArithmeticException("Division impossible");
- }
- }
- }
- // Fast return if the quotient is zero
- if (quotAndRem[0].signum() == 0) {
- return zeroScaledBy(diffScale);
- }
- BigInteger strippedBI = quotAndRem[0];
- BigDecimal integralValue = new BigDecimal(quotAndRem[0]);
- long resultPrecision = integralValue.precision();
- int i = 1;
- // To strip trailing zeros until the specified precision is reached
- while (!strippedBI.testBit(0)) {
- quotAndRem = strippedBI.divideAndRemainder(TEN_POW[i]);
- if ((quotAndRem[1].signum() == 0) &&
- ((resultPrecision - i >= mcPrecision)
- || (newScale - i >= diffScale)) ) {
- resultPrecision -= i;
- newScale -= i;
- if (i < lastPow) {
- i++;
- }
- strippedBI = quotAndRem[0];
- } else {
- if (i == 1) {
- break;
- }
- i = 1;
- }
- }
- // To check if the result fit in 'mc.precision()' digits
- if (resultPrecision > mcPrecision) {
- throw new ArithmeticException("Division impossible");
- }
- integralValue.scale = safeLongToInt(newScale);
- integralValue.setUnscaledValue(strippedBI);
- return integralValue;
- }
-
- /**
- * Returns a new {@code BigDecimal} whose value is {@code this % divisor}.
- * <p>
- * The remainder is defined as {@code this -
- * this.divideToIntegralValue(divisor) * divisor}.
- *
- * @param divisor
- * value by which {@code this} is divided.
- * @return {@code this % divisor}.
- * @throws NullPointerException
- * if {@code divisor == null}.
- * @throws ArithmeticException
- * if {@code divisor == 0}.
- */
- public BigDecimal remainder(BigDecimal divisor) {
- return divideAndRemainder(divisor)[1];
- }
-
- /**
- * Returns a new {@code BigDecimal} whose value is {@code this % divisor}.
- * <p>
- * The remainder is defined as {@code this -
- * this.divideToIntegralValue(divisor) * divisor}.
- * <p>
- * The specified rounding mode {@code mc} is used for the division only.
- *
- * @param divisor
- * value by which {@code this} is divided.
- * @param mc
- * rounding mode and precision to be used.
- * @return {@code this % divisor}.
- * @throws NullPointerException
- * if {@code divisor == null}.
- * @throws ArithmeticException
- * if {@code divisor == 0}.
- * @throws ArithmeticException
- * if {@code mc.getPrecision() > 0} and the result of {@code
- * this.divideToIntegralValue(divisor, mc)} requires more digits
- * to be represented.
- */
- public BigDecimal remainder(BigDecimal divisor, MathContext mc) {
- return divideAndRemainder(divisor, mc)[1];
- }
-
- /**
- * Returns a {@code BigDecimal} array which contains the integral part of
- * {@code this / divisor} at index 0 and the remainder {@code this %
- * divisor} at index 1. The quotient is rounded down towards zero to the
- * next integer.
- *
- * @param divisor
- * value by which {@code this} is divided.
- * @return {@code [this.divideToIntegralValue(divisor),
- * this.remainder(divisor)]}.
- * @throws NullPointerException
- * if {@code divisor == null}.
- * @throws ArithmeticException
- * if {@code divisor == 0}.
- * @see #divideToIntegralValue
- * @see #remainder
- */
- public BigDecimal[] divideAndRemainder(BigDecimal divisor) {
- BigDecimal quotAndRem[] = new BigDecimal[2];
-
- quotAndRem[0] = this.divideToIntegralValue(divisor);
- quotAndRem[1] = this.subtract( quotAndRem[0].multiply(divisor) );
- return quotAndRem;
- }
-
- /**
- * Returns a {@code BigDecimal} array which contains the integral part of
- * {@code this / divisor} at index 0 and the remainder {@code this %
- * divisor} at index 1. The quotient is rounded down towards zero to the
- * next integer. The rounding mode passed with the parameter {@code mc} is
- * not considered. But if the precision of {@code mc > 0} and the integral
- * part requires more digits, then an {@code ArithmeticException} is thrown.
- *
- * @param divisor
- * value by which {@code this} is divided.
- * @param mc
- * math context which determines the maximal precision of the
- * result.
- * @return {@code [this.divideToIntegralValue(divisor),
- * this.remainder(divisor)]}.
- * @throws NullPointerException
- * if {@code divisor == null}.
- * @throws ArithmeticException
- * if {@code divisor == 0}.
- * @see #divideToIntegralValue
- * @see #remainder
- */
- public BigDecimal[] divideAndRemainder(BigDecimal divisor, MathContext mc) {
- BigDecimal quotAndRem[] = new BigDecimal[2];
-
- quotAndRem[0] = this.divideToIntegralValue(divisor, mc);
- quotAndRem[1] = this.subtract( quotAndRem[0].multiply(divisor) );
- return quotAndRem;
- }
-
- /**
- * Returns a new {@code BigDecimal} whose value is {@code this<sup>n</sup>}. The
- * scale of the result is {@code n * this.scale()}.
- *
- * <p>{@code x.pow(0)} returns {@code 1}, even if {@code x == 0}.
- *
- * <p>Implementation Note: The implementation is based on the ANSI standard
- * X3.274-1996 algorithm.
- *
- * @throws ArithmeticException
- * if {@code n < 0} or {@code n > 999999999}.
- */
- public BigDecimal pow(int n) {
- if (n == 0) {
- return ONE;
- }
- if ((n < 0) || (n > 999999999)) {
- throw new ArithmeticException("Invalid operation");
- }
- long newScale = scale * (long)n;
- // Let be: this = [u,s] so: this^n = [u^n, s*n]
- return isZero() ? zeroScaledBy(newScale)
- : new BigDecimal(getUnscaledValue().pow(n), safeLongToInt(newScale));
- }
-
- /**
- * Returns a new {@code BigDecimal} whose value is {@code this<sup>n</sup>}. The
- * result is rounded according to the passed context {@code mc}.
- *
- * <p>Implementation Note: The implementation is based on the ANSI standard
- * X3.274-1996 algorithm.
- *
- * @param mc
- * rounding mode and precision for the result of this operation.
- * @throws ArithmeticException
- * if {@code n < 0} or {@code n > 999999999}.
- */
- public BigDecimal pow(int n, MathContext mc) {
- // The ANSI standard X3.274-1996 algorithm
- int m = Math.abs(n);
- int mcPrecision = mc.getPrecision();
- int elength = (int)Math.log10(m) + 1; // decimal digits in 'n'
- int oneBitMask; // mask of bits
- BigDecimal accum; // the single accumulator
- MathContext newPrecision = mc; // MathContext by default
-
- // In particular cases, it reduces the problem to call the other 'pow()'
- if ((n == 0) || ((isZero()) && (n > 0))) {
- return pow(n);
- }
- if ((m > 999999999) || ((mcPrecision == 0) && (n < 0))
- || ((mcPrecision > 0) && (elength > mcPrecision))) {
- throw new ArithmeticException("Invalid operation");
- }
- if (mcPrecision > 0) {
- newPrecision = new MathContext( mcPrecision + elength + 1,
- mc.getRoundingMode());
- }
- // The result is calculated as if 'n' were positive
- accum = round(newPrecision);
- oneBitMask = Integer.highestOneBit(m) >> 1;
-
- while (oneBitMask > 0) {
- accum = accum.multiply(accum, newPrecision);
- if ((m & oneBitMask) == oneBitMask) {
- accum = accum.multiply(this, newPrecision);
- }
- oneBitMask >>= 1;
- }
- // If 'n' is negative, the value is divided into 'ONE'
- if (n < 0) {
- accum = ONE.divide(accum, newPrecision);
- }
- // The final value is rounded to the destination precision
- accum.inplaceRound(mc);
- return accum;
- }
-
- /**
- * Returns a {@code BigDecimal} whose value is the absolute value of
- * {@code this}. The scale of the result is the same as the scale of this.
- */
- public BigDecimal abs() {
- return ((signum() < 0) ? negate() : this);
- }
-
- /**
- * Returns a {@code BigDecimal} whose value is the absolute value of
- * {@code this}. The result is rounded according to the passed context
- * {@code mc}.
- */
- public BigDecimal abs(MathContext mc) {
- BigDecimal result = (signum() < 0) ? negate() : new BigDecimal(getUnscaledValue(), scale);
- result.inplaceRound(mc);
- return result;
- }
-
- /**
- * Returns a new {@code BigDecimal} whose value is the {@code -this}. The
- * scale of the result is the same as the scale of this.
- *
- * @return {@code -this}
- */
- public BigDecimal negate() {
- if(bitLength < 63 || (bitLength == 63 && smallValue!=Long.MIN_VALUE)) {
- return valueOf(-smallValue,scale);
- }
- return new BigDecimal(getUnscaledValue().negate(), scale);
- }
-
- /**
- * Returns a new {@code BigDecimal} whose value is the {@code -this}. The
- * result is rounded according to the passed context {@code mc}.
- *
- * @param mc
- * rounding mode and precision for the result of this operation.
- * @return {@code -this}
- */
- public BigDecimal negate(MathContext mc) {
- BigDecimal result = negate();
- result.inplaceRound(mc);
- return result;
- }
-
- /**
- * Returns a new {@code BigDecimal} whose value is {@code +this}. The scale
- * of the result is the same as the scale of this.
- *
- * @return {@code this}
- */
- public BigDecimal plus() {
- return this;
- }
-
- /**
- * Returns a new {@code BigDecimal} whose value is {@code +this}. The result
- * is rounded according to the passed context {@code mc}.
- *
- * @param mc
- * rounding mode and precision for the result of this operation.
- * @return {@code this}, rounded
- */
- public BigDecimal plus(MathContext mc) {
- return round(mc);
- }
-
- /**
- * Returns the sign of this {@code BigDecimal}.
- *
- * @return {@code -1} if {@code this < 0},
- * {@code 0} if {@code this == 0},
- * {@code 1} if {@code this > 0}.
- */
- public int signum() {
- if( bitLength < 64) {
- return Long.signum( this.smallValue );
- }
- return getUnscaledValue().signum();
- }
-
- private boolean isZero() {
- //Watch out: -1 has a bitLength=0
- return bitLength == 0 && this.smallValue != -1;
- }
-
- /**
- * Returns the scale of this {@code BigDecimal}. The scale is the number of
- * digits behind the decimal point. The value of this {@code BigDecimal} is
- * the {@code unsignedValue * 10<sup>-scale</sup>}. If the scale is negative,
- * then this {@code BigDecimal} represents a big integer.
- *
- * @return the scale of this {@code BigDecimal}.
- */
- public int scale() {
- return scale;
- }
-
- /**
- * Returns the precision of this {@code BigDecimal}. The precision is the
- * number of decimal digits used to represent this decimal. It is equivalent
- * to the number of digits of the unscaled value. The precision of {@code 0}
- * is {@code 1} (independent of the scale).
- *
- * @return the precision of this {@code BigDecimal}.
- */
- public int precision() {
- // Return the cached value if we have one.
- if (precision != 0) {
- return precision;
- }
-
- if (bitLength == 0) {
- precision = 1;
- } else if (bitLength < 64) {
- precision = decimalDigitsInLong(smallValue);
- } else {
- int decimalDigits = 1 + (int) ((bitLength - 1) * LOG10_2);
- // If after division the number isn't zero, there exists an additional digit
- if (getUnscaledValue().divide(Multiplication.powerOf10(decimalDigits)).signum() != 0) {
- decimalDigits++;
- }
- precision = decimalDigits;
- }
- return precision;
- }
-
- private int decimalDigitsInLong(long value) {
- if (value == Long.MIN_VALUE) {
- return 19; // special case required because abs(MIN_VALUE) == MIN_VALUE
- } else {
- int index = Arrays.binarySearch(MathUtils.LONG_POWERS_OF_TEN, Math.abs(value));
- return (index < 0) ? (-index - 1) : (index + 1);
- }
- }
-
- /**
- * Returns the unscaled value (mantissa) of this {@code BigDecimal} instance
- * as a {@code BigInteger}. The unscaled value can be computed as
- * {@code this * 10<sup>scale</sup>}.
- */
- public BigInteger unscaledValue() {
- return getUnscaledValue();
- }
-
- /**
- * Returns a new {@code BigDecimal} whose value is {@code this}, rounded
- * according to the passed context {@code mc}.
- * <p>
- * If {@code mc.precision = 0}, then no rounding is performed.
- * <p>
- * If {@code mc.precision > 0} and {@code mc.roundingMode == UNNECESSARY},
- * then an {@code ArithmeticException} is thrown if the result cannot be
- * represented exactly within the given precision.
- *
- * @param mc
- * rounding mode and precision for the result of this operation.
- * @return {@code this} rounded according to the passed context.
- * @throws ArithmeticException
- * if {@code mc.precision > 0} and {@code mc.roundingMode ==
- * UNNECESSARY} and this cannot be represented within the given
- * precision.
- */
- public BigDecimal round(MathContext mc) {
- BigDecimal thisBD = new BigDecimal(getUnscaledValue(), scale);
-
- thisBD.inplaceRound(mc);
- return thisBD;
- }
-
- /**
- * Returns a new {@code BigDecimal} instance with the specified scale.
- * <p>
- * If the new scale is greater than the old scale, then additional zeros are
- * added to the unscaled value. In this case no rounding is necessary.
- * <p>
- * If the new scale is smaller than the old scale, then trailing digits are
- * removed. If these trailing digits are not zero, then the remaining
- * unscaled value has to be rounded. For this rounding operation the
- * specified rounding mode is used.
- *
- * @param newScale
- * scale of the result returned.
- * @param roundingMode
- * rounding mode to be used to round the result.
- * @return a new {@code BigDecimal} instance with the specified scale.
- * @throws NullPointerException
- * if {@code roundingMode == null}.
- * @throws ArithmeticException
- * if {@code roundingMode == ROUND_UNNECESSARY} and rounding is
- * necessary according to the given scale.
- */
- public BigDecimal setScale(int newScale, RoundingMode roundingMode) {
- if (roundingMode == null) {
- throw new NullPointerException("roundingMode == null");
- }
- long diffScale = newScale - (long)scale;
- // Let be: 'this' = [u,s]
- if(diffScale == 0) {
- return this;
- }
- if(diffScale > 0) {
- // return [u * 10^(s2 - s), newScale]
- if(diffScale < MathUtils.LONG_POWERS_OF_TEN.length &&
- (this.bitLength + LONG_POWERS_OF_TEN_BIT_LENGTH[(int)diffScale]) < 64 ) {
- return valueOf(this.smallValue*MathUtils.LONG_POWERS_OF_TEN[(int)diffScale],newScale);
- }
- return new BigDecimal(Multiplication.multiplyByTenPow(getUnscaledValue(),(int)diffScale), newScale);
- }
- // diffScale < 0
- // return [u,s] / [1,newScale] with the appropriate scale and rounding
- if(this.bitLength < 64 && -diffScale < MathUtils.LONG_POWERS_OF_TEN.length) {
- return dividePrimitiveLongs(this.smallValue, MathUtils.LONG_POWERS_OF_TEN[(int)-diffScale], newScale,roundingMode);
- }
- return divideBigIntegers(this.getUnscaledValue(),Multiplication.powerOf10(-diffScale),newScale,roundingMode);
- }
-
- /**
- * Returns a new {@code BigDecimal} instance with the specified scale.
- * <p>
- * If the new scale is greater than the old scale, then additional zeros are
- * added to the unscaled value. In this case no rounding is necessary.
- * <p>
- * If the new scale is smaller than the old scale, then trailing digits are
- * removed. If these trailing digits are not zero, then the remaining
- * unscaled value has to be rounded. For this rounding operation the
- * specified rounding mode is used.
- *
- * @param newScale
- * scale of the result returned.
- * @param roundingMode
- * rounding mode to be used to round the result.
- * @return a new {@code BigDecimal} instance with the specified scale.
- * @throws IllegalArgumentException
- * if {@code roundingMode} is not a valid rounding mode.
- * @throws ArithmeticException
- * if {@code roundingMode == ROUND_UNNECESSARY} and rounding is
- * necessary according to the given scale.
- */
- public BigDecimal setScale(int newScale, int roundingMode) {
- return setScale(newScale, RoundingMode.valueOf(roundingMode));
- }
-
- /**
- * Returns a new {@code BigDecimal} instance with the specified scale. If
- * the new scale is greater than the old scale, then additional zeros are
- * added to the unscaled value. If the new scale is smaller than the old
- * scale, then trailing zeros are removed. If the trailing digits are not
- * zeros then an ArithmeticException is thrown.
- * <p>
- * If no exception is thrown, then the following equation holds: {@code
- * x.setScale(s).compareTo(x) == 0}.
- *
- * @param newScale
- * scale of the result returned.
- * @return a new {@code BigDecimal} instance with the specified scale.
- * @throws ArithmeticException
- * if rounding would be necessary.
- */
- public BigDecimal setScale(int newScale) {
- return setScale(newScale, RoundingMode.UNNECESSARY);
- }
-
- /**
- * Returns a new {@code BigDecimal} instance where the decimal point has
- * been moved {@code n} places to the left. If {@code n < 0} then the
- * decimal point is moved {@code -n} places to the right.
- *
- * <p>The result is obtained by changing its scale. If the scale of the result
- * becomes negative, then its precision is increased such that the scale is
- * zero.
- *
- * <p>Note, that {@code movePointLeft(0)} returns a result which is
- * mathematically equivalent, but which has {@code scale >= 0}.
- */
- public BigDecimal movePointLeft(int n) {
- return movePoint(scale + (long)n);
- }
-
- private BigDecimal movePoint(long newScale) {
- if (isZero()) {
- return zeroScaledBy(Math.max(newScale, 0));
- }
- /*
- * When: 'n'== Integer.MIN_VALUE isn't possible to call to
- * movePointRight(-n) since -Integer.MIN_VALUE == Integer.MIN_VALUE
- */
- if(newScale >= 0) {
- if(bitLength < 64) {
- return valueOf(smallValue, safeLongToInt(newScale));
- }
- return new BigDecimal(getUnscaledValue(), safeLongToInt(newScale));
- }
- if(-newScale < MathUtils.LONG_POWERS_OF_TEN.length &&
- bitLength + LONG_POWERS_OF_TEN_BIT_LENGTH[(int)-newScale] < 64 ) {
- return valueOf(smallValue*MathUtils.LONG_POWERS_OF_TEN[(int)-newScale],0);
- }
- return new BigDecimal(Multiplication.multiplyByTenPow(
- getUnscaledValue(), safeLongToInt(-newScale)), 0);
- }
-
- /**
- * Returns a new {@code BigDecimal} instance where the decimal point has
- * been moved {@code n} places to the right. If {@code n < 0} then the
- * decimal point is moved {@code -n} places to the left.
- *
- * <p>The result is obtained by changing its scale. If the scale of the result
- * becomes negative, then its precision is increased such that the scale is
- * zero.
- *
- * <p>Note, that {@code movePointRight(0)} returns a result which is
- * mathematically equivalent, but which has scale >= 0.
- */
- public BigDecimal movePointRight(int n) {
- return movePoint(scale - (long)n);
- }
-
- /**
- * Returns a new {@code BigDecimal} whose value is {@code this * 10<sup>n</sup>}.
- * The scale of the result is {@code this.scale()} - {@code n}.
- * The precision of the result is the precision of {@code this}.
- *
- * <p>This method has the same effect as {@link #movePointRight}, except that
- * the precision is not changed.
- */
- public BigDecimal scaleByPowerOfTen(int n) {
- long newScale = scale - (long)n;
- if(bitLength < 64) {
- //Taking care when a 0 is to be scaled
- if( smallValue==0 ){
- return zeroScaledBy( newScale );
- }
- return valueOf(smallValue, safeLongToInt(newScale));
- }
- return new BigDecimal(getUnscaledValue(), safeLongToInt(newScale));
- }
-
- /**
- * Returns a new {@code BigDecimal} instance with the same value as {@code
- * this} but with a unscaled value where the trailing zeros have been
- * removed. If the unscaled value of {@code this} has n trailing zeros, then
- * the scale and the precision of the result has been reduced by n.
- *
- * @return a new {@code BigDecimal} instance equivalent to this where the
- * trailing zeros of the unscaled value have been removed.
- */
- public BigDecimal stripTrailingZeros() {
- int i = 1; // 1 <= i <= 18
- int lastPow = TEN_POW.length - 1;
- long newScale = scale;
-
- if (isZero()) {
- return new BigDecimal(BigInteger.ZERO, 0);
- }
- BigInteger strippedBI = getUnscaledValue();
- BigInteger[] quotAndRem;
-
- // while the number is even...
- while (!strippedBI.testBit(0)) {
- // To divide by 10^i
- quotAndRem = strippedBI.divideAndRemainder(TEN_POW[i]);
- // To look the remainder
- if (quotAndRem[1].signum() == 0) {
- // To adjust the scale
- newScale -= i;
- if (i < lastPow) {
- // To set to the next power
- i++;
- }
- strippedBI = quotAndRem[0];
- } else {
- if (i == 1) {
- // 'this' has no more trailing zeros
- break;
- }
- // To set to the smallest power of ten
- i = 1;
- }
- }
- return new BigDecimal(strippedBI, safeLongToInt(newScale));
- }
-
- /**
- * Compares this {@code BigDecimal} with {@code val}. Returns one of the
- * three values {@code 1}, {@code 0}, or {@code -1}. The method behaves as
- * if {@code this.subtract(val)} is computed. If this difference is > 0 then
- * 1 is returned, if the difference is < 0 then -1 is returned, and if the
- * difference is 0 then 0 is returned. This means, that if two decimal
- * instances are compared which are equal in value but differ in scale, then
- * these two instances are considered as equal.
- *
- * @param val
- * value to be compared with {@code this}.
- * @return {@code 1} if {@code this > val}, {@code -1} if {@code this < val},
- * {@code 0} if {@code this == val}.
- * @throws NullPointerException
- * if {@code val == null}.
- */
- public int compareTo(BigDecimal val) {
- int thisSign = signum();
- int valueSign = val.signum();
-
- if( thisSign == valueSign) {
- if(this.scale == val.scale && this.bitLength<64 && val.bitLength<64 ) {
- return (smallValue < val.smallValue) ? -1 : (smallValue > val.smallValue) ? 1 : 0;
- }
- long diffScale = (long)this.scale - val.scale;
- int diffPrecision = this.approxPrecision() - val.approxPrecision();
- if (diffPrecision > diffScale + 1) {
- return thisSign;
- } else if (diffPrecision < diffScale - 1) {
- return -thisSign;
- } else {// thisSign == val.signum() and diffPrecision is aprox. diffScale
- BigInteger thisUnscaled = this.getUnscaledValue();
- BigInteger valUnscaled = val.getUnscaledValue();
- // If any of both precision is bigger, append zeros to the shorter one
- if (diffScale < 0) {
- thisUnscaled = thisUnscaled.multiply(Multiplication.powerOf10(-diffScale));
- } else if (diffScale > 0) {
- valUnscaled = valUnscaled.multiply(Multiplication.powerOf10(diffScale));
- }
- return thisUnscaled.compareTo(valUnscaled);
- }
- } else if (thisSign < valueSign) {
- return -1;
- } else {
- return 1;
- }
- }
-
- /**
- * Returns {@code true} if {@code x} is a {@code BigDecimal} instance and if
- * this instance is equal to this big decimal. Two big decimals are equal if
- * their unscaled value and their scale is equal. For example, 1.0
- * (10*10<sup>-1</sup>) is not equal to 1.00 (100*10<sup>-2</sup>). Similarly, zero
- * instances are not equal if their scale differs.
- */
- @Override
- public boolean equals(Object x) {
- if (this == x) {
- return true;
- }
- if (x instanceof BigDecimal) {
- BigDecimal x1 = (BigDecimal) x;
- return x1.scale == scale
- && x1.bitLength == bitLength
- && (bitLength < 64 ? (x1.smallValue == smallValue) : x1.intVal.equals(intVal));
- }
- return false;
- }
-
- /**
- * Returns the minimum of this {@code BigDecimal} and {@code val}.
- *
- * @param val
- * value to be used to compute the minimum with this.
- * @return {@code min(this, val}.
- * @throws NullPointerException
- * if {@code val == null}.
- */
- public BigDecimal min(BigDecimal val) {
- return ((compareTo(val) <= 0) ? this : val);
- }
-
- /**
- * Returns the maximum of this {@code BigDecimal} and {@code val}.
- *
- * @param val
- * value to be used to compute the maximum with this.
- * @return {@code max(this, val}.
- * @throws NullPointerException
- * if {@code val == null}.
- */
- public BigDecimal max(BigDecimal val) {
- return ((compareTo(val) >= 0) ? this : val);
- }
-
- /**
- * Returns a hash code for this {@code BigDecimal}.
- *
- * @return hash code for {@code this}.
- */
- @Override
- public int hashCode() {
- if (hashCode != 0) {
- return hashCode;
- }
- if (bitLength < 64) {
- hashCode = (int)(smallValue & 0xffffffff);
- hashCode = 33 * hashCode + (int)((smallValue >> 32) & 0xffffffff);
- hashCode = 17 * hashCode + scale;
- return hashCode;
- }
- hashCode = 17 * intVal.hashCode() + scale;
- return hashCode;
- }
-
- /**
- * Returns a canonical string representation of this {@code BigDecimal}. If
- * necessary, scientific notation is used. This representation always prints
- * all significant digits of this value.
- * <p>
- * If the scale is negative or if {@code scale - precision >= 6} then
- * scientific notation is used.
- *
- * @return a string representation of {@code this} in scientific notation if
- * necessary.
- */
- @Override
- public String toString() {
- if (toStringImage != null) {
- return toStringImage;
- }
- if(bitLength < 32) {
- toStringImage = Conversion.toDecimalScaledString(smallValue,scale);
- return toStringImage;
- }
- String intString = getUnscaledValue().toString();
- if (scale == 0) {
- return intString;
- }
- int begin = (getUnscaledValue().signum() < 0) ? 2 : 1;
- int end = intString.length();
- long exponent = -(long)scale + end - begin;
- StringBuilder result = new StringBuilder();
-
- result.append(intString);
- if ((scale > 0) && (exponent >= -6)) {
- if (exponent >= 0) {
- result.insert(end - scale, '.');
- } else {
- result.insert(begin - 1, "0.");
- result.insert(begin + 1, CH_ZEROS, 0, -(int)exponent - 1);
- }
- } else {
- if (end - begin >= 1) {
- result.insert(begin, '.');
- end++;
- }
- result.insert(end, 'E');
- if (exponent > 0) {
- result.insert(++end, '+');
- }
- result.insert(++end, Long.toString(exponent));
- }
- toStringImage = result.toString();
- return toStringImage;
- }
-
- /**
- * Returns a string representation of this {@code BigDecimal}. This
- * representation always prints all significant digits of this value.
- * <p>
- * If the scale is negative or if {@code scale - precision >= 6} then
- * engineering notation is used. Engineering notation is similar to the
- * scientific notation except that the exponent is made to be a multiple of
- * 3 such that the integer part is >= 1 and < 1000.
- *
- * @return a string representation of {@code this} in engineering notation
- * if necessary.
- */
- public String toEngineeringString() {
- String intString = getUnscaledValue().toString();
- if (scale == 0) {
- return intString;
- }
- int begin = (getUnscaledValue().signum() < 0) ? 2 : 1;
- int end = intString.length();
- long exponent = -(long)scale + end - begin;
- StringBuilder result = new StringBuilder(intString);
-
- if ((scale > 0) && (exponent >= -6)) {
- if (exponent >= 0) {
- result.insert(end - scale, '.');
- } else {
- result.insert(begin - 1, "0.");
- result.insert(begin + 1, CH_ZEROS, 0, -(int)exponent - 1);
- }
- } else {
- int delta = end - begin;
- int rem = (int)(exponent % 3);
-
- if (rem != 0) {
- // adjust exponent so it is a multiple of three
- if (getUnscaledValue().signum() == 0) {
- // zero value
- rem = (rem < 0) ? -rem : 3 - rem;
- exponent += rem;
- } else {
- // nonzero value
- rem = (rem < 0) ? rem + 3 : rem;
- exponent -= rem;
- begin += rem;
- }
- if (delta < 3) {
- for (int i = rem - delta; i > 0; i--) {
- result.insert(end++, '0');
- }
- }
- }
- if (end - begin >= 1) {
- result.insert(begin, '.');
- end++;
- }
- if (exponent != 0) {
- result.insert(end, 'E');
- if (exponent > 0) {
- result.insert(++end, '+');
- }
- result.insert(++end, Long.toString(exponent));
- }
- }
- return result.toString();
- }
-
- /**
- * Returns a string representation of this {@code BigDecimal}. No scientific
- * notation is used. This methods adds zeros where necessary.
- * <p>
- * If this string representation is used to create a new instance, this
- * instance is generally not identical to {@code this} as the precision
- * changes.
- * <p>
- * {@code x.equals(new BigDecimal(x.toPlainString())} usually returns
- * {@code false}.
- * <p>
- * {@code x.compareTo(new BigDecimal(x.toPlainString())} returns {@code 0}.
- *
- * @return a string representation of {@code this} without exponent part.
- */
- public String toPlainString() {
- String intStr = getUnscaledValue().toString();
- if ((scale == 0) || ((isZero()) && (scale < 0))) {
- return intStr;
- }
- int begin = (signum() < 0) ? 1 : 0;
- int delta = scale;
- // We take space for all digits, plus a possible decimal point, plus 'scale'
- StringBuilder result = new StringBuilder(intStr.length() + 1 + Math.abs(scale));
-
- if (begin == 1) {
- // If the number is negative, we insert a '-' character at front
- result.append('-');
- }
- if (scale > 0) {
- delta -= (intStr.length() - begin);
- if (delta >= 0) {
- result.append("0.");
- // To append zeros after the decimal point
- for (; delta > CH_ZEROS.length; delta -= CH_ZEROS.length) {
- result.append(CH_ZEROS);
- }
- result.append(CH_ZEROS, 0, delta);
- result.append(intStr.substring(begin));
- } else {
- delta = begin - delta;
- result.append(intStr.substring(begin, delta));
- result.append('.');
- result.append(intStr.substring(delta));
- }
- } else {// (scale <= 0)
- result.append(intStr.substring(begin));
- // To append trailing zeros
- for (; delta < -CH_ZEROS.length; delta += CH_ZEROS.length) {
- result.append(CH_ZEROS);
- }
- result.append(CH_ZEROS, 0, -delta);
- }
- return result.toString();
- }
-
- /**
- * Returns this {@code BigDecimal} as a big integer instance. A fractional
- * part is discarded.
- *
- * @return this {@code BigDecimal} as a big integer instance.
- */
- public BigInteger toBigInteger() {
- if ((scale == 0) || (isZero())) {
- return getUnscaledValue();
- } else if (scale < 0) {
- return getUnscaledValue().multiply(Multiplication.powerOf10(-(long)scale));
- } else {// (scale > 0)
- return getUnscaledValue().divide(Multiplication.powerOf10(scale));
- }
- }
-
- /**
- * Returns this {@code BigDecimal} as a big integer instance if it has no
- * fractional part. If this {@code BigDecimal} has a fractional part, i.e.
- * if rounding would be necessary, an {@code ArithmeticException} is thrown.
- *
- * @return this {@code BigDecimal} as a big integer value.
- * @throws ArithmeticException
- * if rounding is necessary.
- */
- public BigInteger toBigIntegerExact() {
- if ((scale == 0) || (isZero())) {
- return getUnscaledValue();
- } else if (scale < 0) {
- return getUnscaledValue().multiply(Multiplication.powerOf10(-(long)scale));
- } else {// (scale > 0)
- BigInteger[] integerAndFraction;
- // An optimization before do a heavy division
- if ((scale > approxPrecision()) || (scale > getUnscaledValue().getLowestSetBit())) {
- throw new ArithmeticException("Rounding necessary");
- }
- integerAndFraction = getUnscaledValue().divideAndRemainder(Multiplication.powerOf10(scale));
- if (integerAndFraction[1].signum() != 0) {
- // It exists a non-zero fractional part
- throw new ArithmeticException("Rounding necessary");
- }
- return integerAndFraction[0];
- }
- }
-
- /**
- * Returns this {@code BigDecimal} as an long value. Any fractional part is
- * discarded. If the integral part of {@code this} is too big to be
- * represented as an long, then {@code this % 2<sup>64</sup>} is returned.
- */
- @Override
- public long longValue() {
- /*
- * If scale <= -64 there are at least 64 trailing bits zero in
- * 10^(-scale). If the scale is positive and very large the long value
- * could be zero.
- */
- return ((scale <= -64) || (scale > approxPrecision()) ? 0L : toBigInteger().longValue());
- }
-
- /**
- * Returns this {@code BigDecimal} as a long value if it has no fractional
- * part and if its value fits to the int range ([-2<sup>63</sup>..2<sup>63</sup>-1]). If
- * these conditions are not met, an {@code ArithmeticException} is thrown.
- *
- * @throws ArithmeticException
- * if rounding is necessary or the number doesn't fit in a long.
- */
- public long longValueExact() {
- return valueExact(64);
- }
-
- /**
- * Returns this {@code BigDecimal} as an int value. Any fractional part is
- * discarded. If the integral part of {@code this} is too big to be
- * represented as an int, then {@code this % 2<sup>32</sup>} is returned.
- */
- @Override
- public int intValue() {
- /*
- * If scale <= -32 there are at least 32 trailing bits zero in
- * 10^(-scale). If the scale is positive and very large the long value
- * could be zero.
- */
- return ((scale <= -32) || (scale > approxPrecision()) ? 0 : toBigInteger().intValue());
- }
-
- /**
- * Returns this {@code BigDecimal} as a int value if it has no fractional
- * part and if its value fits to the int range ([-2<sup>31</sup>..2<sup>31</sup>-1]). If
- * these conditions are not met, an {@code ArithmeticException} is thrown.
- *
- * @throws ArithmeticException
- * if rounding is necessary or the number doesn't fit in an int.
- */
- public int intValueExact() {
- return (int) valueExact(32);
- }
-
- /**
- * Returns this {@code BigDecimal} as a short value if it has no fractional
- * part and if its value fits to the short range ([-2<sup>15</sup>..2<sup>15</sup>-1]). If
- * these conditions are not met, an {@code ArithmeticException} is thrown.
- *
- * @throws ArithmeticException
- * if rounding is necessary of the number doesn't fit in a short.
- */
- public short shortValueExact() {
- return (short) valueExact(16);
- }
-
- /**
- * Returns this {@code BigDecimal} as a byte value if it has no fractional
- * part and if its value fits to the byte range ([-128..127]). If these
- * conditions are not met, an {@code ArithmeticException} is thrown.
- *
- * @throws ArithmeticException
- * if rounding is necessary or the number doesn't fit in a byte.
- */
- public byte byteValueExact() {
- return (byte) valueExact(8);
- }
-
- /**
- * Returns this {@code BigDecimal} as a float value. If {@code this} is too
- * big to be represented as an float, then {@code Float.POSITIVE_INFINITY}
- * or {@code Float.NEGATIVE_INFINITY} is returned.
- * <p>
- * Note, that if the unscaled value has more than 24 significant digits,
- * then this decimal cannot be represented exactly in a float variable. In
- * this case the result is rounded.
- * <p>
- * For example, if the instance {@code x1 = new BigDecimal("0.1")} cannot be
- * represented exactly as a float, and thus {@code x1.equals(new
- * BigDecimal(x1.floatValue())} returns {@code false} for this case.
- * <p>
- * Similarly, if the instance {@code new BigDecimal(16777217)} is converted
- * to a float, the result is {@code 1.6777216E}7.
- *
- * @return this {@code BigDecimal} as a float value.
- */
- @Override
- public float floatValue() {
- /* A similar code like in doubleValue() could be repeated here,
- * but this simple implementation is quite efficient. */
- float floatResult = signum();
- long powerOfTwo = this.bitLength - (long)(scale / LOG10_2);
- if ((powerOfTwo < -149) || (floatResult == 0.0f)) {
- // Cases which 'this' is very small
- floatResult *= 0.0f;
- } else if (powerOfTwo > 129) {
- // Cases which 'this' is very large
- floatResult *= Float.POSITIVE_INFINITY;
- } else {
- floatResult = (float)doubleValue();
- }
- return floatResult;
- }
-
- /**
- * Returns this {@code BigDecimal} as a double value. If {@code this} is too
- * big to be represented as an float, then {@code Double.POSITIVE_INFINITY}
- * or {@code Double.NEGATIVE_INFINITY} is returned.
- * <p>
- * Note, that if the unscaled value has more than 53 significant digits,
- * then this decimal cannot be represented exactly in a double variable. In
- * this case the result is rounded.
- * <p>
- * For example, if the instance {@code x1 = new BigDecimal("0.1")} cannot be
- * represented exactly as a double, and thus {@code x1.equals(new
- * BigDecimal(x1.doubleValue())} returns {@code false} for this case.
- * <p>
- * Similarly, if the instance {@code new BigDecimal(9007199254740993L)} is
- * converted to a double, the result is {@code 9.007199254740992E15}.
- * <p>
- *
- * @return this {@code BigDecimal} as a double value.
- */
- @Override
- public double doubleValue() {
- int sign = signum();
- int exponent = 1076; // bias + 53
- int lowestSetBit;
- int discardedSize;
- long powerOfTwo = this.bitLength - (long)(scale / LOG10_2);
- long bits; // IEEE-754 Standard
- long tempBits; // for temporal calculations
- BigInteger mantissa;
-
- if ((powerOfTwo < -1074) || (sign == 0)) {
- // Cases which 'this' is very small
- return (sign * 0.0d);
- } else if (powerOfTwo > 1025) {
- // Cases which 'this' is very large
- return (sign * Double.POSITIVE_INFINITY);
- }
- mantissa = getUnscaledValue().abs();
- // Let be: this = [u,s], with s > 0
- if (scale <= 0) {
- // mantissa = abs(u) * 10^s
- mantissa = mantissa.multiply(Multiplication.powerOf10(-scale));
- } else {// (scale > 0)
- BigInteger quotAndRem[];
- BigInteger powerOfTen = Multiplication.powerOf10(scale);
- int k = 100 - (int)powerOfTwo;
- int compRem;
-
- if (k > 0) {
- /* Computing (mantissa * 2^k) , where 'k' is a enough big
- * power of '2' to can divide by 10^s */
- mantissa = mantissa.shiftLeft(k);
- exponent -= k;
- }
- // Computing (mantissa * 2^k) / 10^s
- quotAndRem = mantissa.divideAndRemainder(powerOfTen);
- // To check if the fractional part >= 0.5
- compRem = quotAndRem[1].shiftLeftOneBit().compareTo(powerOfTen);
- // To add two rounded bits at end of mantissa
- mantissa = quotAndRem[0].shiftLeft(2).add(
- BigInteger.valueOf((compRem * (compRem + 3)) / 2 + 1));
- exponent -= 2;
- }
- lowestSetBit = mantissa.getLowestSetBit();
- discardedSize = mantissa.bitLength() - 54;
- if (discardedSize > 0) {// (n > 54)
- // mantissa = (abs(u) * 10^s) >> (n - 54)
- bits = mantissa.shiftRight(discardedSize).longValue();
- tempBits = bits;
- // #bits = 54, to check if the discarded fraction produces a carry
- if ((((bits & 1) == 1) && (lowestSetBit < discardedSize))
- || ((bits & 3) == 3)) {
- bits += 2;
- }
- } else {// (n <= 54)
- // mantissa = (abs(u) * 10^s) << (54 - n)
- bits = mantissa.longValue() << -discardedSize;
- tempBits = bits;
- // #bits = 54, to check if the discarded fraction produces a carry:
- if ((bits & 3) == 3) {
- bits += 2;
- }
- }
- // Testing bit 54 to check if the carry creates a new binary digit
- if ((bits & 0x40000000000000L) == 0) {
- // To drop the last bit of mantissa (first discarded)
- bits >>= 1;
- // exponent = 2^(s-n+53+bias)
- exponent += discardedSize;
- } else {// #bits = 54
- bits >>= 2;
- exponent += discardedSize + 1;
- }
- // To test if the 53-bits number fits in 'double'
- if (exponent > 2046) {// (exponent - bias > 1023)
- return (sign * Double.POSITIVE_INFINITY);
- } else if (exponent <= 0) {// (exponent - bias <= -1023)
- // Denormalized numbers (having exponent == 0)
- if (exponent < -53) {// exponent - bias < -1076
- return (sign * 0.0d);
- }
- // -1076 <= exponent - bias <= -1023
- // To discard '- exponent + 1' bits
- bits = tempBits >> 1;
- tempBits = bits & (-1L >>> (63 + exponent));
- bits >>= (-exponent );
- // To test if after discard bits, a new carry is generated
- if (((bits & 3) == 3) || (((bits & 1) == 1) && (tempBits != 0)
- && (lowestSetBit < discardedSize))) {
- bits += 1;
- }
- exponent = 0;
- bits >>= 1;
- }
- // Construct the 64 double bits: [sign(1), exponent(11), mantissa(52)]
- bits = (sign & 0x8000000000000000L) | ((long)exponent << 52)
- | (bits & 0xFFFFFFFFFFFFFL);
- return Double.longBitsToDouble(bits);
- }
-
- /**
- * Returns the unit in the last place (ULP) of this {@code BigDecimal}
- * instance. An ULP is the distance to the nearest big decimal with the same
- * precision.
- *
- * <p>The amount of a rounding error in the evaluation of a floating-point
- * operation is often expressed in ULPs. An error of 1 ULP is often seen as
- * a tolerable error.
- *
- * <p>For class {@code BigDecimal}, the ULP of a number is simply 10<sup>-scale</sup>.
- * For example, {@code new BigDecimal(0.1).ulp()} returns {@code 1E-55}.
- *
- * @return unit in the last place (ULP) of this {@code BigDecimal} instance.
- */
- public BigDecimal ulp() {
- return valueOf(1, scale);
- }
-
- /* Private Methods */
-
- /**
- * It does all rounding work of the public method
- * {@code round(MathContext)}, performing an inplace rounding
- * without creating a new object.
- *
- * @param mc
- * the {@code MathContext} for perform the rounding.
- * @see #round(MathContext)
- */
- private void inplaceRound(MathContext mc) {
- int mcPrecision = mc.getPrecision();
- if (approxPrecision() < mcPrecision || mcPrecision == 0) {
- return;
- }
- int discardedPrecision = precision() - mcPrecision;
- // If no rounding is necessary it returns immediately
- if ((discardedPrecision <= 0)) {
- return;
- }
- // When the number is small perform an efficient rounding
- if (this.bitLength < 64) {
- smallRound(mc, discardedPrecision);
- return;
- }
- // Getting the integer part and the discarded fraction
- BigInteger sizeOfFraction = Multiplication.powerOf10(discardedPrecision);
- BigInteger[] integerAndFraction = getUnscaledValue().divideAndRemainder(sizeOfFraction);
- long newScale = (long)scale - discardedPrecision;
- int compRem;
- BigDecimal tempBD;
- // If the discarded fraction is non-zero, perform rounding
- if (integerAndFraction[1].signum() != 0) {
- // To check if the discarded fraction >= 0.5
- compRem = (integerAndFraction[1].abs().shiftLeftOneBit().compareTo(sizeOfFraction));
- // To look if there is a carry
- compRem = roundingBehavior( integerAndFraction[0].testBit(0) ? 1 : 0,
- integerAndFraction[1].signum() * (5 + compRem),
- mc.getRoundingMode());
- if (compRem != 0) {
- integerAndFraction[0] = integerAndFraction[0].add(BigInteger.valueOf(compRem));
- }
- tempBD = new BigDecimal(integerAndFraction[0]);
- // If after to add the increment the precision changed, we normalize the size
- if (tempBD.precision() > mcPrecision) {
- integerAndFraction[0] = integerAndFraction[0].divide(BigInteger.TEN);
- newScale--;
- }
- }
- // To update all internal fields
- scale = safeLongToInt(newScale);
- precision = mcPrecision;
- setUnscaledValue(integerAndFraction[0]);
- }
-
- /**
- * Returns -1, 0, and 1 if {@code value1 < value2}, {@code value1 == value2},
- * and {@code value1 > value2}, respectively, when comparing without regard
- * to the values' sign.
- *
- * <p>Note that this implementation deals correctly with Long.MIN_VALUE,
- * whose absolute magnitude is larger than any other {@code long} value.
- */
- private static int compareAbsoluteValues(long value1, long value2) {
- // Map long values to the range -1 .. Long.MAX_VALUE so that comparison
- // of absolute magnitude can be done using regular long arithmetics.
- // This deals correctly with Long.MIN_VALUE, whose absolute magnitude
- // is larger than any other long value, and which is mapped to
- // Long.MAX_VALUE here.
- // Values that only differ by sign get mapped to the same value, for
- // example both +3 and -3 get mapped to +2.
- value1 = Math.abs(value1) - 1;
- value2 = Math.abs(value2) - 1;
- // Unlike Long.compare(), we guarantee to return specifically -1 and +1
- return value1 > value2 ? 1 : (value1 < value2 ? -1 : 0);
- }
-
- /**
- * Compares {@code n} against {@code 0.5 * d} in absolute terms (ignoring sign)
- * and with arithmetics that are safe against overflow or loss of precision.
- * Returns -1 if {@code n} is less than {@code 0.5 * d}, 0 if {@code n == 0.5 * d},
- * or +1 if {@code n > 0.5 * d} when comparing the absolute values under such
- * arithmetics.
- */
- private static int compareForRounding(long n, long d) {
- long halfD = d / 2; // rounds towards 0
- if (n == halfD || n == -halfD) {
- // In absolute terms: Because n == halfD, we know that 2 * n + lsb == d
- // for some lsb value 0 or 1. This means that n == d/2 (result 0) if
- // lsb is 0, or n < d/2 (result -1) if lsb is 1. In either case, the
- // result is -lsb.
- // Since we're calculating in absolute terms, we need the absolute lsb
- // (d & 1) as opposed to the signed lsb (d % 2) which would be -1 for
- // negative odd values of d.
- int lsb = (int) d & 1;
- return -lsb; // returns 0 or -1
- } else {
- // In absolute terms, either 2 * n + 1 < d (in the case of n < halfD),
- // or 2 * n > d (in the case of n > halfD).
- // In either case, comparing n against halfD gets the right result
- // -1 or +1, respectively.
- return compareAbsoluteValues(n, halfD);
- }
- }
-
- /**
- * This method implements an efficient rounding for numbers which unscaled
- * value fits in the type {@code long}.
- *
- * @param mc
- * the context to use
- * @param discardedPrecision
- * the number of decimal digits that are discarded
- * @see #round(MathContext)
- */
- private void smallRound(MathContext mc, int discardedPrecision) {
- long sizeOfFraction = MathUtils.LONG_POWERS_OF_TEN[discardedPrecision];
- long newScale = (long)scale - discardedPrecision;
- long unscaledVal = smallValue;
- // Getting the integer part and the discarded fraction
- long integer = unscaledVal / sizeOfFraction;
- long fraction = unscaledVal % sizeOfFraction;
- int compRem;
- // If the discarded fraction is non-zero perform rounding
- if (fraction != 0) {
- // To check if the discarded fraction >= 0.5
- compRem = compareForRounding(fraction, sizeOfFraction);
- // To look if there is a carry
- integer += roundingBehavior( ((int)integer) & 1,
- Long.signum(fraction) * (5 + compRem),
- mc.getRoundingMode());
- // If after to add the increment the precision changed, we normalize the size
- if (Math.log10(Math.abs(integer)) >= mc.getPrecision()) {
- integer /= 10;
- newScale--;
- }
- }
- // To update all internal fields
- scale = safeLongToInt(newScale);
- precision = mc.getPrecision();
- smallValue = integer;
- bitLength = bitLength(integer);
- intVal = null;
- }
-
- /**
- * Return an increment that can be -1,0 or 1, depending of
- * {@code roundingMode}.
- *
- * @param parityBit
- * can be 0 or 1, it's only used in the case
- * {@code HALF_EVEN}
- * @param fraction
- * the mantissa to be analyzed
- * @param roundingMode
- * the type of rounding
- * @return the carry propagated after rounding
- */
- private static int roundingBehavior(int parityBit, int fraction, RoundingMode roundingMode) {
- int increment = 0; // the carry after rounding
-
- switch (roundingMode) {
- case UNNECESSARY:
- if (fraction != 0) {
- throw new ArithmeticException("Rounding necessary");
- }
- break;
- case UP:
- increment = Integer.signum(fraction);
- break;
- case DOWN:
- break;
- case CEILING:
- increment = Math.max(Integer.signum(fraction), 0);
- break;
- case FLOOR:
- increment = Math.min(Integer.signum(fraction), 0);
- break;
- case HALF_UP:
- if (Math.abs(fraction) >= 5) {
- increment = Integer.signum(fraction);
- }
- break;
- case HALF_DOWN:
- if (Math.abs(fraction) > 5) {
- increment = Integer.signum(fraction);
- }
- break;
- case HALF_EVEN:
- if (Math.abs(fraction) + parityBit > 5) {
- increment = Integer.signum(fraction);
- }
- break;
- }
- return increment;
- }
-
- /**
- * If {@code intVal} has a fractional part throws an exception,
- * otherwise it counts the number of bits of value and checks if it's out of
- * the range of the primitive type. If the number fits in the primitive type
- * returns this number as {@code long}, otherwise throws an
- * exception.
- *
- * @param bitLengthOfType
- * number of bits of the type whose value will be calculated
- * exactly
- * @return the exact value of the integer part of {@code BigDecimal}
- * when is possible
- * @throws ArithmeticException when rounding is necessary or the
- * number don't fit in the primitive type
- */
- private long valueExact(int bitLengthOfType) {
- BigInteger bigInteger = toBigIntegerExact();
-
- if (bigInteger.bitLength() < bitLengthOfType) {
- // It fits in the primitive type
- return bigInteger.longValue();
- }
- throw new ArithmeticException("Rounding necessary");
- }
-
- /**
- * If the precision already was calculated it returns that value, otherwise
- * it calculates a very good approximation efficiently . Note that this
- * value will be {@code precision()} or {@code precision()-1}
- * in the worst case.
- *
- * @return an approximation of {@code precision()} value
- */
- private int approxPrecision() {
- return precision > 0
- ? precision
- : (int) ((this.bitLength - 1) * LOG10_2) + 1;
- }
-
- private static int safeLongToInt(long longValue) {
- if (longValue < Integer.MIN_VALUE || longValue > Integer.MAX_VALUE) {
- throw new ArithmeticException("Out of int range: " + longValue);
- }
- return (int) longValue;
- }
-
- /**
- * It returns the value 0 with the most approximated scale of type
- * {@code int}. if {@code longScale > Integer.MAX_VALUE} the
- * scale will be {@code Integer.MAX_VALUE}; if
- * {@code longScale < Integer.MIN_VALUE} the scale will be
- * {@code Integer.MIN_VALUE}; otherwise {@code longScale} is
- * casted to the type {@code int}.
- *
- * @param longScale
- * the scale to which the value 0 will be scaled.
- * @return the value 0 scaled by the closer scale of type {@code int}.
- * @see #scale
- */
- private static BigDecimal zeroScaledBy(long longScale) {
- if (longScale == (int) longScale) {
- return valueOf(0,(int)longScale);
- }
- if (longScale >= 0) {
- return new BigDecimal( 0, Integer.MAX_VALUE);
- }
- return new BigDecimal( 0, Integer.MIN_VALUE);
- }
-
- /**
- * Assigns all transient fields upon deserialization of a
- * {@code BigDecimal} instance (bitLength and smallValue). The transient
- * field precision is assigned lazily.
- */
- private void readObject(ObjectInputStream in) throws IOException,
- ClassNotFoundException {
- in.defaultReadObject();
-
- this.bitLength = intVal.bitLength();
- if (this.bitLength < 64) {
- this.smallValue = intVal.longValue();
- }
- }
-
- /**
- * Prepares this {@code BigDecimal} for serialization, i.e. the
- * non-transient field {@code intVal} is assigned.
- */
- private void writeObject(ObjectOutputStream out) throws IOException {
- getUnscaledValue();
- out.defaultWriteObject();
- }
-
- private BigInteger getUnscaledValue() {
- if(intVal == null) {
- intVal = BigInteger.valueOf(smallValue);
- }
- return intVal;
- }
-
- private void setUnscaledValue(BigInteger unscaledValue) {
- this.intVal = unscaledValue;
- this.bitLength = unscaledValue.bitLength();
- if(this.bitLength < 64) {
- this.smallValue = unscaledValue.longValue();
- }
- }
-
- private static int bitLength(long smallValue) {
- if(smallValue < 0) {
- smallValue = ~smallValue;
- }
- return 64 - Long.numberOfLeadingZeros(smallValue);
- }
-
- private static int bitLength(int smallValue) {
- if(smallValue < 0) {
- smallValue = ~smallValue;
- }
- return 32 - Integer.numberOfLeadingZeros(smallValue);
- }
-
-}
diff --git a/luni/src/main/java/java/math/BigInt.java b/luni/src/main/java/java/math/BigInt.java
deleted file mode 100644
index 4448ce18af..0000000000
--- a/luni/src/main/java/java/math/BigInt.java
+++ /dev/null
@@ -1,346 +0,0 @@
-/*
- * Copyright (C) 2008 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package java.math;
-
-import dalvik.annotation.optimization.ReachabilitySensitive;
-import libcore.util.NativeAllocationRegistry;
-
-/*
- * In contrast to BigIntegers this class doesn't fake two's complement representation.
- * Any Bit-Operations, including Shifting, solely regard the unsigned magnitude.
- * Moreover BigInt objects are mutable and offer efficient in-place-operations.
- */
-final class BigInt {
-
- private static NativeAllocationRegistry registry = NativeAllocationRegistry.createMalloced(
- BigInt.class.getClassLoader(), NativeBN.getNativeFinalizer());
-
- /* Fields used for the internal representation. */
- @ReachabilitySensitive
- private transient long bignum = 0;
-
- @Override
- public String toString() {
- return this.decString();
- }
-
- boolean hasNativeBignum() {
- return this.bignum != 0;
- }
-
- private void makeValid() {
- if (this.bignum == 0) {
- this.bignum = NativeBN.BN_new();
- registry.registerNativeAllocation(this, this.bignum);
- }
- }
-
- private static BigInt newBigInt() {
- BigInt bi = new BigInt();
- bi.bignum = NativeBN.BN_new();
- registry.registerNativeAllocation(bi, bi.bignum);
- return bi;
- }
-
-
- static int cmp(BigInt a, BigInt b) {
- return NativeBN.BN_cmp(a.bignum, b.bignum);
- }
-
-
- void putCopy(BigInt from) {
- this.makeValid();
- NativeBN.BN_copy(this.bignum, from.bignum);
- }
-
- BigInt copy() {
- BigInt bi = new BigInt();
- bi.putCopy(this);
- return bi;
- }
-
-
- void putLongInt(long val) {
- this.makeValid();
- NativeBN.putLongInt(this.bignum, val);
- }
-
- void putULongInt(long val, boolean neg) {
- this.makeValid();
- NativeBN.putULongInt(this.bignum, val, neg);
- }
-
- private NumberFormatException invalidBigInteger(String s) {
- throw new NumberFormatException("Invalid BigInteger: " + s);
- }
-
- void putDecString(String original) {
- String s = checkString(original, 10);
- this.makeValid();
- int usedLen = NativeBN.BN_dec2bn(this.bignum, s);
- if (usedLen < s.length()) {
- throw invalidBigInteger(original);
- }
- }
-
- void putHexString(String original) {
- String s = checkString(original, 16);
- this.makeValid();
- int usedLen = NativeBN.BN_hex2bn(this.bignum, s);
- if (usedLen < s.length()) {
- throw invalidBigInteger(original);
- }
- }
-
- /**
- * Returns a string suitable for passing to OpenSSL.
- * Throws if 's' doesn't match Java's rules for valid BigInteger strings.
- * BN_dec2bn and BN_hex2bn do very little checking, so we need to manually
- * ensure we comply with Java's rules.
- * http://code.google.com/p/android/issues/detail?id=7036
- */
- String checkString(String s, int base) {
- if (s == null) {
- throw new NullPointerException("s == null");
- }
- // A valid big integer consists of an optional '-' or '+' followed by
- // one or more digit characters appropriate to the given base,
- // and no other characters.
- int charCount = s.length();
- int i = 0;
- if (charCount > 0) {
- char ch = s.charAt(0);
- if (ch == '+') {
- // Java supports leading +, but OpenSSL doesn't, so we need to strip it.
- s = s.substring(1);
- --charCount;
- } else if (ch == '-') {
- ++i;
- }
- }
- if (charCount - i == 0) {
- throw invalidBigInteger(s);
- }
- boolean nonAscii = false;
- for (; i < charCount; ++i) {
- char ch = s.charAt(i);
- if (Character.digit(ch, base) == -1) {
- throw invalidBigInteger(s);
- }
- if (ch > 128) {
- nonAscii = true;
- }
- }
- return nonAscii ? toAscii(s, base) : s;
- }
-
- // Java supports non-ASCII decimal digits, but OpenSSL doesn't.
- // We need to translate the decimal digits but leave any other characters alone.
- // This method assumes it's being called on a string that has already been validated.
- private static String toAscii(String s, int base) {
- int length = s.length();
- StringBuilder result = new StringBuilder(length);
- for (int i = 0; i < length; ++i) {
- char ch = s.charAt(i);
- int value = Character.digit(ch, base);
- if (value >= 0 && value <= 9) {
- ch = (char) ('0' + value);
- }
- result.append(ch);
- }
- return result.toString();
- }
-
- void putBigEndian(byte[] a, boolean neg) {
- this.makeValid();
- NativeBN.BN_bin2bn(a, a.length, neg, this.bignum);
- }
-
- void putLittleEndianInts(int[] a, boolean neg) {
- this.makeValid();
- NativeBN.litEndInts2bn(a, a.length, neg, this.bignum);
- }
-
- void putBigEndianTwosComplement(byte[] a) {
- this.makeValid();
- NativeBN.twosComp2bn(a, a.length, this.bignum);
- }
-
-
- long longInt() {
- return NativeBN.longInt(this.bignum);
- }
-
- String decString() {
- return NativeBN.BN_bn2dec(this.bignum);
- }
-
- String hexString() {
- return NativeBN.BN_bn2hex(this.bignum);
- }
-
- byte[] bigEndianMagnitude() {
- return NativeBN.BN_bn2bin(this.bignum);
- }
-
- int[] littleEndianIntsMagnitude() {
- return NativeBN.bn2litEndInts(this.bignum);
- }
-
- int sign() {
- return NativeBN.sign(this.bignum);
- }
-
- void setSign(int val) {
- if (val > 0) {
- NativeBN.BN_set_negative(this.bignum, 0);
- } else {
- if (val < 0) NativeBN.BN_set_negative(this.bignum, 1);
- }
- }
-
- boolean twosCompFitsIntoBytes(int desiredByteCount) {
- int actualByteCount = (NativeBN.bitLength(this.bignum) + 7) / 8;
- return actualByteCount <= desiredByteCount;
- }
-
- int bitLength() {
- return NativeBN.bitLength(this.bignum);
- }
-
- boolean isBitSet(int n) {
- return NativeBN.BN_is_bit_set(this.bignum, n);
- }
-
- // n > 0: shift left (multiply)
- static BigInt shift(BigInt a, int n) {
- BigInt r = newBigInt();
- NativeBN.BN_shift(r.bignum, a.bignum, n);
- return r;
- }
-
- void shift(int n) {
- NativeBN.BN_shift(this.bignum, this.bignum, n);
- }
-
- void addPositiveInt(int w) {
- NativeBN.BN_add_word(this.bignum, w);
- }
-
- void multiplyByPositiveInt(int w) {
- NativeBN.BN_mul_word(this.bignum, w);
- }
-
- static int remainderByPositiveInt(BigInt a, int w) {
- return NativeBN.BN_mod_word(a.bignum, w);
- }
-
- static BigInt addition(BigInt a, BigInt b) {
- BigInt r = newBigInt();
- NativeBN.BN_add(r.bignum, a.bignum, b.bignum);
- return r;
- }
-
- void add(BigInt a) {
- NativeBN.BN_add(this.bignum, this.bignum, a.bignum);
- }
-
- static BigInt subtraction(BigInt a, BigInt b) {
- BigInt r = newBigInt();
- NativeBN.BN_sub(r.bignum, a.bignum, b.bignum);
- return r;
- }
-
-
- static BigInt gcd(BigInt a, BigInt b) {
- BigInt r = newBigInt();
- NativeBN.BN_gcd(r.bignum, a.bignum, b.bignum);
- return r;
- }
-
- static BigInt product(BigInt a, BigInt b) {
- BigInt r = newBigInt();
- NativeBN.BN_mul(r.bignum, a.bignum, b.bignum);
- return r;
- }
-
- static BigInt bigExp(BigInt a, BigInt p) {
- // Sign of p is ignored!
- BigInt r = newBigInt();
- NativeBN.BN_exp(r.bignum, a.bignum, p.bignum);
- return r;
- }
-
- static BigInt exp(BigInt a, int p) {
- // Sign of p is ignored!
- BigInt power = new BigInt();
- power.putLongInt(p);
- return bigExp(a, power);
- // OPTIONAL:
- // int BN_sqr(BigInteger r, BigInteger a, BN_CTX ctx);
- // int BN_sqr(BIGNUM *r, const BIGNUM *a,BN_CTX *ctx);
- }
-
- static void division(BigInt dividend, BigInt divisor, BigInt quotient, BigInt remainder) {
- long quot, rem;
- if (quotient != null) {
- quotient.makeValid();
- quot = quotient.bignum;
- } else {
- quot = 0;
- }
- if (remainder != null) {
- remainder.makeValid();
- rem = remainder.bignum;
- } else {
- rem = 0;
- }
- NativeBN.BN_div(quot, rem, dividend.bignum, divisor.bignum);
- }
-
- static BigInt modulus(BigInt a, BigInt m) {
- // Sign of p is ignored! ?
- BigInt r = newBigInt();
- NativeBN.BN_nnmod(r.bignum, a.bignum, m.bignum);
- return r;
- }
-
- static BigInt modExp(BigInt a, BigInt p, BigInt m) {
- // Sign of p is ignored!
- BigInt r = newBigInt();
- NativeBN.BN_mod_exp(r.bignum, a.bignum, p.bignum, m.bignum);
- return r;
- }
-
-
- static BigInt modInverse(BigInt a, BigInt m) {
- BigInt r = newBigInt();
- NativeBN.BN_mod_inverse(r.bignum, a.bignum, m.bignum);
- return r;
- }
-
-
- static BigInt generatePrimeDefault(int bitLength) {
- BigInt r = newBigInt();
- NativeBN.BN_generate_prime_ex(r.bignum, bitLength, false, 0, 0);
- return r;
- }
-
- boolean isPrime(int certainty) {
- return NativeBN.BN_primality_test(bignum, certainty, false);
- }
-}
diff --git a/luni/src/main/java/java/math/BigInteger.java b/luni/src/main/java/java/math/BigInteger.java
deleted file mode 100644
index b96fdb2f7d..0000000000
--- a/luni/src/main/java/java/math/BigInteger.java
+++ /dev/null
@@ -1,1275 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package java.math;
-
-import java.io.IOException;
-import java.io.ObjectInputStream;
-import java.io.ObjectOutputStream;
-import java.io.Serializable;
-import java.util.Random;
-import libcore.util.NonNull;
-import libcore.util.Nullable;
-
-/**
- * An immutable arbitrary-precision signed integer.
- *
- * <h3>Fast Cryptography</h3>
- * This implementation is efficient for operations traditionally used in
- * cryptography, such as the generation of large prime numbers and computation
- * of the modular inverse.
- *
- * <h3>Slow Two's Complement Bitwise Operations</h3>
- * This API includes operations for bitwise operations in two's complement
- * representation. Two's complement is not the internal representation used by
- * this implementation, so such methods may be inefficient. Use {@link
- * java.util.BitSet} for high-performance bitwise operations on
- * arbitrarily-large sequences of bits.
- */
-public class BigInteger extends Number
- implements Comparable<BigInteger>, Serializable {
-
- /** This is the serialVersionUID used by the sun implementation. */
- private static final long serialVersionUID = -8287574255936472291L;
-
- private transient BigInt bigInt;
-
- private transient boolean nativeIsValid = false;
-
- private transient boolean javaIsValid = false;
-
- /** The magnitude of this in the little-endian representation. */
- transient int[] digits;
-
- /**
- * The length of this in measured in ints. Can be less than
- * digits.length().
- */
- transient int numberLength;
-
- /** The sign of this. */
- transient int sign;
-
- /** The {@code BigInteger} constant 0. */
- @NonNull public static final BigInteger ZERO = new BigInteger(0, 0);
-
- /** The {@code BigInteger} constant 1. */
- @NonNull public static final BigInteger ONE = new BigInteger(1, 1);
-
- /** The {@code BigInteger} constant 10. */
- @NonNull public static final BigInteger TEN = new BigInteger(1, 10);
-
- /** The {@code BigInteger} constant -1. */
- static final BigInteger MINUS_ONE = new BigInteger(-1, 1);
-
- /** All the {@code BigInteger} numbers in the range [0,10] are cached. */
- static final BigInteger[] SMALL_VALUES = { ZERO, ONE, new BigInteger(1, 2),
- new BigInteger(1, 3), new BigInteger(1, 4), new BigInteger(1, 5),
- new BigInteger(1, 6), new BigInteger(1, 7), new BigInteger(1, 8),
- new BigInteger(1, 9), TEN };
-
- private transient int firstNonzeroDigit = -2;
-
- /** sign field, used for serialization. */
- private int signum;
-
- /** absolute value field, used for serialization */
- private byte[] magnitude;
-
- /** Cache for the hash code. */
- private transient int hashCode = 0;
-
- BigInteger(BigInt bigInt) {
- if (bigInt == null || !bigInt.hasNativeBignum()) {
- throw new AssertionError();
- }
- setBigInt(bigInt);
- }
-
- BigInteger(int sign, long value) {
- BigInt bigInt = new BigInt();
- bigInt.putULongInt(value, (sign < 0));
- setBigInt(bigInt);
- }
-
- /**
- * Constructs a number without creating new space. This construct should be
- * used only if the three fields of representation are known.
- *
- * @param sign the sign of the number.
- * @param numberLength the length of the internal array.
- * @param digits a reference of some array created before.
- */
- BigInteger(int sign, int numberLength, int[] digits) {
- setJavaRepresentation(sign, numberLength, digits);
- }
-
- /**
- * Constructs a random non-negative {@code BigInteger} instance in the range
- * {@code [0, pow(2, numBits)-1]}.
- *
- * @param numBits maximum length of the new {@code BigInteger} in bits.
- * @param random is the random number generator to be used.
- * @throws IllegalArgumentException if {@code numBits} < 0.
- */
- public BigInteger(int numBits, @NonNull Random random) {
- if (numBits < 0) {
- throw new IllegalArgumentException("numBits < 0: " + numBits);
- }
- if (numBits == 0) {
- setJavaRepresentation(0, 1, new int[] { 0 });
- } else {
- int sign = 1;
- int numberLength = (numBits + 31) >> 5;
- int[] digits = new int[numberLength];
- for (int i = 0; i < numberLength; i++) {
- digits[i] = random.nextInt();
- }
- // Clear any extra bits.
- digits[numberLength - 1] >>>= (-numBits) & 31;
- setJavaRepresentation(sign, numberLength, digits);
- }
- javaIsValid = true;
- }
-
- /**
- * Constructs a random {@code BigInteger} instance in the range {@code [0,
- * pow(2, bitLength)-1]} which is probably prime. The probability that the
- * returned {@code BigInteger} is prime is greater than
- * {@code 1 - 1/2<sup>certainty</sup>)}.
- *
- * <p><b>Note:</b> the {@code Random} argument is ignored if
- * {@code bitLength >= 16}, where this implementation will use OpenSSL's
- * {@code BN_generate_prime_ex} as a source of cryptographically strong pseudo-random numbers.
- *
- * @param bitLength length of the new {@code BigInteger} in bits.
- * @param certainty tolerated primality uncertainty.
- * @throws ArithmeticException if {@code bitLength < 2}.
- * @see <a href="http://www.openssl.org/docs/crypto/BN_rand.html">
- * Specification of random generator used from OpenSSL library</a>
- */
- public BigInteger(int bitLength, int certainty, @NonNull Random random) {
- if (bitLength < 2) {
- throw new ArithmeticException("bitLength < 2: " + bitLength);
- }
- if (bitLength < 16) {
- // We have to generate short primes ourselves, because OpenSSL bottoms out at 16 bits.
- int candidate;
- do {
- candidate = random.nextInt() & ((1 << bitLength) - 1);
- candidate |= (1 << (bitLength - 1)); // Set top bit.
- if (bitLength > 2) {
- candidate |= 1; // Any prime longer than 2 bits must have the bottom bit set.
- }
- } while (!isSmallPrime(candidate));
- BigInt prime = new BigInt();
- prime.putULongInt(candidate, false);
- setBigInt(prime);
- } else {
- // We need a loop here to work around an OpenSSL bug; http://b/8588028.
- do {
- setBigInt(BigInt.generatePrimeDefault(bitLength));
- } while (bitLength() != bitLength);
- }
- }
-
- private static boolean isSmallPrime(int x) {
- if (x == 2) {
- return true;
- }
- if ((x % 2) == 0) {
- return false;
- }
- final int max = (int) Math.sqrt(x);
- for (int i = 3; i <= max; i += 2) {
- if ((x % i) == 0) {
- return false;
- }
- }
- return true;
- }
-
- /**
- * Constructs a new {@code BigInteger} by parsing {@code value}. The string
- * representation consists of an optional plus or minus sign followed by a
- * non-empty sequence of decimal digits. Digits are interpreted as if by
- * {@code Character.digit(char,10)}.
- *
- * @param value string representation of the new {@code BigInteger}.
- * @throws NullPointerException if {@code value == null}.
- * @throws NumberFormatException if {@code value} is not a valid
- * representation of a {@code BigInteger}.
- */
- public BigInteger(@NonNull String value) {
- BigInt bigInt = new BigInt();
- bigInt.putDecString(value);
- setBigInt(bigInt);
- }
-
- /**
- * Constructs a new {@code BigInteger} instance by parsing {@code value}.
- * The string representation consists of an optional plus or minus sign
- * followed by a non-empty sequence of digits in the specified radix. Digits
- * are interpreted as if by {@code Character.digit(char, radix)}.
- *
- * @param value string representation of the new {@code BigInteger}.
- * @param radix the base to be used for the conversion.
- * @throws NullPointerException if {@code value == null}.
- * @throws NumberFormatException if {@code value} is not a valid
- * representation of a {@code BigInteger} or if {@code radix <
- * Character.MIN_RADIX} or {@code radix > Character.MAX_RADIX}.
- */
- public BigInteger(@NonNull String value, int radix) {
- if (value == null) {
- throw new NullPointerException("value == null");
- }
- if (radix == 10) {
- BigInt bigInt = new BigInt();
- bigInt.putDecString(value);
- setBigInt(bigInt);
- } else if (radix == 16) {
- BigInt bigInt = new BigInt();
- bigInt.putHexString(value);
- setBigInt(bigInt);
- } else {
- if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) {
- throw new NumberFormatException("Invalid radix: " + radix);
- }
- if (value.isEmpty()) {
- throw new NumberFormatException("value.isEmpty()");
- }
- BigInteger.parseFromString(this, value, radix);
- }
- }
-
- /**
- * Constructs a new {@code BigInteger} instance with the given sign and
- * magnitude.
- *
- * @param signum sign of the new {@code BigInteger} (-1 for negative, 0 for
- * zero, 1 for positive).
- * @param magnitude magnitude of the new {@code BigInteger} with the most
- * significant byte first.
- * @throws NullPointerException if {@code magnitude == null}.
- * @throws NumberFormatException if the sign is not one of -1, 0, 1 or if
- * the sign is zero and the magnitude contains non-zero entries.
- */
- public BigInteger(int signum, byte @NonNull [] magnitude) {
- if (magnitude == null) {
- throw new NullPointerException("magnitude == null");
- }
- if (signum < -1 || signum > 1) {
- throw new NumberFormatException("Invalid signum: " + signum);
- }
- if (signum == 0) {
- for (byte element : magnitude) {
- if (element != 0) {
- throw new NumberFormatException("signum-magnitude mismatch");
- }
- }
- }
- BigInt bigInt = new BigInt();
- bigInt.putBigEndian(magnitude, signum < 0);
- setBigInt(bigInt);
- }
-
- /**
- * Constructs a new {@code BigInteger} from the given two's complement
- * representation. The most significant byte is the entry at index 0. The
- * most significant bit of this entry determines the sign of the new {@code
- * BigInteger} instance. The array must be nonempty.
- *
- * @param value two's complement representation of the new {@code
- * BigInteger}.
- * @throws NullPointerException if {@code value == null}.
- * @throws NumberFormatException if the length of {@code value} is zero.
- */
- public BigInteger(byte @NonNull [] value) {
- if (value.length == 0) {
- throw new NumberFormatException("value.length == 0");
- }
- BigInt bigInt = new BigInt();
- bigInt.putBigEndianTwosComplement(value);
- setBigInt(bigInt);
- }
-
- /**
- * Returns the internal native representation of this big integer, computing
- * it if necessary.
- */
- BigInt getBigInt() {
- if (nativeIsValid) {
- return bigInt;
- }
-
- synchronized (this) {
- if (nativeIsValid) {
- return bigInt;
- }
- BigInt bigInt = new BigInt();
- bigInt.putLittleEndianInts(digits, (sign < 0));
- setBigInt(bigInt);
- return bigInt;
- }
- }
-
- private void setBigInt(BigInt bigInt) {
- this.bigInt = bigInt;
- this.nativeIsValid = true;
- }
-
- private void setJavaRepresentation(int sign, int numberLength, int[] digits) {
- // decrement numberLength to drop leading zeroes...
- while (numberLength > 0 && digits[--numberLength] == 0) {
- ;
- }
- // ... and then increment it back because we always drop one too many
- if (digits[numberLength++] == 0) {
- sign = 0;
- }
- this.sign = sign;
- this.digits = digits;
- this.numberLength = numberLength;
- this.javaIsValid = true;
- }
-
- void prepareJavaRepresentation() {
- if (javaIsValid) {
- return;
- }
-
- synchronized (this) {
- if (javaIsValid) {
- return;
- }
- int sign = bigInt.sign();
- int[] digits = (sign != 0) ? bigInt.littleEndianIntsMagnitude() : new int[] { 0 };
- setJavaRepresentation(sign, digits.length, digits);
- }
- }
-
- /** Returns a {@code BigInteger} whose value is equal to {@code value}. */
- @NonNull public static BigInteger valueOf(long value) {
- if (value < 0) {
- if (value != -1) {
- return new BigInteger(-1, -value);
- }
- return MINUS_ONE;
- } else if (value < SMALL_VALUES.length) {
- return SMALL_VALUES[(int) value];
- } else {// (value > 10)
- return new BigInteger(1, value);
- }
- }
-
- /**
- * Returns the two's complement representation of this {@code BigInteger} in
- * a byte array.
- */
- public byte @NonNull [] toByteArray() {
- return twosComplement();
- }
-
- /**
- * Returns a {@code BigInteger} whose value is the absolute value of {@code
- * this}.
- */
- @NonNull public BigInteger abs() {
- BigInt bigInt = getBigInt();
- if (bigInt.sign() >= 0) {
- return this;
- }
- BigInt a = bigInt.copy();
- a.setSign(1);
- return new BigInteger(a);
- }
-
- /**
- * Returns a {@code BigInteger} whose value is the {@code -this}.
- */
- @NonNull public BigInteger negate() {
- BigInt bigInt = getBigInt();
- int sign = bigInt.sign();
- if (sign == 0) {
- return this;
- }
- BigInt a = bigInt.copy();
- a.setSign(-sign);
- return new BigInteger(a);
- }
-
- /**
- * Returns a {@code BigInteger} whose value is {@code this + value}.
- */
- @NonNull public BigInteger add(@NonNull BigInteger value) {
- BigInt lhs = getBigInt();
- BigInt rhs = value.getBigInt();
- if (rhs.sign() == 0) {
- return this;
- }
- if (lhs.sign() == 0) {
- return value;
- }
- return new BigInteger(BigInt.addition(lhs, rhs));
- }
-
- /**
- * Returns a {@code BigInteger} whose value is {@code this - value}.
- */
- @NonNull public BigInteger subtract(@NonNull BigInteger value) {
- BigInt lhs = getBigInt();
- BigInt rhs = value.getBigInt();
- if (rhs.sign() == 0) {
- return this;
- }
- return new BigInteger(BigInt.subtraction(lhs, rhs));
- }
-
- /**
- * Returns the sign of this {@code BigInteger}.
- *
- * @return {@code -1} if {@code this < 0}, {@code 0} if {@code this == 0},
- * {@code 1} if {@code this > 0}.
- */
- public int signum() {
- if (javaIsValid) {
- return sign;
- }
- return getBigInt().sign();
- }
-
- /**
- * Returns a {@code BigInteger} whose value is {@code this >> n}. For
- * negative arguments, the result is also negative. The shift distance may
- * be negative which means that {@code this} is shifted left.
- *
- * <p><b>Implementation Note:</b> Usage of this method on negative values is
- * not recommended as the current implementation is not efficient.
- *
- * @param n shift distance
- * @return {@code this >> n} if {@code n >= 0}; {@code this << (-n)}
- * otherwise
- */
- @NonNull public BigInteger shiftRight(int n) {
- return shiftLeft(-n);
- }
-
- /**
- * Returns a {@code BigInteger} whose value is {@code this << n}. The
- * result is equivalent to {@code this * pow(2, n)} if n >= 0. The shift
- * distance may be negative which means that {@code this} is shifted right.
- * The result then corresponds to {@code floor(this / pow(2, -n))}.
- *
- * <p><b>Implementation Note:</b> Usage of this method on negative values is
- * not recommended as the current implementation is not efficient.
- *
- * @param n shift distance.
- * @return {@code this << n} if {@code n >= 0}; {@code this >> (-n)}.
- * otherwise
- */
- @NonNull public BigInteger shiftLeft(int n) {
- if (n == 0) {
- return this;
- }
- int sign = signum();
- if (sign == 0) {
- return this;
- }
- if ((sign > 0) || (n >= 0)) {
- return new BigInteger(BigInt.shift(getBigInt(), n));
- } else {
- // Negative numbers faking 2's complement:
- // Not worth optimizing this:
- // Sticking to Harmony Java implementation.
- return BitLevel.shiftRight(this, -n);
- }
- }
-
- BigInteger shiftLeftOneBit() {
- return (signum() == 0) ? this : BitLevel.shiftLeftOneBit(this);
- }
-
- /**
- * Returns the length of the value's two's complement representation without
- * leading zeros for positive numbers / without leading ones for negative
- * values.
- *
- * <p>The two's complement representation of {@code this} will be at least
- * {@code bitLength() + 1} bits long.
- *
- * <p>The value will fit into an {@code int} if {@code bitLength() < 32} or
- * into a {@code long} if {@code bitLength() < 64}.
- *
- * @return the length of the minimal two's complement representation for
- * {@code this} without the sign bit.
- */
- public int bitLength() {
- // Optimization to avoid unnecessary duplicate representation:
- if (!nativeIsValid && javaIsValid) {
- return BitLevel.bitLength(this);
- }
- return getBigInt().bitLength();
- }
-
- /**
- * Tests whether the bit at position n in {@code this} is set. The result is
- * equivalent to {@code this & pow(2, n) != 0}.
- *
- * <p><b>Implementation Note:</b> Usage of this method is not recommended as
- * the current implementation is not efficient.
- *
- * @param n position where the bit in {@code this} has to be inspected.
- * @throws ArithmeticException if {@code n < 0}.
- */
- public boolean testBit(int n) {
- if (n < 0) {
- throw new ArithmeticException("n < 0: " + n);
- }
- int sign = signum();
- if (sign > 0 && nativeIsValid && !javaIsValid) {
- return getBigInt().isBitSet(n);
- } else {
- // Negative numbers faking 2's complement:
- // Not worth optimizing this:
- // Sticking to Harmony Java implementation.
- prepareJavaRepresentation();
- if (n == 0) {
- return ((digits[0] & 1) != 0);
- }
- int intCount = n >> 5;
- if (intCount >= numberLength) {
- return (sign < 0);
- }
- int digit = digits[intCount];
- n = (1 << (n & 31)); // int with 1 set to the needed position
- if (sign < 0) {
- int firstNonZeroDigit = getFirstNonzeroDigit();
- if (intCount < firstNonZeroDigit) {
- return false;
- } else if (firstNonZeroDigit == intCount) {
- digit = -digit;
- } else {
- digit = ~digit;
- }
- }
- return ((digit & n) != 0);
- }
- }
-
- /**
- * Returns a {@code BigInteger} which has the same binary representation
- * as {@code this} but with the bit at position n set. The result is
- * equivalent to {@code this | pow(2, n)}.
- *
- * <p><b>Implementation Note:</b> Usage of this method is not recommended as
- * the current implementation is not efficient.
- *
- * @param n position where the bit in {@code this} has to be set.
- * @throws ArithmeticException if {@code n < 0}.
- */
- @NonNull public BigInteger setBit(int n) {
- prepareJavaRepresentation();
- if (!testBit(n)) {
- return BitLevel.flipBit(this, n);
- } else {
- return this;
- }
- }
-
- /**
- * Returns a {@code BigInteger} which has the same binary representation
- * as {@code this} but with the bit at position n cleared. The result is
- * equivalent to {@code this & ~pow(2, n)}.
- *
- * <p><b>Implementation Note:</b> Usage of this method is not recommended as
- * the current implementation is not efficient.
- *
- * @param n position where the bit in {@code this} has to be cleared.
- * @throws ArithmeticException if {@code n < 0}.
- */
- @NonNull public BigInteger clearBit(int n) {
- prepareJavaRepresentation();
- if (testBit(n)) {
- return BitLevel.flipBit(this, n);
- } else {
- return this;
- }
- }
-
- /**
- * Returns a {@code BigInteger} which has the same binary representation
- * as {@code this} but with the bit at position n flipped. The result is
- * equivalent to {@code this ^ pow(2, n)}.
- *
- * <p><b>Implementation Note:</b> Usage of this method is not recommended as
- * the current implementation is not efficient.
- *
- * @param n position where the bit in {@code this} has to be flipped.
- * @throws ArithmeticException if {@code n < 0}.
- */
- @NonNull public BigInteger flipBit(int n) {
- prepareJavaRepresentation();
- if (n < 0) {
- throw new ArithmeticException("n < 0: " + n);
- }
- return BitLevel.flipBit(this, n);
- }
-
- /**
- * Returns the position of the lowest set bit in the two's complement
- * representation of this {@code BigInteger}. If all bits are zero (this==0)
- * then -1 is returned as result.
- *
- * <p><b>Implementation Note:</b> Usage of this method is not recommended as
- * the current implementation is not efficient.
- */
- public int getLowestSetBit() {
- prepareJavaRepresentation();
- if (sign == 0) {
- return -1;
- }
- // (sign != 0) implies that exists some non zero digit
- int i = getFirstNonzeroDigit();
- return ((i << 5) + Integer.numberOfTrailingZeros(digits[i]));
- }
-
- /**
- * Returns the number of bits in the two's complement representation of
- * {@code this} which differ from the sign bit. If {@code this} is negative,
- * the result is equivalent to the number of bits set in the two's
- * complement representation of {@code -this - 1}.
- *
- * <p>Use {@code bitLength(0)} to find the length of the binary value in
- * bits.
- *
- * <p><b>Implementation Note:</b> Usage of this method is not recommended as
- * the current implementation is not efficient.
- */
- public int bitCount() {
- prepareJavaRepresentation();
- return BitLevel.bitCount(this);
- }
-
- /**
- * Returns a {@code BigInteger} whose value is {@code ~this}. The result
- * of this operation is {@code -this-1}.
- *
- * <p><b>Implementation Note:</b> Usage of this method is not recommended as
- * the current implementation is not efficient.
- */
- @NonNull public BigInteger not() {
- this.prepareJavaRepresentation();
- return Logical.not(this);
- }
-
- /**
- * Returns a {@code BigInteger} whose value is {@code this & value}.
- *
- * <p><b>Implementation Note:</b> Usage of this method is not recommended
- * as the current implementation is not efficient.
- *
- * @param value value to be and'ed with {@code this}.
- * @throws NullPointerException if {@code value == null}.
- */
- @NonNull public BigInteger and(@NonNull BigInteger value) {
- this.prepareJavaRepresentation();
- value.prepareJavaRepresentation();
- return Logical.and(this, value);
- }
-
- /**
- * Returns a {@code BigInteger} whose value is {@code this | value}.
- *
- * <p><b>Implementation Note:</b> Usage of this method is not recommended as
- * the current implementation is not efficient.
- *
- * @param value value to be or'ed with {@code this}.
- * @throws NullPointerException if {@code value == null}.
- */
- @NonNull public BigInteger or(@NonNull BigInteger value) {
- this.prepareJavaRepresentation();
- value.prepareJavaRepresentation();
- return Logical.or(this, value);
- }
-
- /**
- * Returns a {@code BigInteger} whose value is {@code this ^ value}.
- *
- * <p><b>Implementation Note:</b> Usage of this method is not recommended as
- * the current implementation is not efficient.
- *
- * @param value value to be xor'ed with {@code this}
- * @throws NullPointerException if {@code value == null}
- */
- @NonNull public BigInteger xor(@NonNull BigInteger value) {
- this.prepareJavaRepresentation();
- value.prepareJavaRepresentation();
- return Logical.xor(this, value);
- }
-
- /**
- * Returns a {@code BigInteger} whose value is {@code this & ~value}.
- * Evaluating {@code x.andNot(value)} returns the same result as {@code
- * x.and(value.not())}.
- *
- * <p><b>Implementation Note:</b> Usage of this method is not recommended
- * as the current implementation is not efficient.
- *
- * @param value value to be not'ed and then and'ed with {@code this}.
- * @throws NullPointerException if {@code value == null}.
- */
- @NonNull public BigInteger andNot(@NonNull BigInteger value) {
- this.prepareJavaRepresentation();
- value.prepareJavaRepresentation();
- return Logical.andNot(this, value);
- }
-
- /**
- * Returns this {@code BigInteger} as an int value. If {@code this} is too
- * big to be represented as an int, then {@code this % (1 << 32)} is
- * returned.
- */
- @Override
- public int intValue() {
- if (nativeIsValid && bigInt.twosCompFitsIntoBytes(4)) {
- return (int) bigInt.longInt();
- }
- this.prepareJavaRepresentation();
- return (sign * digits[0]);
- }
-
- /**
- * Returns this {@code BigInteger} as a long value. If {@code this} is too
- * big to be represented as a long, then {@code this % pow(2, 64)} is
- * returned.
- */
- @Override
- public long longValue() {
- if (nativeIsValid && bigInt.twosCompFitsIntoBytes(8)) {
- return bigInt.longInt();
- }
- prepareJavaRepresentation();
- long value = numberLength > 1
- ? ((long) digits[1]) << 32 | digits[0] & 0xFFFFFFFFL
- : digits[0] & 0xFFFFFFFFL;
- return sign * value;
- }
-
- /**
- * Returns this {@code BigInteger} as a float. If {@code this} is too big to
- * be represented as a float, then {@code Float.POSITIVE_INFINITY} or
- * {@code Float.NEGATIVE_INFINITY} is returned. Note that not all integers
- * in the range {@code [-Float.MAX_VALUE, Float.MAX_VALUE]} can be exactly
- * represented as a float.
- */
- @Override
- public float floatValue() {
- return (float) doubleValue();
- }
-
- /**
- * Returns this {@code BigInteger} as a double. If {@code this} is too big
- * to be represented as a double, then {@code Double.POSITIVE_INFINITY} or
- * {@code Double.NEGATIVE_INFINITY} is returned. Note that not all integers
- * in the range {@code [-Double.MAX_VALUE, Double.MAX_VALUE]} can be exactly
- * represented as a double.
- */
- @Override
- public double doubleValue() {
- return Conversion.bigInteger2Double(this);
- }
-
- /**
- * Compares this {@code BigInteger} with {@code value}. Returns {@code -1}
- * if {@code this < value}, {@code 0} if {@code this == value} and {@code 1}
- * if {@code this > value}, .
- *
- * @param value value to be compared with {@code this}.
- * @throws NullPointerException if {@code value == null}.
- */
- public int compareTo(@NonNull BigInteger value) {
- return BigInt.cmp(getBigInt(), value.getBigInt());
- }
-
- /**
- * Returns the minimum of this {@code BigInteger} and {@code value}.
- *
- * @param value value to be used to compute the minimum with {@code this}.
- * @throws NullPointerException if {@code value == null}.
- */
- @NonNull public BigInteger min(@NonNull BigInteger value) {
- return this.compareTo(value) == -1 ? this : value;
- }
-
- /**
- * Returns the maximum of this {@code BigInteger} and {@code value}.
- *
- * @param value value to be used to compute the maximum with {@code this}
- * @throws NullPointerException if {@code value == null}
- */
- @NonNull public BigInteger max(@NonNull BigInteger value) {
- return this.compareTo(value) == 1 ? this : value;
- }
-
- @Override
- public int hashCode() {
- if (hashCode == 0) {
- prepareJavaRepresentation();
- int hash = 0;
- for (int i = 0; i < numberLength; ++i) {
- hash = hash * 33 + digits[i];
- }
- hashCode = hash * sign;
- }
- return hashCode;
- }
-
- @Override
- public boolean equals(@Nullable Object x) {
- if (this == x) {
- return true;
- }
- if (x instanceof BigInteger) {
- return this.compareTo((BigInteger) x) == 0;
- }
- return false;
- }
-
- /**
- * Returns a string representation of this {@code BigInteger} in decimal
- * form.
- */
- @Override
- @NonNull public String toString() {
- return getBigInt().decString();
- }
-
- /**
- * Returns a string containing a string representation of this {@code
- * BigInteger} with base radix. If {@code radix < Character.MIN_RADIX} or
- * {@code radix > Character.MAX_RADIX} then a decimal representation is
- * returned. The characters of the string representation are generated with
- * method {@code Character.forDigit}.
- *
- * @param radix base to be used for the string representation.
- */
- @NonNull public String toString(int radix) {
- if (radix == 10) {
- return getBigInt().decString();
- } else {
- prepareJavaRepresentation();
- return Conversion.bigInteger2String(this, radix);
- }
- }
-
- /**
- * Returns a {@code BigInteger} whose value is greatest common divisor
- * of {@code this} and {@code value}. If {@code this == 0} and {@code
- * value == 0} then zero is returned, otherwise the result is positive.
- *
- * @param value value with which the greatest common divisor is computed.
- * @throws NullPointerException if {@code value == null}.
- */
- @NonNull public BigInteger gcd(@NonNull BigInteger value) {
- // First optimize the case in which the two arguments have very different
- // length.
- int thisLen = bitLength();
- int valueLen = value.bitLength();
- final int gcdDirectRatio = 16;
- if (thisLen > gcdDirectRatio * valueLen) {
- // A division-based step reduces the length of this by a factor of at
- // least gcdDirectRatio, thus ensuring that a division-based step will
- // easily pay for itself.
- if (value.signum() == 0) {
- return this.abs();
- }
- return value.gcd(this.mod(value.abs()));
- } else if (valueLen > gcdDirectRatio * thisLen) {
- if (signum() == 0) {
- return value.abs();
- }
- return this.gcd(value.mod(this.abs()));
- }
-
- return new BigInteger(BigInt.gcd(getBigInt(), value.getBigInt()));
- }
-
- /**
- * Returns a {@code BigInteger} whose value is {@code this * value}.
- *
- * @throws NullPointerException if {@code value == null}.
- */
- @NonNull public BigInteger multiply(@NonNull BigInteger value) {
- return new BigInteger(BigInt.product(getBigInt(), value.getBigInt()));
- }
-
- /**
- * Returns a {@code BigInteger} whose value is {@code pow(this, exp)}.
- *
- * @throws ArithmeticException if {@code exp < 0}.
- */
- @NonNull public BigInteger pow(int exp) {
- if (exp < 0) {
- throw new ArithmeticException("exp < 0: " + exp);
- }
- return new BigInteger(BigInt.exp(getBigInt(), exp));
- }
-
- /**
- * Returns a two element {@code BigInteger} array containing
- * {@code this / divisor} at index 0 and {@code this % divisor} at index 1.
- *
- * @param divisor value by which {@code this} is divided.
- * @throws NullPointerException if {@code divisor == null}.
- * @throws ArithmeticException if {@code divisor == 0}.
- * @see #divide
- * @see #remainder
- */
- public @NonNull BigInteger @NonNull [] divideAndRemainder(@NonNull BigInteger divisor) {
- BigInt divisorBigInt = divisor.getBigInt();
- BigInt quotient = new BigInt();
- BigInt remainder = new BigInt();
- BigInt.division(getBigInt(), divisorBigInt, quotient, remainder);
- return new BigInteger[] {new BigInteger(quotient), new BigInteger(remainder) };
- }
-
- /**
- * Returns a {@code BigInteger} whose value is {@code this / divisor}.
- *
- * @param divisor value by which {@code this} is divided.
- * @return {@code this / divisor}.
- * @throws NullPointerException if {@code divisor == null}.
- * @throws ArithmeticException if {@code divisor == 0}.
- */
- @NonNull public BigInteger divide(@NonNull BigInteger divisor) {
- BigInt quotient = new BigInt();
- BigInt.division(getBigInt(), divisor.getBigInt(), quotient, null);
- return new BigInteger(quotient);
- }
-
- /**
- * Returns a {@code BigInteger} whose value is {@code this % divisor}.
- * Regarding signs this methods has the same behavior as the % operator on
- * ints: the sign of the remainder is the same as the sign of this.
- *
- * @param divisor value by which {@code this} is divided.
- * @throws NullPointerException if {@code divisor == null}.
- * @throws ArithmeticException if {@code divisor == 0}.
- */
- @NonNull public BigInteger remainder(@NonNull BigInteger divisor) {
- BigInt remainder = new BigInt();
- BigInt.division(getBigInt(), divisor.getBigInt(), null, remainder);
- return new BigInteger(remainder);
- }
-
- /**
- * Returns a {@code BigInteger} whose value is {@code 1/this mod m}. The
- * modulus {@code m} must be positive. The result is guaranteed to be in the
- * interval {@code [0, m)} (0 inclusive, m exclusive). If {@code this} is
- * not relatively prime to m, then an exception is thrown.
- *
- * @param m the modulus.
- * @throws NullPointerException if {@code m == null}
- * @throws ArithmeticException if {@code m < 0 or} if {@code this} is not
- * relatively prime to {@code m}
- */
- @NonNull public BigInteger modInverse(@NonNull BigInteger m) {
- if (m.signum() <= 0) {
- throw new ArithmeticException("modulus not positive");
- }
- return new BigInteger(BigInt.modInverse(getBigInt(), m.getBigInt()));
- }
-
- /**
- * Returns a {@code BigInteger} whose value is {@code
- * pow(this, exponent) mod modulus}. The modulus must be positive. The
- * result is guaranteed to be in the interval {@code [0, modulus)}.
- * If the exponent is negative, then
- * {@code pow(this.modInverse(modulus), -exponent) mod modulus} is computed.
- * The inverse of this only exists if {@code this} is relatively prime to the modulus,
- * otherwise an exception is thrown.
- *
- * @throws NullPointerException if {@code modulus == null} or {@code exponent == null}.
- * @throws ArithmeticException if {@code modulus < 0} or if {@code exponent < 0} and
- * not relatively prime to {@code modulus}.
- */
- @NonNull public BigInteger modPow(@NonNull BigInteger exponent, @NonNull BigInteger modulus) {
- if (modulus.signum() <= 0) {
- throw new ArithmeticException("modulus.signum() <= 0");
- }
- int exponentSignum = exponent.signum();
- if (exponentSignum == 0) { // OpenSSL gets this case wrong; http://b/8574367.
- return ONE.mod(modulus);
- }
- BigInteger base = exponentSignum < 0 ? modInverse(modulus) : this;
- return new BigInteger(BigInt.modExp(base.getBigInt(), exponent.getBigInt(), modulus.getBigInt()));
- }
-
- /**
- * Returns a {@code BigInteger} whose value is {@code this mod m}. The
- * modulus {@code m} must be positive. The result is guaranteed to be in the
- * interval {@code [0, m)} (0 inclusive, m exclusive). The behavior of this
- * function is not equivalent to the behavior of the % operator defined for
- * the built-in {@code int}'s.
- *
- * @param m the modulus.
- * @return {@code this mod m}.
- * @throws NullPointerException if {@code m == null}.
- * @throws ArithmeticException if {@code m < 0}.
- */
- @NonNull public BigInteger mod(@NonNull BigInteger m) {
- if (m.signum() <= 0) {
- throw new ArithmeticException("m.signum() <= 0");
- }
- return new BigInteger(BigInt.modulus(getBigInt(), m.getBigInt()));
- }
-
- /**
- * Tests whether this {@code BigInteger} is probably prime. If {@code true}
- * is returned, then this is prime with a probability greater than
- * {@code 1 - 1/2<sup>certainty</sup>)}. If {@code false} is returned, then this
- * is definitely composite. If the argument {@code certainty} <= 0, then
- * this method returns true.
- *
- * @param certainty tolerated primality uncertainty.
- * @return {@code true}, if {@code this} is probably prime, {@code false}
- * otherwise.
- */
- public boolean isProbablePrime(int certainty) {
- if (certainty <= 0) {
- return true;
- }
- return getBigInt().isPrime(certainty);
- }
-
- /**
- * Returns the smallest integer x > {@code this} which is probably prime as
- * a {@code BigInteger} instance. The probability that the returned {@code
- * BigInteger} is prime is greater than {@code 1 - 1/2<sup>100</sup>}.
- *
- * @return smallest integer > {@code this} which is probably prime.
- * @throws ArithmeticException if {@code this < 0}.
- */
- @NonNull public BigInteger nextProbablePrime() {
- if (sign < 0) {
- throw new ArithmeticException("sign < 0");
- }
- return Primality.nextProbablePrime(this);
- }
-
- /**
- * Returns a random positive {@code BigInteger} instance in the range {@code
- * [0, pow(2, bitLength)-1]} which is probably prime. The probability that
- * the returned {@code BigInteger} is prime is greater than {@code 1 - 1/2<sup>100</sup>)}.
- *
- * @param bitLength length of the new {@code BigInteger} in bits.
- * @return probably prime random {@code BigInteger} instance.
- * @throws IllegalArgumentException if {@code bitLength < 2}.
- */
- @NonNull public static BigInteger probablePrime(int bitLength, @NonNull Random random) {
- return new BigInteger(bitLength, 100, random);
- }
-
- /* Private Methods */
-
- /**
- * Returns the two's complement representation of this BigInteger in a byte
- * array.
- */
- private byte[] twosComplement() {
- prepareJavaRepresentation();
- if (this.sign == 0) {
- return new byte[] { 0 };
- }
- BigInteger temp = this;
- int bitLen = bitLength();
- int iThis = getFirstNonzeroDigit();
- int bytesLen = (bitLen >> 3) + 1;
- /* Puts the little-endian int array representing the magnitude
- * of this BigInteger into the big-endian byte array. */
- byte[] bytes = new byte[bytesLen];
- int firstByteNumber = 0;
- int highBytes;
- int bytesInInteger = 4;
- int hB;
-
- if (bytesLen - (numberLength << 2) == 1) {
- bytes[0] = (byte) ((sign < 0) ? -1 : 0);
- highBytes = 4;
- firstByteNumber++;
- } else {
- hB = bytesLen & 3;
- highBytes = (hB == 0) ? 4 : hB;
- }
-
- int digitIndex = iThis;
- bytesLen -= iThis << 2;
-
- if (sign < 0) {
- int digit = -temp.digits[digitIndex];
- digitIndex++;
- if (digitIndex == numberLength) {
- bytesInInteger = highBytes;
- }
- for (int i = 0; i < bytesInInteger; i++, digit >>= 8) {
- bytes[--bytesLen] = (byte) digit;
- }
- while (bytesLen > firstByteNumber) {
- digit = ~temp.digits[digitIndex];
- digitIndex++;
- if (digitIndex == numberLength) {
- bytesInInteger = highBytes;
- }
- for (int i = 0; i < bytesInInteger; i++, digit >>= 8) {
- bytes[--bytesLen] = (byte) digit;
- }
- }
- } else {
- while (bytesLen > firstByteNumber) {
- int digit = temp.digits[digitIndex];
- digitIndex++;
- if (digitIndex == numberLength) {
- bytesInInteger = highBytes;
- }
- for (int i = 0; i < bytesInInteger; i++, digit >>= 8) {
- bytes[--bytesLen] = (byte) digit;
- }
- }
- }
- return bytes;
- }
-
-
- static int multiplyByInt(int[] res, int[] a, int aSize, int factor) {
- long carry = 0;
-
- for (int i = 0; i < aSize; i++) {
- carry += (a[i] & 0xFFFFFFFFL) * (factor & 0xFFFFFFFFL);
- res[i] = (int) carry;
- carry >>>= 32;
- }
- return (int) carry;
- }
-
- static int inplaceAdd(int[] a, int aSize, int addend) {
- long carry = addend & 0xFFFFFFFFL;
-
- for (int i = 0; (carry != 0) && (i < aSize); i++) {
- carry += a[i] & 0xFFFFFFFFL;
- a[i] = (int) carry;
- carry >>= 32;
- }
- return (int) carry;
- }
-
- /** @see BigInteger#BigInteger(String, int) */
- private static void parseFromString(BigInteger bi, String value, int radix) {
- int stringLength = value.length();
- int endChar = stringLength;
-
- int sign;
- int startChar;
- if (value.charAt(0) == '-') {
- sign = -1;
- startChar = 1;
- stringLength--;
- } else {
- sign = 1;
- startChar = 0;
- }
-
- /*
- * We use the following algorithm: split a string into portions of n
- * characters and convert each portion to an integer according to the
- * radix. Then convert an pow(radix, n) based number to binary using the
- * multiplication method. See D. Knuth, The Art of Computer Programming,
- * vol. 2.
- */
-
- int charsPerInt = Conversion.digitFitInInt[radix];
- int bigRadixDigitsLength = stringLength / charsPerInt;
- int topChars = stringLength % charsPerInt;
-
- if (topChars != 0) {
- bigRadixDigitsLength++;
- }
- int[] digits = new int[bigRadixDigitsLength];
- // Get the maximal power of radix that fits in int
- int bigRadix = Conversion.bigRadices[radix - 2];
- // Parse an input string and accumulate the BigInteger's magnitude
- int digitIndex = 0; // index of digits array
- int substrEnd = startChar + ((topChars == 0) ? charsPerInt : topChars);
-
- for (int substrStart = startChar; substrStart < endChar;
- substrStart = substrEnd, substrEnd = substrStart + charsPerInt) {
- int bigRadixDigit = Integer.parseInt(value.substring(substrStart, substrEnd), radix);
- int newDigit = multiplyByInt(digits, digits, digitIndex, bigRadix);
- newDigit += inplaceAdd(digits, digitIndex, bigRadixDigit);
- digits[digitIndex++] = newDigit;
- }
- int numberLength = digitIndex;
- bi.setJavaRepresentation(sign, numberLength, digits);
- }
-
- int getFirstNonzeroDigit() {
- if (firstNonzeroDigit == -2) {
- int i;
- if (this.sign == 0) {
- i = -1;
- } else {
- for (i = 0; digits[i] == 0; i++) {
- ;
- }
- }
- firstNonzeroDigit = i;
- }
- return firstNonzeroDigit;
- }
-
- /**
- * Returns a copy of the current instance to achieve immutability
- */
- BigInteger copy() {
- prepareJavaRepresentation();
- int[] copyDigits = new int[numberLength];
- System.arraycopy(digits, 0, copyDigits, 0, numberLength);
- return new BigInteger(sign, numberLength, copyDigits);
- }
-
- /**
- * Assigns all transient fields upon deserialization of a {@code BigInteger}
- * instance.
- */
- private void readObject(ObjectInputStream in)
- throws IOException, ClassNotFoundException {
- in.defaultReadObject();
- BigInt bigInt = new BigInt();
- bigInt.putBigEndian(magnitude, signum < 0);
- setBigInt(bigInt);
- }
-
- /**
- * Prepares this {@code BigInteger} for serialization, i.e. the
- * non-transient fields {@code signum} and {@code magnitude} are assigned.
- */
- private void writeObject(ObjectOutputStream out) throws IOException {
- BigInt bigInt = getBigInt();
- signum = bigInt.sign();
- magnitude = bigInt.bigEndianMagnitude();
- out.defaultWriteObject();
- }
-}
diff --git a/luni/src/main/java/java/math/BitLevel.java b/luni/src/main/java/java/math/BitLevel.java
deleted file mode 100644
index 91f7a9b283..0000000000
--- a/luni/src/main/java/java/math/BitLevel.java
+++ /dev/null
@@ -1,255 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package java.math;
-
-/**
- * Static library that provides all the <b>bit level</b> operations for
- * {@link BigInteger}. The operations are:
- * <ul type="circle">
- * <li>Left Shifting</li>
- * <li>Right Shifting</li>
- * <li>Bit clearing</li>
- * <li>Bit setting</li>
- * <li>Bit counting</li>
- * <li>Bit testing</li>
- * <li>Getting of the lowest bit set</li>
- * </ul>
- * All operations are provided in immutable way, and some in both mutable and
- * immutable.
- */
-class BitLevel {
-
- /** Just to denote that this class can't be instantiated. */
- private BitLevel() {}
-
- /** @see BigInteger#bitLength() */
- static int bitLength(BigInteger val) {
- val.prepareJavaRepresentation();
- if (val.sign == 0) {
- return 0;
- }
- int bLength = (val.numberLength << 5);
- int highDigit = val.digits[val.numberLength - 1];
-
- if (val.sign < 0) {
- int i = val.getFirstNonzeroDigit();
- // We reduce the problem to the positive case.
- if (i == val.numberLength - 1) {
- highDigit--;
- }
- }
- // Subtracting all sign bits
- bLength -= Integer.numberOfLeadingZeros(highDigit);
- return bLength;
- }
-
- /** @see BigInteger#bitCount() */
- static int bitCount(BigInteger val) {
- val.prepareJavaRepresentation();
- int bCount = 0;
-
- if (val.sign == 0) {
- return 0;
- }
-
- int i = val.getFirstNonzeroDigit();
- if (val.sign > 0) {
- for ( ; i < val.numberLength; i++) {
- bCount += Integer.bitCount(val.digits[i]);
- }
- } else {// (sign < 0)
- // this digit absorbs the carry
- bCount += Integer.bitCount(-val.digits[i]);
- for (i++; i < val.numberLength; i++) {
- bCount += Integer.bitCount(~val.digits[i]);
- }
- // We take the complement sum:
- bCount = (val.numberLength << 5) - bCount;
- }
- return bCount;
- }
-
- /**
- * Performs a fast bit testing for positive numbers. The bit to to be tested
- * must be in the range {@code [0, val.bitLength()-1]}
- */
- static boolean testBit(BigInteger val, int n) {
- val.prepareJavaRepresentation();
- // PRE: 0 <= n < val.bitLength()
- return ((val.digits[n >> 5] & (1 << (n & 31))) != 0);
- }
-
- /**
- * Check if there are 1s in the lowest bits of this BigInteger
- *
- * @param numberOfBits the number of the lowest bits to check
- * @return false if all bits are 0s, true otherwise
- */
- static boolean nonZeroDroppedBits(int numberOfBits, int[] digits) {
- int intCount = numberOfBits >> 5;
- int bitCount = numberOfBits & 31;
- int i;
-
- for (i = 0; (i < intCount) && (digits[i] == 0); i++) {
- ;
- }
- return ((i != intCount) || (digits[i] << (32 - bitCount) != 0));
- }
-
- static void shiftLeftOneBit(int[] result, int[] source, int srcLen) {
- int carry = 0;
- for (int i = 0; i < srcLen; i++) {
- int val = source[i];
- result[i] = (val << 1) | carry;
- carry = val >>> 31;
- }
- if(carry != 0) {
- result[srcLen] = carry;
- }
- }
-
- static BigInteger shiftLeftOneBit(BigInteger source) {
- source.prepareJavaRepresentation();
- int srcLen = source.numberLength;
- int resLen = srcLen + 1;
- int[] resDigits = new int[resLen];
- shiftLeftOneBit(resDigits, source.digits, srcLen);
- return new BigInteger(source.sign, resLen, resDigits);
- }
-
- /** @see BigInteger#shiftRight(int) */
- static BigInteger shiftRight(BigInteger source, int count) {
- source.prepareJavaRepresentation();
- int intCount = count >> 5; // count of integers
- count &= 31; // count of remaining bits
- if (intCount >= source.numberLength) {
- return ((source.sign < 0) ? BigInteger.MINUS_ONE : BigInteger.ZERO);
- }
- int i;
- int resLength = source.numberLength - intCount;
- int[] resDigits = new int[resLength + 1];
-
- shiftRight(resDigits, resLength, source.digits, intCount, count);
- if (source.sign < 0) {
- // Checking if the dropped bits are zeros (the remainder equals to
- // 0)
- for (i = 0; (i < intCount) && (source.digits[i] == 0); i++) {
- ;
- }
- // If the remainder is not zero, add 1 to the result
- if ((i < intCount)
- || ((count > 0) && ((source.digits[i] << (32 - count)) != 0))) {
- for (i = 0; (i < resLength) && (resDigits[i] == -1); i++) {
- resDigits[i] = 0;
- }
- if (i == resLength) {
- resLength++;
- }
- resDigits[i]++;
- }
- }
- return new BigInteger(source.sign, resLength, resDigits);
- }
-
- /**
- * Shifts right an array of integers. Total shift distance in bits is
- * intCount * 32 + count.
- *
- * @param result
- * the destination array
- * @param resultLen
- * the destination array's length
- * @param source
- * the source array
- * @param intCount
- * the number of elements to be shifted
- * @param count
- * the number of bits to be shifted
- * @return dropped bit's are all zero (i.e. remaider is zero)
- */
- static boolean shiftRight(int[] result, int resultLen, int[] source, int intCount, int count) {
- int i;
- boolean allZero = true;
- for (i = 0; i < intCount; i++)
- allZero &= source[i] == 0;
- if (count == 0) {
- System.arraycopy(source, intCount, result, 0, resultLen);
- i = resultLen;
- } else {
- int leftShiftCount = 32 - count;
-
- allZero &= ( source[i] << leftShiftCount ) == 0;
- for (i = 0; i < resultLen - 1; i++) {
- result[i] = ( source[i + intCount] >>> count )
- | ( source[i + intCount + 1] << leftShiftCount );
- }
- result[i] = ( source[i + intCount] >>> count );
- i++;
- }
-
- return allZero;
- }
-
-
- /**
- * Performs a flipBit on the BigInteger, returning a BigInteger with the the
- * specified bit flipped.
- */
- static BigInteger flipBit(BigInteger val, int n){
- val.prepareJavaRepresentation();
- int resSign = (val.sign == 0) ? 1 : val.sign;
- int intCount = n >> 5;
- int bitN = n & 31;
- int resLength = Math.max(intCount + 1, val.numberLength) + 1;
- int[] resDigits = new int[resLength];
- int i;
-
- int bitNumber = 1 << bitN;
- System.arraycopy(val.digits, 0, resDigits, 0, val.numberLength);
-
- if (val.sign < 0) {
- if (intCount >= val.numberLength) {
- resDigits[intCount] = bitNumber;
- } else {
- //val.sign<0 y intCount < val.numberLength
- int firstNonZeroDigit = val.getFirstNonzeroDigit();
- if (intCount > firstNonZeroDigit) {
- resDigits[intCount] ^= bitNumber;
- } else if (intCount < firstNonZeroDigit) {
- resDigits[intCount] = -bitNumber;
- for (i=intCount + 1; i < firstNonZeroDigit; i++) {
- resDigits[i]=-1;
- }
- resDigits[i] = resDigits[i]--;
- } else {
- i = intCount;
- resDigits[i] = -((-resDigits[intCount]) ^ bitNumber);
- if (resDigits[i] == 0) {
- for (i++; resDigits[i] == -1 ; i++) {
- resDigits[i] = 0;
- }
- resDigits[i]++;
- }
- }
- }
- } else {//case where val is positive
- resDigits[intCount] ^= bitNumber;
- }
- return new BigInteger(resSign, resLength, resDigits);
- }
-}
diff --git a/luni/src/main/java/java/math/Conversion.java b/luni/src/main/java/java/math/Conversion.java
deleted file mode 100644
index 585fff43c2..0000000000
--- a/luni/src/main/java/java/math/Conversion.java
+++ /dev/null
@@ -1,461 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package java.math;
-
-/**
- * Static library that provides {@link BigInteger} base conversion from/to any
- * integer represented in an {@link java.lang.String} Object.
- */
-class Conversion {
-
- /** Just to denote that this class can't be instantiated */
- private Conversion() {}
-
- /**
- * Holds the maximal exponent for each radix, so that radix<sup>digitFitInInt[radix]</sup>
- * fit in an {@code int} (32 bits).
- */
- static final int[] digitFitInInt = { -1, -1, 31, 19, 15, 13, 11,
- 11, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6,
- 6, 6, 6, 6, 6, 6, 6, 5 };
-
- /**
- * bigRadices values are precomputed maximal powers of radices (integer
- * numbers from 2 to 36) that fit into unsigned int (32 bits). bigRadices[0] =
- * 2 ^ 31, bigRadices[8] = 10 ^ 9, etc.
- */
-
- static final int[] bigRadices = { -2147483648, 1162261467,
- 1073741824, 1220703125, 362797056, 1977326743, 1073741824,
- 387420489, 1000000000, 214358881, 429981696, 815730721, 1475789056,
- 170859375, 268435456, 410338673, 612220032, 893871739, 1280000000,
- 1801088541, 113379904, 148035889, 191102976, 244140625, 308915776,
- 387420489, 481890304, 594823321, 729000000, 887503681, 1073741824,
- 1291467969, 1544804416, 1838265625, 60466176 };
-
-
- /** @see BigInteger#toString(int) */
- static String bigInteger2String(BigInteger val, int radix) {
- val.prepareJavaRepresentation();
- int sign = val.sign;
- int numberLength = val.numberLength;
- int[] digits = val.digits;
-
- if (sign == 0) {
- return "0";
- }
- if (numberLength == 1) {
- int highDigit = digits[numberLength - 1];
- long v = highDigit & 0xFFFFFFFFL;
- if (sign < 0) {
- v = -v;
- }
- return Long.toString(v, radix);
- }
- if ((radix == 10) || (radix < Character.MIN_RADIX)
- || (radix > Character.MAX_RADIX)) {
- return val.toString();
- }
- double bitsForRadixDigit;
- bitsForRadixDigit = Math.log(radix) / Math.log(2);
- int resLengthInChars = (int) (val.abs().bitLength() / bitsForRadixDigit + ((sign < 0) ? 1
- : 0)) + 1;
-
- char[] result = new char[resLengthInChars];
- int currentChar = resLengthInChars;
- int resDigit;
- if (radix != 16) {
- int[] temp = new int[numberLength];
- System.arraycopy(digits, 0, temp, 0, numberLength);
- int tempLen = numberLength;
- int charsPerInt = digitFitInInt[radix];
- int i;
- // get the maximal power of radix that fits in int
- int bigRadix = bigRadices[radix - 2];
- while (true) {
- // divide the array of digits by bigRadix and convert remainders
- // to characters collecting them in the char array
- resDigit = Division.divideArrayByInt(temp, temp, tempLen,
- bigRadix);
- int previous = currentChar;
- do {
- result[--currentChar] = Character.forDigit(
- resDigit % radix, radix);
- } while (((resDigit /= radix) != 0) && (currentChar != 0));
- int delta = charsPerInt - previous + currentChar;
- for (i = 0; i < delta && currentChar > 0; i++) {
- result[--currentChar] = '0';
- }
- for (i = tempLen - 1; (i > 0) && (temp[i] == 0); i--) {
- ;
- }
- tempLen = i + 1;
- if ((tempLen == 1) && (temp[0] == 0)) { // the quotient is 0
- break;
- }
- }
- } else {
- // radix == 16
- for (int i = 0; i < numberLength; i++) {
- for (int j = 0; (j < 8) && (currentChar > 0); j++) {
- resDigit = digits[i] >> (j << 2) & 0xf;
- result[--currentChar] = Character.forDigit(resDigit, 16);
- }
- }
- }
- while (result[currentChar] == '0') {
- currentChar++;
- }
- if (sign == -1) {
- result[--currentChar] = '-';
- }
- return new String(result, currentChar, resLengthInChars - currentChar);
- }
-
- /**
- * Builds the correspondent {@code String} representation of {@code val}
- * being scaled by {@code scale}.
- *
- * @see BigInteger#toString()
- * @see BigDecimal#toString()
- */
- static String toDecimalScaledString(BigInteger val, int scale) {
- val.prepareJavaRepresentation();
- int sign = val.sign;
- int numberLength = val.numberLength;
- int[] digits = val.digits;
- int resLengthInChars;
- int currentChar;
- char[] result;
-
- if (sign == 0) {
- switch (scale) {
- case 0:
- return "0";
- case 1:
- return "0.0";
- case 2:
- return "0.00";
- case 3:
- return "0.000";
- case 4:
- return "0.0000";
- case 5:
- return "0.00000";
- case 6:
- return "0.000000";
- default:
- StringBuilder result1 = new StringBuilder();
- if (scale < 0) {
- result1.append("0E+");
- } else {
- result1.append("0E");
- }
- result1.append(-scale);
- return result1.toString();
- }
- }
- // one 32-bit unsigned value may contains 10 decimal digits
- resLengthInChars = numberLength * 10 + 1 + 7;
- // Explanation why +1+7:
- // +1 - one char for sign if needed.
- // +7 - For "special case 2" (see below) we have 7 free chars for
- // inserting necessary scaled digits.
- result = new char[resLengthInChars + 1];
- // allocated [resLengthInChars+1] characters.
- // a free latest character may be used for "special case 1" (see
- // below)
- currentChar = resLengthInChars;
- if (numberLength == 1) {
- int highDigit = digits[0];
- if (highDigit < 0) {
- long v = highDigit & 0xFFFFFFFFL;
- do {
- long prev = v;
- v /= 10;
- result[--currentChar] = (char) (0x0030 + ((int) (prev - v * 10)));
- } while (v != 0);
- } else {
- int v = highDigit;
- do {
- int prev = v;
- v /= 10;
- result[--currentChar] = (char) (0x0030 + (prev - v * 10));
- } while (v != 0);
- }
- } else {
- int[] temp = new int[numberLength];
- int tempLen = numberLength;
- System.arraycopy(digits, 0, temp, 0, tempLen);
- BIG_LOOP: while (true) {
- // divide the array of digits by bigRadix and convert
- // remainders
- // to characters collecting them in the char array
- long result11 = 0;
- for (int i1 = tempLen - 1; i1 >= 0; i1--) {
- long temp1 = (result11 << 32)
- + (temp[i1] & 0xFFFFFFFFL);
- long res = divideLongByBillion(temp1);
- temp[i1] = (int) res;
- result11 = (int) (res >> 32);
- }
- int resDigit = (int) result11;
- int previous = currentChar;
- do {
- result[--currentChar] = (char) (0x0030 + (resDigit % 10));
- } while (((resDigit /= 10) != 0) && (currentChar != 0));
- int delta = 9 - previous + currentChar;
- for (int i = 0; (i < delta) && (currentChar > 0); i++) {
- result[--currentChar] = '0';
- }
- int j = tempLen - 1;
- for (; temp[j] == 0; j--) {
- if (j == 0) { // means temp[0] == 0
- break BIG_LOOP;
- }
- }
- tempLen = j + 1;
- }
- while (result[currentChar] == '0') {
- currentChar++;
- }
- }
- boolean negNumber = (sign < 0);
- int exponent = resLengthInChars - currentChar - scale - 1;
- if (scale == 0) {
- if (negNumber) {
- result[--currentChar] = '-';
- }
- return new String(result, currentChar, resLengthInChars
- - currentChar);
- }
- if ((scale > 0) && (exponent >= -6)) {
- if (exponent >= 0) {
- // special case 1
- int insertPoint = currentChar + exponent;
- for (int j = resLengthInChars - 1; j >= insertPoint; j--) {
- result[j + 1] = result[j];
- }
- result[++insertPoint] = '.';
- if (negNumber) {
- result[--currentChar] = '-';
- }
- return new String(result, currentChar, resLengthInChars
- - currentChar + 1);
- }
- // special case 2
- for (int j = 2; j < -exponent + 1; j++) {
- result[--currentChar] = '0';
- }
- result[--currentChar] = '.';
- result[--currentChar] = '0';
- if (negNumber) {
- result[--currentChar] = '-';
- }
- return new String(result, currentChar, resLengthInChars
- - currentChar);
- }
- int startPoint = currentChar + 1;
- int endPoint = resLengthInChars;
- StringBuilder result1 = new StringBuilder(16 + endPoint - startPoint);
- if (negNumber) {
- result1.append('-');
- }
- if (endPoint - startPoint >= 1) {
- result1.append(result[currentChar]);
- result1.append('.');
- result1.append(result, currentChar + 1, resLengthInChars
- - currentChar - 1);
- } else {
- result1.append(result, currentChar, resLengthInChars
- - currentChar);
- }
- result1.append('E');
- if (exponent > 0) {
- result1.append('+');
- }
- result1.append(Integer.toString(exponent));
- return result1.toString();
- }
-
- /* can process only 32-bit numbers */
- static String toDecimalScaledString(long value, int scale) {
- int resLengthInChars;
- int currentChar;
- char[] result;
- boolean negNumber = value < 0;
- if(negNumber) {
- value = -value;
- }
- if (value == 0) {
- switch (scale) {
- case 0: return "0";
- case 1: return "0.0";
- case 2: return "0.00";
- case 3: return "0.000";
- case 4: return "0.0000";
- case 5: return "0.00000";
- case 6: return "0.000000";
- default:
- StringBuilder result1 = new StringBuilder();
- if (scale < 0) {
- result1.append("0E+");
- } else {
- result1.append("0E");
- }
- result1.append( (scale == Integer.MIN_VALUE) ? "2147483648" : Integer.toString(-scale));
- return result1.toString();
- }
- }
- // one 32-bit unsigned value may contains 10 decimal digits
- resLengthInChars = 18;
- // Explanation why +1+7:
- // +1 - one char for sign if needed.
- // +7 - For "special case 2" (see below) we have 7 free chars for
- // inserting necessary scaled digits.
- result = new char[resLengthInChars+1];
- // Allocated [resLengthInChars+1] characters.
- // a free latest character may be used for "special case 1" (see below)
- currentChar = resLengthInChars;
- long v = value;
- do {
- long prev = v;
- v /= 10;
- result[--currentChar] = (char) (0x0030 + (prev - v * 10));
- } while (v != 0);
-
- long exponent = (long)resLengthInChars - (long)currentChar - scale - 1L;
- if (scale == 0) {
- if (negNumber) {
- result[--currentChar] = '-';
- }
- return new String(result, currentChar, resLengthInChars - currentChar);
- }
- if (scale > 0 && exponent >= -6) {
- if (exponent >= 0) {
- // special case 1
- int insertPoint = currentChar + (int) exponent ;
- for (int j=resLengthInChars-1; j>=insertPoint; j--) {
- result[j+1] = result[j];
- }
- result[++insertPoint]='.';
- if (negNumber) {
- result[--currentChar] = '-';
- }
- return new String(result, currentChar, resLengthInChars - currentChar + 1);
- }
- // special case 2
- for (int j = 2; j < -exponent + 1; j++) {
- result[--currentChar] = '0';
- }
- result[--currentChar] = '.';
- result[--currentChar] = '0';
- if (negNumber) {
- result[--currentChar] = '-';
- }
- return new String(result, currentChar, resLengthInChars - currentChar);
- }
- int startPoint = currentChar + 1;
- int endPoint = resLengthInChars;
- StringBuilder result1 = new StringBuilder(16 + endPoint - startPoint);
- if (negNumber) {
- result1.append('-');
- }
- if (endPoint - startPoint >= 1) {
- result1.append(result[currentChar]);
- result1.append('.');
- result1.append(result,currentChar+1,resLengthInChars - currentChar-1);
- } else {
- result1.append(result,currentChar,resLengthInChars - currentChar);
- }
- result1.append('E');
- if (exponent > 0) {
- result1.append('+');
- }
- result1.append(Long.toString(exponent));
- return result1.toString();
- }
-
- static long divideLongByBillion(long a) {
- long quot;
- long rem;
-
- if (a >= 0) {
- long bLong = 1000000000L;
- quot = (a / bLong);
- rem = (a % bLong);
- } else {
- /*
- * Make the dividend positive shifting it right by 1 bit then get
- * the quotient an remainder and correct them properly
- */
- long aPos = a >>> 1;
- long bPos = 1000000000L >>> 1;
- quot = aPos / bPos;
- rem = aPos % bPos;
- // double the remainder and add 1 if 'a' is odd
- rem = (rem << 1) + (a & 1);
- }
- return ((rem << 32) | (quot & 0xFFFFFFFFL));
- }
-
- /** @see BigInteger#doubleValue() */
- static double bigInteger2Double(BigInteger val) {
- val.prepareJavaRepresentation();
- // val.bitLength() < 64
- if ((val.numberLength < 2)
- || ((val.numberLength == 2) && (val.digits[1] > 0))) {
- return val.longValue();
- }
- // val.bitLength() >= 33 * 32 > 1024
- if (val.numberLength > 32) {
- return ((val.sign > 0) ? Double.POSITIVE_INFINITY
- : Double.NEGATIVE_INFINITY);
- }
- int bitLen = val.abs().bitLength();
- long exponent = bitLen - 1;
- int delta = bitLen - 54;
- // We need 54 top bits from this, the 53th bit is always 1 in lVal.
- long lVal = val.abs().shiftRight(delta).longValue();
- /*
- * Take 53 bits from lVal to mantissa. The least significant bit is
- * needed for rounding.
- */
- long mantissa = lVal & 0x1FFFFFFFFFFFFFL;
- if (exponent == 1023) {
- if (mantissa == 0X1FFFFFFFFFFFFFL) {
- return ((val.sign > 0) ? Double.POSITIVE_INFINITY
- : Double.NEGATIVE_INFINITY);
- }
- if (mantissa == 0x1FFFFFFFFFFFFEL) {
- return ((val.sign > 0) ? Double.MAX_VALUE : -Double.MAX_VALUE);
- }
- }
- // Round the mantissa
- if (((mantissa & 1) == 1)
- && (((mantissa & 2) == 2) || BitLevel.nonZeroDroppedBits(delta,
- val.digits))) {
- mantissa += 2;
- }
- mantissa >>= 1; // drop the rounding bit
- long resSign = (val.sign < 0) ? 0x8000000000000000L : 0;
- exponent = ((1023 + exponent) << 52) & 0x7FF0000000000000L;
- long result = resSign | exponent | mantissa;
- return Double.longBitsToDouble(result);
- }
-}
diff --git a/luni/src/main/java/java/math/Division.java b/luni/src/main/java/java/math/Division.java
deleted file mode 100644
index d6427832c2..0000000000
--- a/luni/src/main/java/java/math/Division.java
+++ /dev/null
@@ -1,91 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package java.math;
-
-/**
- * Static library that provides all operations related with division and modular
- * arithmetic to {@link BigInteger}. Some methods are provided in both mutable
- * and immutable way. There are several variants provided listed below:
- *
- * <ul type="circle">
- * <li> <b>Division</b>
- * <ul type="circle">
- * <li>{@link BigInteger} division and remainder by {@link BigInteger}.</li>
- * <li>{@link BigInteger} division and remainder by {@code int}.</li>
- * <li><i>gcd</i> between {@link BigInteger} numbers.</li>
- * </ul>
- * </li>
- * <li> <b>Modular arithmetic </b>
- * <ul type="circle">
- * <li>Modular exponentiation between {@link BigInteger} numbers.</li>
- * <li>Modular inverse of a {@link BigInteger} numbers.</li>
- * </ul>
- * </li>
- *</ul>
- */
-class Division {
-
- /**
- * Divides an array by an integer value. Implements the Knuth's division
- * algorithm. See D. Knuth, The Art of Computer Programming, vol. 2.
- *
- * @return remainder
- */
- static int divideArrayByInt(int[] quotient, int[] dividend, final int dividendLength,
- final int divisor) {
-
- long rem = 0;
- long bLong = divisor & 0xffffffffL;
-
- for (int i = dividendLength - 1; i >= 0; i--) {
- long temp = (rem << 32) | (dividend[i] & 0xffffffffL);
- long quot;
- if (temp >= 0) {
- quot = (temp / bLong);
- rem = (temp % bLong);
- } else {
- /*
- * make the dividend positive shifting it right by 1 bit then
- * get the quotient an remainder and correct them properly
- */
- long aPos = temp >>> 1;
- long bPos = divisor >>> 1;
- quot = aPos / bPos;
- rem = aPos % bPos;
- // double the remainder and add 1 if a is odd
- rem = (rem << 1) + (temp & 1);
- if ((divisor & 1) != 0) {
- // the divisor is odd
- if (quot <= rem) {
- rem -= quot;
- } else {
- if (quot - rem <= bLong) {
- rem += bLong - quot;
- quot -= 1;
- } else {
- rem += (bLong << 1) - quot;
- quot -= 2;
- }
- }
- }
- }
- quotient[i] = (int) (quot & 0xffffffffL);
- }
- return (int) rem;
- }
-}
diff --git a/luni/src/main/java/java/math/Logical.java b/luni/src/main/java/java/math/Logical.java
deleted file mode 100644
index 9de092437a..0000000000
--- a/luni/src/main/java/java/math/Logical.java
+++ /dev/null
@@ -1,773 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package java.math;
-
-/**
- * The library implements some logical operations over {@code BigInteger}. The
- * operations provided are listed below.
- * <ul type="circle">
- * <li>not</li>
- * <li>and</li>
- * <li>andNot</li>
- * <li>or</li>
- * <li>xor</li>
- * </ul>
- */
-class Logical {
-
- /** Just to denote that this class can't be instantiated. */
-
- private Logical() {}
-
-
- /** @see BigInteger#not() */
- static BigInteger not(BigInteger val) {
- if (val.sign == 0) {
- return BigInteger.MINUS_ONE;
- }
- if (val.equals(BigInteger.MINUS_ONE)) {
- return BigInteger.ZERO;
- }
- int[] resDigits = new int[val.numberLength + 1];
- int i;
-
- if (val.sign > 0) {
- // ~val = -val + 1
- if (val.digits[val.numberLength - 1] != -1) {
- for (i = 0; val.digits[i] == -1; i++) {
- ;
- }
- } else {
- for (i = 0; (i < val.numberLength) && (val.digits[i] == -1); i++) {
- ;
- }
- if (i == val.numberLength) {
- resDigits[i] = 1;
- return new BigInteger(-val.sign, i + 1, resDigits);
- }
- }
- // Here a carry 1 was generated
- } else {// (val.sign < 0)
- // ~val = -val - 1
- for (i = 0; val.digits[i] == 0; i++) {
- resDigits[i] = -1;
- }
- // Here a borrow -1 was generated
- }
- // Now, the carry/borrow can be absorbed
- resDigits[i] = val.digits[i] + val.sign;
- // Copying the remaining unchanged digit
- for (i++; i < val.numberLength; i++) {
- resDigits[i] = val.digits[i];
- }
- return new BigInteger(-val.sign, i, resDigits);
- }
-
- /** @see BigInteger#and(BigInteger) */
- static BigInteger and(BigInteger val, BigInteger that) {
- if (that.sign == 0 || val.sign == 0) {
- return BigInteger.ZERO;
- }
- if (that.equals(BigInteger.MINUS_ONE)){
- return val;
- }
- if (val.equals(BigInteger.MINUS_ONE)) {
- return that;
- }
-
- if (val.sign > 0) {
- if (that.sign > 0) {
- return andPositive(val, that);
- } else {
- return andDiffSigns(val, that);
- }
- } else {
- if (that.sign > 0) {
- return andDiffSigns(that, val);
- } else if (val.numberLength > that.numberLength) {
- return andNegative(val, that);
- } else {
- return andNegative(that, val);
- }
- }
- }
-
- /** @return sign = 1, magnitude = val.magnitude & that.magnitude*/
- static BigInteger andPositive(BigInteger val, BigInteger that) {
- // PRE: both arguments are positive
- int resLength = Math.min(val.numberLength, that.numberLength);
- int i = Math.max(val.getFirstNonzeroDigit(), that.getFirstNonzeroDigit());
-
- if (i >= resLength) {
- return BigInteger.ZERO;
- }
-
- int[] resDigits = new int[resLength];
- for ( ; i < resLength; i++) {
- resDigits[i] = val.digits[i] & that.digits[i];
- }
-
- return new BigInteger(1, resLength, resDigits);
- }
-
- /** @return sign = positive.magnitude & magnitude = -negative.magnitude */
- static BigInteger andDiffSigns(BigInteger positive, BigInteger negative) {
- // PRE: positive is positive and negative is negative
- int iPos = positive.getFirstNonzeroDigit();
- int iNeg = negative.getFirstNonzeroDigit();
-
- // Look if the trailing zeros of the negative will "blank" all
- // the positive digits
- if (iNeg >= positive.numberLength) {
- return BigInteger.ZERO;
- }
- int resLength = positive.numberLength;
- int[] resDigits = new int[resLength];
-
- // Must start from max(iPos, iNeg)
- int i = Math.max(iPos, iNeg);
- if (i == iNeg) {
- resDigits[i] = -negative.digits[i] & positive.digits[i];
- i++;
- }
- int limit = Math.min(negative.numberLength, positive.numberLength);
- for ( ; i < limit; i++) {
- resDigits[i] = ~negative.digits[i] & positive.digits[i];
- }
- // if the negative was shorter must copy the remaining digits
- // from positive
- if (i >= negative.numberLength) {
- for ( ; i < positive.numberLength; i++) {
- resDigits[i] = positive.digits[i];
- }
- } // else positive ended and must "copy" virtual 0's, do nothing then
-
- return new BigInteger(1, resLength, resDigits);
- }
-
- /** @return sign = -1, magnitude = -(-longer.magnitude & -shorter.magnitude)*/
- static BigInteger andNegative(BigInteger longer, BigInteger shorter) {
- // PRE: longer and shorter are negative
- // PRE: longer has at least as many digits as shorter
- int iLonger = longer.getFirstNonzeroDigit();
- int iShorter = shorter.getFirstNonzeroDigit();
-
- // Does shorter matter?
- if (iLonger >= shorter.numberLength) {
- return longer;
- }
-
- int resLength;
- int[] resDigits;
- int i = Math.max(iShorter, iLonger);
- int digit;
- if (iShorter > iLonger) {
- digit = -shorter.digits[i] & ~longer.digits[i];
- } else if (iShorter < iLonger) {
- digit = ~shorter.digits[i] & -longer.digits[i];
- } else {
- digit = -shorter.digits[i] & -longer.digits[i];
- }
- if (digit == 0) {
- for (i++; i < shorter.numberLength && (digit = ~(longer.digits[i] | shorter.digits[i])) == 0; i++)
- ; // digit = ~longer.digits[i] & ~shorter.digits[i]
- if (digit == 0) {
- // shorter has only the remaining virtual sign bits
- for ( ; i < longer.numberLength && (digit = ~longer.digits[i]) == 0; i++)
- ;
- if (digit == 0) {
- resLength = longer.numberLength + 1;
- resDigits = new int[resLength];
- resDigits[resLength - 1] = 1;
-
- return new BigInteger(-1, resLength, resDigits);
- }
- }
- }
- resLength = longer.numberLength;
- resDigits = new int[resLength];
- resDigits[i] = -digit;
- for (i++; i < shorter.numberLength; i++){
- // resDigits[i] = ~(~longer.digits[i] & ~shorter.digits[i];)
- resDigits[i] = longer.digits[i] | shorter.digits[i];
- }
- // shorter has only the remaining virtual sign bits
- for ( ; i < longer.numberLength; i++){
- resDigits[i] = longer.digits[i];
- }
-
- return new BigInteger(-1, resLength, resDigits);
- }
-
- /** @see BigInteger#andNot(BigInteger) */
- static BigInteger andNot(BigInteger val, BigInteger that) {
- if (that.sign == 0 ) {
- return val;
- }
- if (val.sign == 0) {
- return BigInteger.ZERO;
- }
- if (val.equals(BigInteger.MINUS_ONE)) {
- return that.not();
- }
- if (that.equals(BigInteger.MINUS_ONE)){
- return BigInteger.ZERO;
- }
-
- //if val == that, return 0
-
- if (val.sign > 0) {
- if (that.sign > 0) {
- return andNotPositive(val, that);
- } else {
- return andNotPositiveNegative(val, that);
- }
- } else {
- if (that.sign > 0) {
- return andNotNegativePositive(val, that);
- } else {
- return andNotNegative(val, that);
- }
- }
- }
-
- /** @return sign = 1, magnitude = val.magnitude & ~that.magnitude*/
- static BigInteger andNotPositive(BigInteger val, BigInteger that) {
- // PRE: both arguments are positive
- int[] resDigits = new int[val.numberLength];
-
- int limit = Math.min(val.numberLength, that.numberLength);
- int i;
- for (i = val.getFirstNonzeroDigit(); i < limit; i++) {
- resDigits[i] = val.digits[i] & ~that.digits[i];
- }
- for ( ; i < val.numberLength; i++) {
- resDigits[i] = val.digits[i];
- }
-
- return new BigInteger(1, val.numberLength, resDigits);
- }
-
- /** @return sign = 1, magnitude = positive.magnitude & ~(-negative.magnitude)*/
- static BigInteger andNotPositiveNegative(BigInteger positive, BigInteger negative) {
- // PRE: positive > 0 && negative < 0
- int iNeg = negative.getFirstNonzeroDigit();
- int iPos = positive.getFirstNonzeroDigit();
-
- if (iNeg >= positive.numberLength) {
- return positive;
- }
-
- int resLength = Math.min(positive.numberLength, negative.numberLength);
- int[] resDigits = new int[resLength];
-
- // Always start from first non zero of positive
- int i = iPos;
- for ( ; i < iNeg; i++) {
- // resDigits[i] = positive.digits[i] & -1 (~0)
- resDigits[i] = positive.digits[i];
- }
- if (i == iNeg) {
- resDigits[i] = positive.digits[i] & (negative.digits[i] - 1);
- i++;
- }
- for ( ; i < resLength; i++) {
- // resDigits[i] = positive.digits[i] & ~(~negative.digits[i]);
- resDigits[i] = positive.digits[i] & negative.digits[i];
- }
-
- return new BigInteger(1, resLength, resDigits);
- }
-
- /** @return sign = -1, magnitude = -(-negative.magnitude & ~positive.magnitude)*/
- static BigInteger andNotNegativePositive(BigInteger negative, BigInteger positive) {
- // PRE: negative < 0 && positive > 0
- int resLength;
- int[] resDigits;
- int limit;
- int digit;
-
- int iNeg = negative.getFirstNonzeroDigit();
- int iPos = positive.getFirstNonzeroDigit();
-
- if (iNeg >= positive.numberLength) {
- return negative;
- }
-
- resLength = Math.max(negative.numberLength, positive.numberLength);
- int i = iNeg;
- if (iPos > iNeg) {
- resDigits = new int[resLength];
- limit = Math.min(negative.numberLength, iPos);
- for ( ; i < limit; i++) {
- // 1st case: resDigits [i] = -(-negative.digits[i] & (~0))
- // otherwise: resDigits[i] = ~(~negative.digits[i] & ~0) ;
- resDigits[i] = negative.digits[i];
- }
- if (i == negative.numberLength) {
- for (i = iPos; i < positive.numberLength; i++) {
- // resDigits[i] = ~(~positive.digits[i] & -1);
- resDigits[i] = positive.digits[i];
- }
- }
- } else {
- digit = -negative.digits[i] & ~positive.digits[i];
- if (digit == 0) {
- limit = Math.min(positive.numberLength, negative.numberLength);
- for (i++; i < limit && (digit = ~(negative.digits[i] | positive.digits[i])) == 0; i++)
- ; // digit = ~negative.digits[i] & ~positive.digits[i]
- if (digit == 0) {
- // the shorter has only the remaining virtual sign bits
- for ( ; i < positive.numberLength && (digit = ~positive.digits[i]) == 0; i++)
- ; // digit = -1 & ~positive.digits[i]
- for ( ; i < negative.numberLength && (digit = ~negative.digits[i]) == 0; i++)
- ; // digit = ~negative.digits[i] & ~0
- if (digit == 0) {
- resLength++;
- resDigits = new int[resLength];
- resDigits[resLength - 1] = 1;
-
- return new BigInteger(-1, resLength, resDigits);
- }
- }
- }
- resDigits = new int[resLength];
- resDigits[i] = -digit;
- i++;
- }
-
- limit = Math.min(positive.numberLength, negative.numberLength);
- for ( ; i < limit; i++) {
- //resDigits[i] = ~(~negative.digits[i] & ~positive.digits[i]);
- resDigits[i] = negative.digits[i] | positive.digits[i];
- }
- // Actually one of the next two cycles will be executed
- for ( ; i < negative.numberLength; i++) {
- resDigits[i] = negative.digits[i];
- }
- for ( ; i < positive.numberLength; i++) {
- resDigits[i] = positive.digits[i];
- }
-
- return new BigInteger(-1, resLength, resDigits);
- }
-
- /** @return sign = 1, magnitude = -val.magnitude & ~(-that.magnitude)*/
- static BigInteger andNotNegative(BigInteger val, BigInteger that) {
- // PRE: val < 0 && that < 0
- int iVal = val.getFirstNonzeroDigit();
- int iThat = that.getFirstNonzeroDigit();
-
- if (iVal >= that.numberLength) {
- return BigInteger.ZERO;
- }
-
- int resLength = that.numberLength;
- int[] resDigits = new int[resLength];
- int limit;
- int i = iVal;
- if (iVal < iThat) {
- // resDigits[i] = -val.digits[i] & -1;
- resDigits[i] = -val.digits[i];
- limit = Math.min(val.numberLength, iThat);
- for (i++; i < limit; i++) {
- // resDigits[i] = ~val.digits[i] & -1;
- resDigits[i] = ~val.digits[i];
- }
- if (i == val.numberLength) {
- for ( ; i < iThat; i++) {
- // resDigits[i] = -1 & -1;
- resDigits[i] = -1;
- }
- // resDigits[i] = -1 & ~-that.digits[i];
- resDigits[i] = that.digits[i] - 1;
- } else {
- // resDigits[i] = ~val.digits[i] & ~-that.digits[i];
- resDigits[i] = ~val.digits[i] & (that.digits[i] - 1);
- }
- } else if (iThat < iVal ) {
- // resDigits[i] = -val.digits[i] & ~~that.digits[i];
- resDigits[i] = -val.digits[i] & that.digits[i];
- } else {
- // resDigits[i] = -val.digits[i] & ~-that.digits[i];
- resDigits[i] = -val.digits[i] & (that.digits[i] - 1);
- }
-
- limit = Math.min(val.numberLength, that.numberLength);
- for (i++; i < limit; i++) {
- // resDigits[i] = ~val.digits[i] & ~~that.digits[i];
- resDigits[i] = ~val.digits[i] & that.digits[i];
- }
- for ( ; i < that.numberLength; i++) {
- // resDigits[i] = -1 & ~~that.digits[i];
- resDigits[i] = that.digits[i];
- }
-
- return new BigInteger(1, resLength, resDigits);
- }
-
- /** @see BigInteger#or(BigInteger) */
- static BigInteger or(BigInteger val, BigInteger that) {
- if (that.equals(BigInteger.MINUS_ONE) || val.equals(BigInteger.MINUS_ONE)) {
- return BigInteger.MINUS_ONE;
- }
- if (that.sign == 0) {
- return val;
- }
- if (val.sign == 0) {
- return that;
- }
-
- if (val.sign > 0) {
- if (that.sign > 0) {
- if (val.numberLength > that.numberLength) {
- return orPositive(val, that);
- } else {
- return orPositive(that, val);
- }
- } else {
- return orDiffSigns(val, that);
- }
- } else {
- if (that.sign > 0) {
- return orDiffSigns(that, val);
- } else if (that.getFirstNonzeroDigit() > val.getFirstNonzeroDigit()) {
- return orNegative(that, val);
- } else {
- return orNegative(val, that);
- }
- }
- }
-
- /** @return sign = 1, magnitude = longer.magnitude | shorter.magnitude*/
- static BigInteger orPositive(BigInteger longer, BigInteger shorter) {
- // PRE: longer and shorter are positive;
- // PRE: longer has at least as many digits as shorter
- int resLength = longer.numberLength;
- int[] resDigits = new int[resLength];
-
- int i;
- for (i = 0; i < shorter.numberLength; i++) {
- resDigits[i] = longer.digits[i] | shorter.digits[i];
- }
- for ( ; i < resLength; i++) {
- resDigits[i] = longer.digits[i];
- }
-
- return new BigInteger(1, resLength, resDigits);
- }
-
- /** @return sign = -1, magnitude = -(-val.magnitude | -that.magnitude) */
- static BigInteger orNegative(BigInteger val, BigInteger that){
- // PRE: val and that are negative;
- // PRE: val has at least as many trailing zeros digits as that
- int iThat = that.getFirstNonzeroDigit();
- int iVal = val.getFirstNonzeroDigit();
- int i;
-
- if (iVal >= that.numberLength) {
- return that;
- }else if (iThat >= val.numberLength) {
- return val;
- }
-
- int resLength = Math.min(val.numberLength, that.numberLength);
- int[] resDigits = new int[resLength];
-
- //Looking for the first non-zero digit of the result
- if (iThat == iVal) {
- resDigits[iVal] = -(-val.digits[iVal] | -that.digits[iVal]);
- i = iVal;
- } else {
- for (i = iThat; i < iVal; i++) {
- resDigits[i] = that.digits[i];
- }
- resDigits[i] = that.digits[i] & (val.digits[i] - 1);
- }
-
- for (i++; i < resLength; i++) {
- resDigits[i] = val.digits[i] & that.digits[i];
- }
-
- return new BigInteger(-1, resLength, resDigits);
- }
-
- /** @return sign = -1, magnitude = -(positive.magnitude | -negative.magnitude) */
- static BigInteger orDiffSigns(BigInteger positive, BigInteger negative){
- // Jumping over the least significant zero bits
- int iNeg = negative.getFirstNonzeroDigit();
- int iPos = positive.getFirstNonzeroDigit();
- int i;
- int limit;
-
- // Look if the trailing zeros of the positive will "copy" all
- // the negative digits
- if (iPos >= negative.numberLength) {
- return negative;
- }
- int resLength = negative.numberLength;
- int[] resDigits = new int[resLength];
-
- if (iNeg < iPos ) {
- // We know for sure that this will
- // be the first non zero digit in the result
- for (i = iNeg; i < iPos; i++) {
- resDigits[i] = negative.digits[i];
- }
- } else if (iPos < iNeg) {
- i = iPos;
- resDigits[i] = -positive.digits[i];
- limit = Math.min(positive.numberLength, iNeg);
- for (i++; i < limit; i++ ) {
- resDigits[i] = ~positive.digits[i];
- }
- if (i != positive.numberLength) {
- resDigits[i] = ~(-negative.digits[i] | positive.digits[i]);
- } else{
- for (; i<iNeg; i++) {
- resDigits[i] = -1;
- }
- // resDigits[i] = ~(-negative.digits[i] | 0);
- resDigits[i] = negative.digits[i] - 1;
- }
- i++;
- } else {// iNeg == iPos
- // Applying two complement to negative and to result
- i = iPos;
- resDigits[i] = -(-negative.digits[i] | positive.digits[i]);
- i++;
- }
- limit = Math.min(negative.numberLength, positive.numberLength);
- for (; i < limit; i++) {
- // Applying two complement to negative and to result
- // resDigits[i] = ~(~negative.digits[i] | positive.digits[i] );
- resDigits[i] = negative.digits[i] & ~positive.digits[i];
- }
- for ( ; i < negative.numberLength; i++) {
- resDigits[i] = negative.digits[i];
- }
-
- return new BigInteger(-1, resLength, resDigits);
- }
-
- /** @see BigInteger#xor(BigInteger) */
- static BigInteger xor(BigInteger val, BigInteger that) {
- if (that.sign == 0) {
- return val;
- }
- if (val.sign == 0) {
- return that;
- }
- if (that.equals(BigInteger.MINUS_ONE)) {
- return val.not();
- }
- if (val.equals(BigInteger.MINUS_ONE)) {
- return that.not();
- }
-
- if (val.sign > 0) {
- if (that.sign > 0) {
- if (val.numberLength > that.numberLength) {
- return xorPositive(val, that);
- } else {
- return xorPositive(that, val);
- }
- } else {
- return xorDiffSigns(val, that);
- }
- } else {
- if (that.sign > 0) {
- return xorDiffSigns(that, val);
- } else if (that.getFirstNonzeroDigit() > val.getFirstNonzeroDigit()) {
- return xorNegative(that, val);
- } else {
- return xorNegative(val, that);
- }
- }
- }
-
- /** @return sign = 0, magnitude = longer.magnitude | shorter.magnitude */
- static BigInteger xorPositive(BigInteger longer, BigInteger shorter) {
- // PRE: longer and shorter are positive;
- // PRE: longer has at least as many digits as shorter
- int resLength = longer.numberLength;
- int[] resDigits = new int[resLength];
- int i = Math.min(longer.getFirstNonzeroDigit(), shorter.getFirstNonzeroDigit());
- for ( ; i < shorter.numberLength; i++) {
- resDigits[i] = longer.digits[i] ^ shorter.digits[i];
- }
- for ( ; i < longer.numberLength; i++ ){
- resDigits[i] = longer.digits[i];
- }
-
- return new BigInteger(1, resLength, resDigits);
- }
-
- /** @return sign = 0, magnitude = -val.magnitude ^ -that.magnitude */
- static BigInteger xorNegative(BigInteger val, BigInteger that){
- // PRE: val and that are negative
- // PRE: val has at least as many trailing zero digits as that
- int resLength = Math.max(val.numberLength, that.numberLength);
- int[] resDigits = new int[resLength];
- int iVal = val.getFirstNonzeroDigit();
- int iThat = that.getFirstNonzeroDigit();
- int i = iThat;
- int limit;
-
-
- if (iVal == iThat) {
- resDigits[i] = -val.digits[i] ^ -that.digits[i];
- } else {
- resDigits[i] = -that.digits[i];
- limit = Math.min(that.numberLength, iVal);
- for (i++; i < limit; i++) {
- resDigits[i] = ~that.digits[i];
- }
- // Remains digits in that?
- if (i == that.numberLength) {
- //Jumping over the remaining zero to the first non one
- for ( ;i < iVal; i++) {
- //resDigits[i] = 0 ^ -1;
- resDigits[i] = -1;
- }
- //resDigits[i] = -val.digits[i] ^ -1;
- resDigits[i] = val.digits[i] - 1;
- } else {
- resDigits[i] = -val.digits[i] ^ ~that.digits[i];
- }
- }
-
- limit = Math.min(val.numberLength, that.numberLength);
- //Perform ^ between that al val until that ends
- for (i++; i < limit; i++) {
- //resDigits[i] = ~val.digits[i] ^ ~that.digits[i];
- resDigits[i] = val.digits[i] ^ that.digits[i];
- }
- //Perform ^ between val digits and -1 until val ends
- for ( ; i < val.numberLength; i++) {
- //resDigits[i] = ~val.digits[i] ^ -1 ;
- resDigits[i] = val.digits[i] ;
- }
- for ( ; i < that.numberLength; i++) {
- //resDigits[i] = -1 ^ ~that.digits[i] ;
- resDigits[i] = that.digits[i];
- }
-
- return new BigInteger(1, resLength, resDigits);
- }
-
- /** @return sign = 1, magnitude = -(positive.magnitude ^ -negative.magnitude)*/
- static BigInteger xorDiffSigns(BigInteger positive, BigInteger negative){
- int resLength = Math.max(negative.numberLength, positive.numberLength);
- int[] resDigits;
- int iNeg = negative.getFirstNonzeroDigit();
- int iPos = positive.getFirstNonzeroDigit();
- int i;
- int limit;
-
- //The first
- if (iNeg < iPos) {
- resDigits = new int[resLength];
- i = iNeg;
- //resDigits[i] = -(-negative.digits[i]);
- resDigits[i] = negative.digits[i];
- limit = Math.min(negative.numberLength, iPos);
- //Skip the positive digits while they are zeros
- for (i++; i < limit; i++) {
- //resDigits[i] = ~(~negative.digits[i]);
- resDigits[i] = negative.digits[i];
- }
- //if the negative has no more elements, must fill the
- //result with the remaining digits of the positive
- if (i == negative.numberLength) {
- for ( ; i < positive.numberLength; i++) {
- //resDigits[i] = ~(positive.digits[i] ^ -1) -> ~(~positive.digits[i])
- resDigits[i] = positive.digits[i];
- }
- }
- } else if (iPos < iNeg) {
- resDigits = new int[resLength];
- i = iPos;
- //Applying two complement to the first non-zero digit of the result
- resDigits[i] = -positive.digits[i];
- limit = Math.min(positive.numberLength, iNeg);
- for (i++; i < limit; i++) {
- //Continue applying two complement the result
- resDigits[i] = ~positive.digits[i];
- }
- //When the first non-zero digit of the negative is reached, must apply
- //two complement (arithmetic negation) to it, and then operate
- if (i == iNeg) {
- resDigits[i] = ~(positive.digits[i] ^ -negative.digits[i]);
- i++;
- } else {
- //if the positive has no more elements must fill the remaining digits with
- //the negative ones
- for ( ; i < iNeg; i++) {
- // resDigits[i] = ~(0 ^ 0)
- resDigits[i] = -1;
- }
- for ( ; i < negative.numberLength; i++) {
- //resDigits[i] = ~(~negative.digits[i] ^ 0)
- resDigits[i] = negative.digits[i];
- }
- }
- } else {
- //The first non-zero digit of the positive and negative are the same
- i = iNeg;
- int digit = positive.digits[i] ^ -negative.digits[i];
- if (digit == 0) {
- limit = Math.min(positive.numberLength, negative.numberLength);
- for (i++; i < limit && (digit = positive.digits[i] ^ ~negative.digits[i]) == 0; i++)
- ;
- if (digit == 0) {
- // shorter has only the remaining virtual sign bits
- for ( ; i < positive.numberLength && (digit = ~positive.digits[i]) == 0; i++)
- ;
- for ( ; i < negative.numberLength && (digit = ~negative.digits[i]) == 0; i++)
- ;
- if (digit == 0) {
- resLength = resLength + 1;
- resDigits = new int[resLength];
- resDigits[resLength - 1] = 1;
-
- return new BigInteger(-1, resLength, resDigits);
- }
- }
- }
- resDigits = new int[resLength];
- resDigits[i] = -digit;
- i++;
- }
-
- limit = Math.min(negative.numberLength, positive.numberLength);
- for ( ; i < limit; i++) {
- resDigits[i] = ~(~negative.digits[i] ^ positive.digits[i]);
- }
- for ( ; i < positive.numberLength; i++) {
- // resDigits[i] = ~(positive.digits[i] ^ -1)
- resDigits[i] = positive.digits[i];
- }
- for ( ; i < negative.numberLength; i++) {
- // resDigits[i] = ~(0 ^ ~negative.digits[i])
- resDigits[i] = negative.digits[i];
- }
-
- return new BigInteger(-1, resLength, resDigits);
- }
-}
diff --git a/luni/src/main/java/java/math/MathContext.java b/luni/src/main/java/java/math/MathContext.java
deleted file mode 100644
index 6f3f1edf6a..0000000000
--- a/luni/src/main/java/java/math/MathContext.java
+++ /dev/null
@@ -1,249 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package java.math;
-
-import java.io.IOException;
-import java.io.ObjectInputStream;
-import java.io.Serializable;
-import java.io.StreamCorruptedException;
-
-/**
- * Immutable objects describing settings such as rounding mode and digit
- * precision for the numerical operations provided by class {@link BigDecimal}.
- */
-public final class MathContext implements Serializable {
- private static final long serialVersionUID = 5579720004786848255L;
-
- /**
- * A {@code MathContext} which corresponds to the <a href="http://en.wikipedia.org/wiki/IEEE_754-1985">IEEE 754</a> quadruple
- * decimal precision format: 34 digit precision and
- * {@link RoundingMode#HALF_EVEN} rounding.
- */
- public static final MathContext DECIMAL128 = new MathContext(34, RoundingMode.HALF_EVEN);
-
- /**
- * A {@code MathContext} which corresponds to the <a href="http://en.wikipedia.org/wiki/IEEE_754-1985">IEEE 754</a> single decimal
- * precision format: 7 digit precision and {@link RoundingMode#HALF_EVEN}
- * rounding.
- */
- public static final MathContext DECIMAL32 = new MathContext(7, RoundingMode.HALF_EVEN);
-
- /**
- * A {@code MathContext} which corresponds to the <a href="http://en.wikipedia.org/wiki/IEEE_754-1985">IEEE 754</a> double decimal
- * precision format: 16 digit precision and {@link RoundingMode#HALF_EVEN}
- * rounding.
- */
- public static final MathContext DECIMAL64 = new MathContext(16, RoundingMode.HALF_EVEN);
-
- /**
- * A {@code MathContext} for unlimited precision with
- * {@link RoundingMode#HALF_UP} rounding.
- */
- public static final MathContext UNLIMITED = new MathContext(0, RoundingMode.HALF_UP);
-
- /**
- * The number of digits to be used for an operation; results are rounded to
- * this precision.
- */
- private final int precision;
-
- /**
- * A {@code RoundingMode} object which specifies the algorithm to be used
- * for rounding.
- */
- private final RoundingMode roundingMode;
-
- /**
- * Constructs a new {@code MathContext} with the specified precision and
- * with the rounding mode {@link RoundingMode#HALF_UP HALF_UP}. If the
- * precision passed is zero, then this implies that the computations have to
- * be performed exact, the rounding mode in this case is irrelevant.
- *
- * @param precision
- * the precision for the new {@code MathContext}.
- * @throws IllegalArgumentException
- * if {@code precision < 0}.
- */
- public MathContext(int precision) {
- this(precision, RoundingMode.HALF_UP);
- }
-
- /**
- * Constructs a new {@code MathContext} with the specified precision and
- * with the specified rounding mode. If the precision passed is zero, then
- * this implies that the computations have to be performed exact, the
- * rounding mode in this case is irrelevant.
- *
- * @param precision
- * the precision for the new {@code MathContext}.
- * @param roundingMode
- * the rounding mode for the new {@code MathContext}.
- * @throws IllegalArgumentException
- * if {@code precision < 0}.
- * @throws NullPointerException
- * if {@code roundingMode} is {@code null}.
- */
- public MathContext(int precision, RoundingMode roundingMode) {
- this.precision = precision;
- this.roundingMode = roundingMode;
- checkValid();
- }
-
- /**
- * Constructs a new {@code MathContext} from a string. The string has to
- * specify the precision and the rounding mode to be used and has to follow
- * the following syntax: "precision=&lt;precision&gt; roundingMode=&lt;roundingMode&gt;"
- * This is the same form as the one returned by the {@link #toString}
- * method.
- *
- * @throws IllegalArgumentException
- * if the string is not in the correct format or if the
- * precision specified is < 0.
- */
- public MathContext(String s) {
- int precisionLength = "precision=".length();
- int roundingModeLength = "roundingMode=".length();
-
- int spaceIndex;
- if (!s.startsWith("precision=") || (spaceIndex = s.indexOf(' ', precisionLength)) == -1) {
- throw invalidMathContext("Missing precision", s);
- }
- String precisionString = s.substring(precisionLength, spaceIndex);
- try {
- this.precision = Integer.parseInt(precisionString);
- } catch (NumberFormatException nfe) {
- throw invalidMathContext("Bad precision", s);
- }
-
- int roundingModeStart = spaceIndex + 1;
- if (!s.regionMatches(roundingModeStart, "roundingMode=", 0, roundingModeLength)) {
- throw invalidMathContext("Missing rounding mode", s);
- }
- roundingModeStart += roundingModeLength;
- this.roundingMode = RoundingMode.valueOf(s.substring(roundingModeStart));
-
- checkValid();
- }
-
- private IllegalArgumentException invalidMathContext(String reason, String s) {
- throw new IllegalArgumentException(reason + ": " + s);
- }
-
- private void checkValid() {
- if (precision < 0) {
- throw new IllegalArgumentException("Negative precision: " + precision);
- }
- if (roundingMode == null) {
- throw new NullPointerException("roundingMode == null");
- }
- }
-
- /**
- * Returns the precision. The precision is the number of digits used for an
- * operation. Results are rounded to this precision. The precision is
- * guaranteed to be non negative. If the precision is zero, then the
- * computations have to be performed exact, results are not rounded in this
- * case.
- *
- * @return the precision.
- */
- public int getPrecision() {
- return precision;
- }
-
- /**
- * Returns the rounding mode. The rounding mode is the strategy to be used
- * to round results.
- * <p>
- * The rounding mode is one of
- * {@link RoundingMode#UP},
- * {@link RoundingMode#DOWN},
- * {@link RoundingMode#CEILING},
- * {@link RoundingMode#FLOOR},
- * {@link RoundingMode#HALF_UP},
- * {@link RoundingMode#HALF_DOWN},
- * {@link RoundingMode#HALF_EVEN}, or
- * {@link RoundingMode#UNNECESSARY}.
- *
- * @return the rounding mode.
- */
- public RoundingMode getRoundingMode() {
- return roundingMode;
- }
-
- /**
- * Returns true if x is a {@code MathContext} with the same precision
- * setting and the same rounding mode as this {@code MathContext} instance.
- *
- * @param x
- * object to be compared.
- * @return {@code true} if this {@code MathContext} instance is equal to the
- * {@code x} argument; {@code false} otherwise.
- */
- @Override
- public boolean equals(Object x) {
- return ((x instanceof MathContext)
- && (((MathContext) x).getPrecision() == precision) && (((MathContext) x)
- .getRoundingMode() == roundingMode));
- }
-
- /**
- * Returns the hash code for this {@code MathContext} instance.
- *
- * @return the hash code for this {@code MathContext}.
- */
- @Override
- public int hashCode() {
- // Make place for the necessary bits to represent 8 rounding modes
- return ((precision << 3) | roundingMode.ordinal());
- }
-
- /**
- * Returns the string representation for this {@code MathContext} instance.
- * The string has the form
- * {@code
- * "precision=<precision> roundingMode=<roundingMode>"
- * } where {@code <precision>} is an integer describing the number
- * of digits used for operations and {@code <roundingMode>} is the
- * string representation of the rounding mode.
- *
- * @return a string representation for this {@code MathContext} instance
- */
- @Override
- public String toString() {
- return "precision=" + precision + " roundingMode=" + roundingMode;
- }
-
- /**
- * Makes checks upon deserialization of a {@code MathContext} instance.
- * Checks whether {@code precision >= 0} and {@code roundingMode != null}
- *
- * @throws StreamCorruptedException
- * if {@code precision < 0}
- * @throws StreamCorruptedException
- * if {@code roundingMode == null}
- */
- private void readObject(ObjectInputStream s) throws IOException, ClassNotFoundException {
- s.defaultReadObject();
- try {
- checkValid();
- } catch (Exception ex) {
- throw new StreamCorruptedException(ex.getMessage());
- }
- }
-}
diff --git a/luni/src/main/java/java/math/Multiplication.java b/luni/src/main/java/java/math/Multiplication.java
deleted file mode 100644
index 2a4285b56e..0000000000
--- a/luni/src/main/java/java/math/Multiplication.java
+++ /dev/null
@@ -1,187 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package java.math;
-
-/**
- * Static library that provides all multiplication of {@link BigInteger} methods.
- */
-class Multiplication {
-
- /** Just to denote that this class can't be instantiated. */
- private Multiplication() {}
-
- // BEGIN Android-removed
- // /**
- // * Break point in digits (number of {@code int} elements)
- // * between Karatsuba and Pencil and Paper multiply.
- // */
- // static final int whenUseKaratsuba = 63; // an heuristic value
- // END Android-removed
-
- /**
- * An array with powers of ten that fit in the type {@code int}.
- * ({@code 10^0,10^1,...,10^9})
- */
- static final int[] tenPows = {
- 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000
- };
-
- /**
- * An array with powers of five that fit in the type {@code int}.
- * ({@code 5^0,5^1,...,5^13})
- */
- static final int[] fivePows = {
- 1, 5, 25, 125, 625, 3125, 15625, 78125, 390625,
- 1953125, 9765625, 48828125, 244140625, 1220703125
- };
-
- /**
- * An array with the first powers of ten in {@code BigInteger} version.
- * ({@code 10^0,10^1,...,10^31})
- */
- static final BigInteger[] bigTenPows = new BigInteger[32];
-
- /**
- * An array with the first powers of five in {@code BigInteger} version.
- * ({@code 5^0,5^1,...,5^31})
- */
- static final BigInteger bigFivePows[] = new BigInteger[32];
-
-
-
- static {
- int i;
- long fivePow = 1L;
-
- for (i = 0; i <= 18; i++) {
- bigFivePows[i] = BigInteger.valueOf(fivePow);
- bigTenPows[i] = BigInteger.valueOf(fivePow << i);
- fivePow *= 5;
- }
- for (; i < bigTenPows.length; i++) {
- bigFivePows[i] = bigFivePows[i - 1].multiply(bigFivePows[1]);
- bigTenPows[i] = bigTenPows[i - 1].multiply(BigInteger.TEN);
- }
- }
-
- // BEGIN android-note: multiply has been removed in favor of using OpenSSL BIGNUM
- // END android-note
-
- /**
- * Multiplies a number by a positive integer.
- * @param val an arbitrary {@code BigInteger}
- * @param factor a positive {@code int} number
- * @return {@code val * factor}
- */
- static BigInteger multiplyByPositiveInt(BigInteger val, int factor) {
- BigInt bi = val.getBigInt().copy();
- bi.multiplyByPositiveInt(factor);
- return new BigInteger(bi);
- }
-
- /**
- * Multiplies a number by a power of ten.
- * This method is used in {@code BigDecimal} class.
- * @param val the number to be multiplied
- * @param exp a positive {@code long} exponent
- * @return {@code val * 10<sup>exp</sup>}
- */
- static BigInteger multiplyByTenPow(BigInteger val, long exp) {
- // PRE: exp >= 0
- return ((exp < tenPows.length)
- ? multiplyByPositiveInt(val, tenPows[(int)exp])
- : val.multiply(powerOf10(exp)));
- }
-
- /**
- * It calculates a power of ten, which exponent could be out of 32-bit range.
- * Note that internally this method will be used in the worst case with
- * an exponent equals to: {@code Integer.MAX_VALUE - Integer.MIN_VALUE}.
- * @param exp the exponent of power of ten, it must be positive.
- * @return a {@code BigInteger} with value {@code 10<sup>exp</sup>}.
- */
- static BigInteger powerOf10(long exp) {
- // PRE: exp >= 0
- int intExp = (int)exp;
- // "SMALL POWERS"
- if (exp < bigTenPows.length) {
- // The largest power that fit in 'long' type
- return bigTenPows[intExp];
- } else if (exp <= 50) {
- // To calculate: 10^exp
- return BigInteger.TEN.pow(intExp);
- }
-
- BigInteger res = null;
- try {
- // "LARGE POWERS"
- if (exp <= Integer.MAX_VALUE) {
- // To calculate: 5^exp * 2^exp
- res = bigFivePows[1].pow(intExp).shiftLeft(intExp);
- } else {
- /*
- * "HUGE POWERS"
- *
- * This branch probably won't be executed since the power of ten is too
- * big.
- */
- // To calculate: 5^exp
- BigInteger powerOfFive = bigFivePows[1].pow(Integer.MAX_VALUE);
- res = powerOfFive;
- long longExp = exp - Integer.MAX_VALUE;
-
- intExp = (int) (exp % Integer.MAX_VALUE);
- while (longExp > Integer.MAX_VALUE) {
- res = res.multiply(powerOfFive);
- longExp -= Integer.MAX_VALUE;
- }
- res = res.multiply(bigFivePows[1].pow(intExp));
- // To calculate: 5^exp << exp
- res = res.shiftLeft(Integer.MAX_VALUE);
- longExp = exp - Integer.MAX_VALUE;
- while (longExp > Integer.MAX_VALUE) {
- res = res.shiftLeft(Integer.MAX_VALUE);
- longExp -= Integer.MAX_VALUE;
- }
- res = res.shiftLeft(intExp);
- }
- } catch (OutOfMemoryError error) {
- throw new ArithmeticException(error.getMessage());
- }
-
- return res;
- }
-
- /**
- * Multiplies a number by a power of five.
- * This method is used in {@code BigDecimal} class.
- * @param val the number to be multiplied
- * @param exp a positive {@code int} exponent
- * @return {@code val * 5<sup>exp</sup>}
- */
- static BigInteger multiplyByFivePow(BigInteger val, int exp) {
- // PRE: exp >= 0
- if (exp < fivePows.length) {
- return multiplyByPositiveInt(val, fivePows[exp]);
- } else if (exp < bigFivePows.length) {
- return val.multiply(bigFivePows[exp]);
- } else {// Large powers of five
- return val.multiply(bigFivePows[1].pow(exp));
- }
- }
-}
diff --git a/luni/src/main/java/java/math/NativeBN.java b/luni/src/main/java/java/math/NativeBN.java
deleted file mode 100644
index ab9b2e029f..0000000000
--- a/luni/src/main/java/java/math/NativeBN.java
+++ /dev/null
@@ -1,136 +0,0 @@
-/*
- * Copyright (C) 2008 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package java.math;
-
-final class NativeBN {
-
- public static native long BN_new();
- // BIGNUM *BN_new(void);
-
- public static native void BN_free(long a);
- // void BN_free(BIGNUM *a);
-
- public static native int BN_cmp(long a, long b);
- // int BN_cmp(const BIGNUM *a, const BIGNUM *b);
-
- public static native void BN_copy(long to, long from);
- // BIGNUM *BN_copy(BIGNUM *to, const BIGNUM *from);
-
- public static native void putLongInt(long a, long dw);
- public static native void putULongInt(long a, long dw, boolean neg);
-
- public static native int BN_dec2bn(long a, String str);
- // int BN_dec2bn(BIGNUM **a, const char *str);
-
- public static native int BN_hex2bn(long a, String str);
- // int BN_hex2bn(BIGNUM **a, const char *str);
-
- public static native void BN_bin2bn(byte[] s, int len, boolean neg, long ret);
- // BIGNUM * BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret);
- // BN-Docu: s is taken as unsigned big endian;
- // Additional parameter: neg.
-
- public static native void litEndInts2bn(int[] ints, int len, boolean neg, long ret);
-
- public static native void twosComp2bn(byte[] s, int len, long ret);
-
-
- public static native long longInt(long a);
- // unsigned long BN_get_word(BIGNUM *a);
-
- public static native String BN_bn2dec(long a);
- // char * BN_bn2dec(const BIGNUM *a);
-
- public static native String BN_bn2hex(long a);
- // char * BN_bn2hex(const BIGNUM *a);
-
- public static native byte[] BN_bn2bin(long a);
- // Returns result byte[] AND NOT length.
- // int BN_bn2bin(const BIGNUM *a, unsigned char *to);
-
- public static native int[] bn2litEndInts(long a);
-
- public static native int sign(long a);
- // Returns -1, 0, 1 AND NOT boolean.
- // #define BN_is_negative(a) ((a)->neg != 0)
-
- public static native void BN_set_negative(long b, int n);
- // void BN_set_negative(BIGNUM *b, int n);
-
- public static native int bitLength(long a);
-
- public static native boolean BN_is_bit_set(long a, int n);
- // int BN_is_bit_set(const BIGNUM *a, int n);
-
- public static native void BN_shift(long r, long a, int n);
- // int BN_shift(BIGNUM *r, const BIGNUM *a, int n);
-
- public static native void BN_add_word(long a, int w);
- // ATTENTION: w is treated as unsigned.
- // int BN_add_word(BIGNUM *a, BN_ULONG w);
-
- public static native void BN_mul_word(long a, int w);
- // ATTENTION: w is treated as unsigned.
- // int BN_mul_word(BIGNUM *a, BN_ULONG w);
-
- public static native int BN_mod_word(long a, int w);
- // ATTENTION: w is treated as unsigned.
- // BN_ULONG BN_mod_word(BIGNUM *a, BN_ULONG w);
-
- public static native void BN_add(long r, long a, long b);
- // int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
-
- public static native void BN_sub(long r, long a, long b);
- // int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
-
- public static native void BN_gcd(long r, long a, long b);
- // int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
-
- public static native void BN_mul(long r, long a, long b);
- // int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
-
- public static native void BN_exp(long r, long a, long p);
- // int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
-
- public static native void BN_div(long dv, long rem, long m, long d);
- // int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx);
-
- public static native void BN_nnmod(long r, long a, long m);
- // int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
-
- public static native void BN_mod_exp(long r, long a, long p, long m);
- // int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx);
-
- public static native void BN_mod_inverse(long ret, long a, long n);
- // BIGNUM * BN_mod_inverse(BIGNUM *ret, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx);
-
-
- public static native void BN_generate_prime_ex(long ret, int bits, boolean safe,
- long add, long rem);
- // int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
- // const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb);
-
- public static native boolean BN_primality_test(long candidate, int checks,
- boolean do_trial_division);
- // int BN_primality_test(int *is_probably_prime, const BIGNUM *candidate, int checks,
- // BN_CTX *ctx, int do_trial_division, BN_GENCB *cb);
- // Returns *is_probably_prime on success and throws an exception on error.
-
- public static native long getNativeFinalizer();
- // &BN_free
-
-}
diff --git a/luni/src/main/java/java/math/Primality.java b/luni/src/main/java/java/math/Primality.java
deleted file mode 100644
index eacc8935bf..0000000000
--- a/luni/src/main/java/java/math/Primality.java
+++ /dev/null
@@ -1,145 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package java.math;
-
-import java.util.Arrays;
-
-/**
- * Provides primality probabilistic methods.
- */
-class Primality {
-
- /** Just to denote that this class can't be instantiated. */
- private Primality() {}
-
- /** All prime numbers with bit length lesser than 10 bits. */
- private static final int[] primes = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
- 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,
- 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,
- 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239,
- 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313,
- 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397,
- 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467,
- 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569,
- 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643,
- 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733,
- 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823,
- 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911,
- 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009,
- 1013, 1019, 1021 };
-
- /** All {@code BigInteger} prime numbers with bit length lesser than 10 bits. */
- private static final BigInteger BIprimes[] = new BigInteger[primes.length];
-
-// /**
-// * It encodes how many iterations of Miller-Rabin test are need to get an
-// * error bound not greater than {@code 2<sup>(-100)</sup>}. For example:
-// * for a {@code 1000}-bit number we need {@code 4} iterations, since
-// * {@code BITS[3] < 1000 <= BITS[4]}.
-// */
-// private static final int[] BITS = { 0, 0, 1854, 1233, 927, 747, 627, 543,
-// 480, 431, 393, 361, 335, 314, 295, 279, 265, 253, 242, 232, 223,
-// 216, 181, 169, 158, 150, 145, 140, 136, 132, 127, 123, 119, 114,
-// 110, 105, 101, 96, 92, 87, 83, 78, 73, 69, 64, 59, 54, 49, 44, 38,
-// 32, 26, 1 };
-//
-// /**
-// * It encodes how many i-bit primes there are in the table for
-// * {@code i=2,...,10}. For example {@code offsetPrimes[6]} says that from
-// * index {@code 11} exists {@code 7} consecutive {@code 6}-bit prime
-// * numbers in the array.
-// */
-// private static final int[][] offsetPrimes = { null, null, { 0, 2 },
-// { 2, 2 }, { 4, 2 }, { 6, 5 }, { 11, 7 }, { 18, 13 }, { 31, 23 },
-// { 54, 43 }, { 97, 75 } };
-
- static {// To initialize the dual table of BigInteger primes
- for (int i = 0; i < primes.length; i++) {
- BIprimes[i] = BigInteger.valueOf(primes[i]);
- }
- }
-
- /**
- * It uses the sieve of Eratosthenes to discard several composite numbers in
- * some appropriate range (at the moment {@code [this, this + 1024]}). After
- * this process it applies the Miller-Rabin test to the numbers that were
- * not discarded in the sieve.
- *
- * @see BigInteger#nextProbablePrime()
- */
- static BigInteger nextProbablePrime(BigInteger n) {
- // PRE: n >= 0
- int i, j;
-// int certainty;
- int gapSize = 1024; // for searching of the next probable prime number
- int[] modules = new int[primes.length];
- boolean isDivisible[] = new boolean[gapSize];
- BigInt ni = n.getBigInt();
- // If n < "last prime of table" searches next prime in the table
- if (ni.bitLength() <= 10) {
- int l = (int)ni.longInt();
- if (l < primes[primes.length - 1]) {
- for (i = 0; l >= primes[i]; i++) {}
- return BIprimes[i];
- }
- }
-
- BigInt startPoint = ni.copy();
- BigInt probPrime = new BigInt();
-
- // Fix startPoint to "next odd number":
- startPoint.addPositiveInt(BigInt.remainderByPositiveInt(ni, 2) + 1);
-
-// // To set the improved certainty of Miller-Rabin
-// j = startPoint.bitLength();
-// for (certainty = 2; j < BITS[certainty]; certainty++) {
-// ;
-// }
-
- // To calculate modules: N mod p1, N mod p2, ... for first primes.
- for (i = 0; i < primes.length; i++) {
- modules[i] = BigInt.remainderByPositiveInt(startPoint, primes[i]) - gapSize;
- }
- while (true) {
- // At this point, all numbers in the gap are initialized as
- // probably primes
- Arrays.fill(isDivisible, false);
- // To discard multiples of first primes
- for (i = 0; i < primes.length; i++) {
- modules[i] = (modules[i] + gapSize) % primes[i];
- j = (modules[i] == 0) ? 0 : (primes[i] - modules[i]);
- for (; j < gapSize; j += primes[i]) {
- isDivisible[j] = true;
- }
- }
- // To execute Miller-Rabin for non-divisible numbers by all first
- // primes
- for (j = 0; j < gapSize; j++) {
- if (!isDivisible[j]) {
- probPrime.putCopy(startPoint);
- probPrime.addPositiveInt(j);
- if (probPrime.isPrime(100)) {
- return new BigInteger(probPrime);
- }
- }
- }
- startPoint.addPositiveInt(gapSize);
- }
- }
-
-}
diff --git a/luni/src/main/java/java/math/RoundingMode.java b/luni/src/main/java/java/math/RoundingMode.java
deleted file mode 100644
index f4c181eadc..0000000000
--- a/luni/src/main/java/java/math/RoundingMode.java
+++ /dev/null
@@ -1,122 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package java.math;
-
-/**
- * Specifies the rounding behavior for operations whose results cannot be
- * represented exactly.
- */
-public enum RoundingMode {
-
- /**
- * Rounding mode where positive values are rounded towards positive infinity
- * and negative values towards negative infinity.
- * <br>
- * Rule: {@code x.round().abs() >= x.abs()}
- */
- UP(BigDecimal.ROUND_UP),
-
- /**
- * Rounding mode where the values are rounded towards zero.
- * <br>
- * Rule: {@code x.round().abs() <= x.abs()}
- */
- DOWN(BigDecimal.ROUND_DOWN),
-
- /**
- * Rounding mode to round towards positive infinity. For positive values
- * this rounding mode behaves as {@link #UP}, for negative values as
- * {@link #DOWN}.
- * <br>
- * Rule: {@code x.round() >= x}
- */
- CEILING(BigDecimal.ROUND_CEILING),
-
- /**
- * Rounding mode to round towards negative infinity. For positive values
- * this rounding mode behaves as {@link #DOWN}, for negative values as
- * {@link #UP}.
- * <br>
- * Rule: {@code x.round() <= x}
- */
- FLOOR(BigDecimal.ROUND_FLOOR),
-
- /**
- * Rounding mode where values are rounded towards the nearest neighbor. Ties
- * are broken by rounding up.
- */
- HALF_UP(BigDecimal.ROUND_HALF_UP),
-
- /**
- * Rounding mode where values are rounded towards the nearest neighbor. Ties
- * are broken by rounding down.
- */
- HALF_DOWN(BigDecimal.ROUND_HALF_DOWN),
-
- /**
- * Rounding mode where values are rounded towards the nearest neighbor. Ties
- * are broken by rounding to the even neighbor.
- */
- HALF_EVEN(BigDecimal.ROUND_HALF_EVEN),
-
- /**
- * Rounding mode where the rounding operations throws an ArithmeticException
- * for the case that rounding is necessary, i.e. for the case that the value
- * cannot be represented exactly.
- */
- UNNECESSARY(BigDecimal.ROUND_UNNECESSARY);
-
- /** The old constant of <code>BigDecimal</code>. */
- private final int bigDecimalRM;
-
- /** It sets the old constant. */
- RoundingMode(int rm) {
- bigDecimalRM = rm;
- }
-
- /**
- * Converts rounding mode constants from class {@code BigDecimal} into
- * {@code RoundingMode} values.
- *
- * @param mode
- * rounding mode constant as defined in class {@code BigDecimal}
- * @return corresponding rounding mode object
- */
- public static RoundingMode valueOf(int mode) {
- switch (mode) {
- case BigDecimal.ROUND_CEILING:
- return CEILING;
- case BigDecimal.ROUND_DOWN:
- return DOWN;
- case BigDecimal.ROUND_FLOOR:
- return FLOOR;
- case BigDecimal.ROUND_HALF_DOWN:
- return HALF_DOWN;
- case BigDecimal.ROUND_HALF_EVEN:
- return HALF_EVEN;
- case BigDecimal.ROUND_HALF_UP:
- return HALF_UP;
- case BigDecimal.ROUND_UNNECESSARY:
- return UNNECESSARY;
- case BigDecimal.ROUND_UP:
- return UP;
- default:
- throw new IllegalArgumentException("Invalid rounding mode");
- }
- }
-}
diff --git a/luni/src/main/java/libcore/math/NativeBN.java b/luni/src/main/java/libcore/math/NativeBN.java
new file mode 100644
index 0000000000..fb1cb78a50
--- /dev/null
+++ b/luni/src/main/java/libcore/math/NativeBN.java
@@ -0,0 +1,54 @@
+/*
+ * Copyright (C) 2008 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// TODO: Prune out the methods we no longer need after replacing the BigInteger
+// code.
+
+package libcore.math;
+
+/**
+ * @hide
+ */
+public final class NativeBN {
+
+ public static native long BN_new();
+ // BIGNUM *BN_new(void);
+
+ public static native void BN_free(long a);
+ // void BN_free(BIGNUM *a);
+
+ public static native void litEndInts2bn(int[] ints, int len, boolean neg, long ret);
+
+ // Generates a minimal length representation of |a| in a sequence of integers, least-significant
+ // word at index 0.
+ public static native int[] bn2litEndInts(long a);
+
+ public static native int sign(long a);
+ // Returns -1, 0, 1 AND NOT boolean.
+ // #define BN_is_negative(a) ((a)->neg != 0)
+
+ public static native void BN_set_negative(long b, int n);
+ // void BN_set_negative(BIGNUM *b, int n);
+
+ public static native void BN_mul(long r, long a, long b);
+ // int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
+
+ public static native void BN_div(long dv, long rem, long num, long divisor);
+ // int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *num, const BIGNUM *divisor, BN_CTX *ctx);
+
+ public static native void BN_mod_exp(long r, long a, long p, long m);
+ // int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx);
+}
diff --git a/luni/src/main/native/Android.bp b/luni/src/main/native/Android.bp
index 423cdd11a8..f41e368af8 100644
--- a/luni/src/main/native/Android.bp
+++ b/luni/src/main/native/Android.bp
@@ -30,7 +30,7 @@ filegroup {
"java_lang_StringToReal.cpp",
"java_lang_invoke_MethodHandle.cpp",
"java_lang_invoke_VarHandle.cpp",
- "java_math_NativeBN.cpp",
+ "libcore_math_NativeBN.cpp",
"libcore_icu_ICU.cpp",
"libcore_icu_TimeZoneNames.cpp",
"libcore_io_AsynchronousCloseMonitor.cpp",
diff --git a/luni/src/main/native/Register.cpp b/luni/src/main/native/Register.cpp
index 17ca83960c..949d932398 100644
--- a/luni/src/main/native/Register.cpp
+++ b/luni/src/main/native/Register.cpp
@@ -39,12 +39,12 @@ jint JNI_OnLoad(JavaVM* vm, void*) {
// REGISTER(register_java_lang_StringToReal);
REGISTER(register_java_lang_invoke_MethodHandle);
REGISTER(register_java_lang_invoke_VarHandle);
- REGISTER(register_java_math_NativeBN);
REGISTER(register_libcore_icu_ICU);
REGISTER(register_libcore_icu_TimeZoneNames);
REGISTER(register_libcore_io_AsynchronousCloseMonitor);
REGISTER(register_libcore_io_Linux);
REGISTER(register_libcore_io_Memory);
+ REGISTER(register_libcore_math_NativeBN);
REGISTER(register_libcore_util_NativeAllocationRegistry);
REGISTER(register_org_apache_harmony_dalvik_NativeTestTarget);
REGISTER(register_org_apache_harmony_xml_ExpatParser);
diff --git a/luni/src/main/native/java_math_NativeBN.cpp b/luni/src/main/native/java_math_NativeBN.cpp
deleted file mode 100644
index 5d085ec9ec..0000000000
--- a/luni/src/main/native/java_math_NativeBN.cpp
+++ /dev/null
@@ -1,569 +0,0 @@
-/*
- * Copyright (C) 2008 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#define LOG_TAG "NativeBN"
-
-#include <stdio.h>
-#include <algorithm>
-#include <memory>
-
-#include <openssl/bn.h>
-#include <openssl/crypto.h>
-#include <openssl/err.h>
-
-#include <nativehelper/JNIHelp.h>
-#include <nativehelper/ScopedPrimitiveArray.h>
-#include <nativehelper/ScopedUtfChars.h>
-#include <nativehelper/jni_macros.h>
-
-#include "JniException.h"
-
-struct BN_CTX_Deleter {
- void operator()(BN_CTX* p) const {
- BN_CTX_free(p);
- }
-};
-typedef std::unique_ptr<BN_CTX, BN_CTX_Deleter> Unique_BN_CTX;
-
-static BIGNUM* toBigNum(jlong address) {
- return reinterpret_cast<BIGNUM*>(static_cast<uintptr_t>(address));
-}
-
-static void throwException(JNIEnv* env) {
- long error = ERR_get_error();
- // OpenSSL's error queue may contain multiple errors. Clean up after them.
- ERR_clear_error();
-
- if (error == 0) {
- // An operation failed but did not push to the error queue. Throw a default
- // exception.
- jniThrowException(env, "java/lang/ArithmeticException", "Operation failed");
- return;
- }
-
- char message[256];
- ERR_error_string_n(error, message, sizeof(message));
- int reason = ERR_GET_REASON(error);
- if (reason == BN_R_DIV_BY_ZERO) {
- jniThrowException(env, "java/lang/ArithmeticException", "BigInteger division by zero");
- } else if (reason == BN_R_NO_INVERSE) {
- jniThrowException(env, "java/lang/ArithmeticException", "BigInteger not invertible");
- } else if (reason == ERR_R_MALLOC_FAILURE) {
- jniThrowOutOfMemoryError(env, message);
- } else {
- jniThrowException(env, "java/lang/ArithmeticException", message);
- }
-}
-
-static int isValidHandle(JNIEnv* env, jlong handle, const char* message) {
- if (handle == 0) {
- jniThrowNullPointerException(env, message);
- return JNI_FALSE;
- }
- return JNI_TRUE;
-}
-
-static int oneValidHandle(JNIEnv* env, jlong a) {
- return isValidHandle(env, a, "Mandatory handle (first) passed as null");
-}
-
-static int twoValidHandles(JNIEnv* env, jlong a, jlong b) {
- if (!oneValidHandle(env, a)) return JNI_FALSE;
- return isValidHandle(env, b, "Mandatory handle (second) passed as null");
-}
-
-static int threeValidHandles(JNIEnv* env, jlong a, jlong b, jlong c) {
- if (!twoValidHandles(env, a, b)) return JNI_FALSE;
- return isValidHandle(env, c, "Mandatory handle (third) passed as null");
-}
-
-static int fourValidHandles(JNIEnv* env, jlong a, jlong b, jlong c, jlong d) {
- if (!threeValidHandles(env, a, b, c)) return JNI_FALSE;
- return isValidHandle(env, d, "Mandatory handle (fourth) passed as null");
-}
-
-static jlong NativeBN_BN_new(JNIEnv* env, jclass) {
- jlong result = static_cast<jlong>(reinterpret_cast<uintptr_t>(BN_new()));
- if (!result) {
- throwException(env);
- }
- return result;
-}
-
-static jlong NativeBN_getNativeFinalizer(JNIEnv*, jclass) {
- return static_cast<jlong>(reinterpret_cast<uintptr_t>(&BN_free));
-}
-
-static void NativeBN_BN_free(JNIEnv* env, jclass, jlong a) {
- if (!oneValidHandle(env, a)) return;
- BN_free(toBigNum(a));
-}
-
-static int NativeBN_BN_cmp(JNIEnv* env, jclass, jlong a, jlong b) {
- if (!twoValidHandles(env, a, b)) return 1;
- return BN_cmp(toBigNum(a), toBigNum(b));
-}
-
-static void NativeBN_BN_copy(JNIEnv* env, jclass, jlong to, jlong from) {
- if (!twoValidHandles(env, to, from)) return;
- if (!BN_copy(toBigNum(to), toBigNum(from))) {
- throwException(env);
- }
-}
-
-static void NativeBN_putULongInt(JNIEnv* env, jclass, jlong a0, jlong java_dw, jboolean neg) {
- if (!oneValidHandle(env, a0)) return;
-
- uint64_t dw = java_dw;
- BIGNUM* a = toBigNum(a0);
-
- if (!BN_set_u64(a, dw)) {
- throwException(env);
- return;
- }
-
- BN_set_negative(a, neg);
-}
-
-static void NativeBN_putLongInt(JNIEnv* env, jclass cls, jlong a, jlong dw) {
- if (dw >= 0) {
- NativeBN_putULongInt(env, cls, a, dw, JNI_FALSE);
- } else {
- NativeBN_putULongInt(env, cls, a, -dw, JNI_TRUE);
- }
-}
-
-static int NativeBN_BN_dec2bn(JNIEnv* env, jclass, jlong a0, jstring str) {
- if (!oneValidHandle(env, a0)) return -1;
- ScopedUtfChars chars(env, str);
- if (chars.c_str() == NULL) {
- return -1;
- }
- BIGNUM* a = toBigNum(a0);
- int result = BN_dec2bn(&a, chars.c_str());
- if (result == 0) {
- throwException(env);
- }
- return result;
-}
-
-static int NativeBN_BN_hex2bn(JNIEnv* env, jclass, jlong a0, jstring str) {
- if (!oneValidHandle(env, a0)) return -1;
- ScopedUtfChars chars(env, str);
- if (chars.c_str() == NULL) {
- return -1;
- }
- BIGNUM* a = toBigNum(a0);
- int result = BN_hex2bn(&a, chars.c_str());
- if (result == 0) {
- throwException(env);
- }
- return result;
-}
-
-static void NativeBN_BN_bin2bn(JNIEnv* env, jclass, jbyteArray arr, int len, jboolean neg, jlong ret) {
- if (!oneValidHandle(env, ret)) return;
- ScopedByteArrayRO bytes(env, arr);
- if (bytes.get() == NULL) {
- return;
- }
- if (!BN_bin2bn(reinterpret_cast<const unsigned char*>(bytes.get()), len, toBigNum(ret))) {
- throwException(env);
- return;
- }
-
- BN_set_negative(toBigNum(ret), neg);
-}
-
-static void NativeBN_litEndInts2bn(JNIEnv* env, jclass, jintArray arr, int len, jboolean neg, jlong ret0) {
- if (!oneValidHandle(env, ret0)) return;
- BIGNUM* ret = toBigNum(ret0);
-
- ScopedIntArrayRO scopedArray(env, arr);
-
- if (scopedArray.get() == NULL) {
- return;
- }
-
- // We can simply interpret the little-endian integer stream as a
- // little-endian byte stream and use BN_le2bn.
- const uint8_t* tmpBytes = reinterpret_cast<const uint8_t *>(scopedArray.get());
- size_t numBytes = len * sizeof(int);
-
- if (!BN_le2bn(tmpBytes, numBytes, ret)) {
- throwException(env);
- }
-
- BN_set_negative(ret, neg);
-}
-
-static void NativeBN_twosComp2bn(JNIEnv* env, jclass, jbyteArray arr, int bytesLen, jlong ret0) {
- if (!oneValidHandle(env, ret0)) return;
- BIGNUM* ret = toBigNum(ret0);
-
- ScopedByteArrayRO bytes(env, arr);
- if (bytes.get() == NULL) {
- return;
- }
-
- if (bytesLen == 0) {
- BN_zero(ret);
- return;
- }
-
- const unsigned char* bytesTmp = reinterpret_cast<const unsigned char*>(bytes.get());
-
- if (!BN_bin2bn(bytesTmp, bytesLen, ret)) {
- throwException(env);
- return;
- }
-
- // Use the high bit to determine the sign in twos-complement.
- BN_set_negative(ret, (bytes[0] & 0x80) != 0);
-
- if (BN_is_negative(ret)) {
- // For negative values, BN_bin2bn doesn't interpret the twos-complement
- // representation, so ret is now (- value - 2^N). We can use nnmod_pow2 to set
- // ret to (-value).
- if (!BN_nnmod_pow2(ret, ret, bytesLen * 8)) {
- throwException(env);
- return;
- }
-
- // And now we correct the sign.
- BN_set_negative(ret, 1);
- }
-}
-
-static jlong NativeBN_longInt(JNIEnv* env, jclass, jlong a0) {
- if (!oneValidHandle(env, a0)) return -1;
- BIGNUM* a = toBigNum(a0);
- uint64_t word;
-
- if (BN_get_u64(a, &word)) {
- return BN_is_negative(a) ? -((jlong) word) : word;
- } else {
- // This should be unreachable if our caller checks BigInt::twosCompFitsIntoBytes(8)
- throwException(env);
- return 0;
- }
-}
-
-static char* leadingZerosTrimmed(char* s) {
- char* p = s;
- if (*p == '-') {
- p++;
- while ((*p == '0') && (*(p + 1) != 0)) { p++; }
- p--;
- *p = '-';
- } else {
- while ((*p == '0') && (*(p + 1) != 0)) { p++; }
- }
- return p;
-}
-
-static jstring NativeBN_BN_bn2dec(JNIEnv* env, jclass, jlong a) {
- if (!oneValidHandle(env, a)) return NULL;
- char* tmpStr = BN_bn2dec(toBigNum(a));
- if (tmpStr == NULL) {
- throwException(env);
- return NULL;
- }
- char* retStr = leadingZerosTrimmed(tmpStr);
- jstring returnJString = env->NewStringUTF(retStr);
- OPENSSL_free(tmpStr);
- return returnJString;
-}
-
-static jstring NativeBN_BN_bn2hex(JNIEnv* env, jclass, jlong a) {
- if (!oneValidHandle(env, a)) return NULL;
- char* tmpStr = BN_bn2hex(toBigNum(a));
- if (tmpStr == NULL) {
- throwException(env);
- return NULL;
- }
- char* retStr = leadingZerosTrimmed(tmpStr);
- jstring returnJString = env->NewStringUTF(retStr);
- OPENSSL_free(tmpStr);
- return returnJString;
-}
-
-static jbyteArray NativeBN_BN_bn2bin(JNIEnv* env, jclass, jlong a0) {
- if (!oneValidHandle(env, a0)) return NULL;
- BIGNUM* a = toBigNum(a0);
- jbyteArray result = env->NewByteArray(BN_num_bytes(a));
- if (result == NULL) {
- return NULL;
- }
- ScopedByteArrayRW bytes(env, result);
- if (bytes.get() == NULL) {
- return NULL;
- }
- BN_bn2bin(a, reinterpret_cast<unsigned char*>(bytes.get()));
- return result;
-}
-
-static jintArray NativeBN_bn2litEndInts(JNIEnv* env, jclass, jlong a0) {
- if (!oneValidHandle(env, a0)) return NULL;
-
- BIGNUM* a = toBigNum(a0);
-
- // The number of integers we need is BN_num_bytes(a) / sizeof(int), rounded up
- int intLen = (BN_num_bytes(a) + sizeof(int) - 1) / sizeof(int);
-
- // Allocate our result with the JNI boilerplate
- jintArray result = env->NewIntArray(intLen);
-
- if (result == NULL) {
- throwException(env);
- return NULL;
- }
-
- ScopedIntArrayRW ints(env, result);
-
- unsigned int* uints = reinterpret_cast<unsigned int*>(ints.get());
- if (uints == NULL) {
- throwException(env);
- return NULL;
- }
-
- // We can simply interpret a little-endian byte stream as a little-endian integer stream.
- if (!BN_bn2le_padded(reinterpret_cast<uint8_t*>(uints), intLen * sizeof(int), a)) {
- throwException(env);
- return NULL;
- }
-
- return result;
-}
-
-static int NativeBN_sign(JNIEnv* env, jclass, jlong a) {
- if (!oneValidHandle(env, a)) return -2;
- if (BN_is_zero(toBigNum(a))) {
- return 0;
- } else if (BN_is_negative(toBigNum(a))) {
- return -1;
- }
- return 1;
-}
-
-static void NativeBN_BN_set_negative(JNIEnv* env, jclass, jlong b, int n) {
- if (!oneValidHandle(env, b)) return;
- BN_set_negative(toBigNum(b), n);
-}
-
-static int NativeBN_bitLength(JNIEnv* env, jclass, jlong a0) {
- if (!oneValidHandle(env, a0)) return JNI_FALSE;
- BIGNUM* a = toBigNum(a0);
-
- // If a is not negative, we can use BN_num_bits directly.
- if (!BN_is_negative(a)) {
- return BN_num_bits(a);
- }
-
- // In the negative case, the number of bits in a is the same as the number of bits in |a|,
- // except one less when |a| is a power of two.
- BIGNUM positiveA;
- BN_init(&positiveA);
-
- if (!BN_copy(&positiveA, a)) {
- BN_free(&positiveA);
- throwException(env);
- return -1;
- }
-
- BN_set_negative(&positiveA, false);
- int numBits = BN_is_pow2(&positiveA) ? BN_num_bits(&positiveA) - 1 : BN_num_bits(&positiveA);
-
- BN_free(&positiveA);
- return numBits;
-}
-
-static jboolean NativeBN_BN_is_bit_set(JNIEnv* env, jclass, jlong a, int n) {
- if (!oneValidHandle(env, a)) return JNI_FALSE;
-
- // NOTE: this is only called in the positive case, so BN_is_bit_set is fine here.
- return BN_is_bit_set(toBigNum(a), n) ? JNI_TRUE : JNI_FALSE;
-}
-
-static void NativeBN_BN_shift(JNIEnv* env, jclass, jlong r, jlong a, int n) {
- if (!twoValidHandles(env, r, a)) return;
- int ok;
- if (n >= 0) {
- ok = BN_lshift(toBigNum(r), toBigNum(a), n);
- } else {
- ok = BN_rshift(toBigNum(r), toBigNum(a), -n);
- }
- if (!ok) {
- throwException(env);
- }
-}
-
-static void NativeBN_BN_add_word(JNIEnv* env, jclass, jlong a, jint w) {
- if (!oneValidHandle(env, a)) return;
- if (!BN_add_word(toBigNum(a), w)) {
- throwException(env);
- }
-}
-
-static void NativeBN_BN_mul_word(JNIEnv* env, jclass, jlong a, jint w) {
- if (!oneValidHandle(env, a)) return;
- if (!BN_mul_word(toBigNum(a), w)) {
- throwException(env);
- }
-}
-
-static jint NativeBN_BN_mod_word(JNIEnv* env, jclass, jlong a, jint w) {
- if (!oneValidHandle(env, a)) return 0;
- BN_ULONG result = BN_mod_word(toBigNum(a), w);
- if (result == (BN_ULONG)-1) {
- throwException(env);
- }
- return result;
-}
-
-static void NativeBN_BN_add(JNIEnv* env, jclass, jlong r, jlong a, jlong b) {
- if (!threeValidHandles(env, r, a, b)) return;
- if (!BN_add(toBigNum(r), toBigNum(a), toBigNum(b))) {
- throwException(env);
- }
-}
-
-static void NativeBN_BN_sub(JNIEnv* env, jclass, jlong r, jlong a, jlong b) {
- if (!threeValidHandles(env, r, a, b)) return;
- if (!BN_sub(toBigNum(r), toBigNum(a), toBigNum(b))) {
- throwException(env);
- }
-}
-
-static void NativeBN_BN_gcd(JNIEnv* env, jclass, jlong r, jlong a, jlong b) {
- if (!threeValidHandles(env, r, a, b)) return;
- Unique_BN_CTX ctx(BN_CTX_new());
- if (!BN_gcd(toBigNum(r), toBigNum(a), toBigNum(b), ctx.get())) {
- throwException(env);
- }
-}
-
-static void NativeBN_BN_mul(JNIEnv* env, jclass, jlong r, jlong a, jlong b) {
- if (!threeValidHandles(env, r, a, b)) return;
- Unique_BN_CTX ctx(BN_CTX_new());
- if (!BN_mul(toBigNum(r), toBigNum(a), toBigNum(b), ctx.get())) {
- throwException(env);
- }
-}
-
-static void NativeBN_BN_exp(JNIEnv* env, jclass, jlong r, jlong a, jlong p) {
- if (!threeValidHandles(env, r, a, p)) return;
- Unique_BN_CTX ctx(BN_CTX_new());
- if (!BN_exp(toBigNum(r), toBigNum(a), toBigNum(p), ctx.get())) {
- throwException(env);
- }
-}
-
-static void NativeBN_BN_div(JNIEnv* env, jclass, jlong dv, jlong rem, jlong m, jlong d) {
- if (!fourValidHandles(env, (rem ? rem : dv), (dv ? dv : rem), m, d)) return;
- Unique_BN_CTX ctx(BN_CTX_new());
- if (!BN_div(toBigNum(dv), toBigNum(rem), toBigNum(m), toBigNum(d), ctx.get())) {
- throwException(env);
- }
-}
-
-static void NativeBN_BN_nnmod(JNIEnv* env, jclass, jlong r, jlong a, jlong m) {
- if (!threeValidHandles(env, r, a, m)) return;
- Unique_BN_CTX ctx(BN_CTX_new());
- if (!BN_nnmod(toBigNum(r), toBigNum(a), toBigNum(m), ctx.get())) {
- throwException(env);
- }
-}
-
-static void NativeBN_BN_mod_exp(JNIEnv* env, jclass, jlong r, jlong a, jlong p, jlong m) {
- if (!fourValidHandles(env, r, a, p, m)) return;
- Unique_BN_CTX ctx(BN_CTX_new());
- if (!BN_mod_exp(toBigNum(r), toBigNum(a), toBigNum(p), toBigNum(m), ctx.get())) {
- throwException(env);
- }
-}
-
-static void NativeBN_BN_mod_inverse(JNIEnv* env, jclass, jlong ret, jlong a, jlong n) {
- if (!threeValidHandles(env, ret, a, n)) return;
- Unique_BN_CTX ctx(BN_CTX_new());
- if (!BN_mod_inverse(toBigNum(ret), toBigNum(a), toBigNum(n), ctx.get())) {
- throwException(env);
- }
-}
-
-static void NativeBN_BN_generate_prime_ex(JNIEnv* env, jclass, jlong ret, int bits,
- jboolean safe, jlong add, jlong rem) {
- if (!oneValidHandle(env, ret)) return;
- if (!BN_generate_prime_ex(toBigNum(ret), bits, safe, toBigNum(add), toBigNum(rem),
- NULL)) {
- throwException(env);
- }
-}
-
-static jboolean NativeBN_BN_primality_test(JNIEnv* env, jclass, jlong candidate, int checks,
- jboolean do_trial_decryption) {
- if (!oneValidHandle(env, candidate)) return JNI_FALSE;
- Unique_BN_CTX ctx(BN_CTX_new());
- int is_probably_prime;
- if (!BN_primality_test(&is_probably_prime, toBigNum(candidate), checks, ctx.get(),
- do_trial_decryption, NULL)) {
- throwException(env);
- return JNI_FALSE;
- }
- return is_probably_prime ? JNI_TRUE : JNI_FALSE;
-}
-
-static JNINativeMethod gMethods[] = {
- NATIVE_METHOD(NativeBN, BN_add, "(JJJ)V"),
- NATIVE_METHOD(NativeBN, BN_add_word, "(JI)V"),
- NATIVE_METHOD(NativeBN, BN_bin2bn, "([BIZJ)V"),
- NATIVE_METHOD(NativeBN, BN_bn2bin, "(J)[B"),
- NATIVE_METHOD(NativeBN, BN_bn2dec, "(J)Ljava/lang/String;"),
- NATIVE_METHOD(NativeBN, BN_bn2hex, "(J)Ljava/lang/String;"),
- NATIVE_METHOD(NativeBN, BN_cmp, "(JJ)I"),
- NATIVE_METHOD(NativeBN, BN_copy, "(JJ)V"),
- NATIVE_METHOD(NativeBN, BN_dec2bn, "(JLjava/lang/String;)I"),
- NATIVE_METHOD(NativeBN, BN_div, "(JJJJ)V"),
- NATIVE_METHOD(NativeBN, BN_exp, "(JJJ)V"),
- NATIVE_METHOD(NativeBN, BN_free, "(J)V"),
- NATIVE_METHOD(NativeBN, BN_gcd, "(JJJ)V"),
- NATIVE_METHOD(NativeBN, BN_generate_prime_ex, "(JIZJJ)V"),
- NATIVE_METHOD(NativeBN, BN_hex2bn, "(JLjava/lang/String;)I"),
- NATIVE_METHOD(NativeBN, BN_is_bit_set, "(JI)Z"),
- NATIVE_METHOD(NativeBN, BN_primality_test, "(JIZ)Z"),
- NATIVE_METHOD(NativeBN, BN_mod_exp, "(JJJJ)V"),
- NATIVE_METHOD(NativeBN, BN_mod_inverse, "(JJJ)V"),
- NATIVE_METHOD(NativeBN, BN_mod_word, "(JI)I"),
- NATIVE_METHOD(NativeBN, BN_mul, "(JJJ)V"),
- NATIVE_METHOD(NativeBN, BN_mul_word, "(JI)V"),
- NATIVE_METHOD(NativeBN, BN_new, "()J"),
- NATIVE_METHOD(NativeBN, BN_nnmod, "(JJJ)V"),
- NATIVE_METHOD(NativeBN, BN_set_negative, "(JI)V"),
- NATIVE_METHOD(NativeBN, BN_shift, "(JJI)V"),
- NATIVE_METHOD(NativeBN, BN_sub, "(JJJ)V"),
- NATIVE_METHOD(NativeBN, bitLength, "(J)I"),
- NATIVE_METHOD(NativeBN, bn2litEndInts, "(J)[I"),
- NATIVE_METHOD(NativeBN, getNativeFinalizer, "()J"),
- NATIVE_METHOD(NativeBN, litEndInts2bn, "([IIZJ)V"),
- NATIVE_METHOD(NativeBN, longInt, "(J)J"),
- NATIVE_METHOD(NativeBN, putLongInt, "(JJ)V"),
- NATIVE_METHOD(NativeBN, putULongInt, "(JJZ)V"),
- NATIVE_METHOD(NativeBN, sign, "(J)I"),
- NATIVE_METHOD(NativeBN, twosComp2bn, "([BIJ)V"),
-};
-void register_java_math_NativeBN(JNIEnv* env) {
- jniRegisterNativeMethods(env, "java/math/NativeBN", gMethods, NELEM(gMethods));
-}
diff --git a/luni/src/main/native/libcore_math_NativeBN.cpp b/luni/src/main/native/libcore_math_NativeBN.cpp
new file mode 100644
index 0000000000..a123014bc5
--- /dev/null
+++ b/luni/src/main/native/libcore_math_NativeBN.cpp
@@ -0,0 +1,192 @@
+/*
+ * Copyright (C) 2008 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// TODO: Check that we handle context allocation failures correctly.
+
+#define LOG_TAG "NativeBN"
+
+#include <stdio.h>
+#include <algorithm>
+#include <memory>
+
+#include <openssl/bn.h>
+#include <openssl/crypto.h>
+#include <openssl/err.h>
+
+#include <nativehelper/JNIHelp.h>
+#include <nativehelper/ScopedPrimitiveArray.h>
+#include <nativehelper/ScopedUtfChars.h>
+#include <nativehelper/jni_macros.h>
+
+#include "JniException.h"
+
+struct BN_CTX_Deleter {
+ void operator()(BN_CTX* p) const {
+ BN_CTX_free(p);
+ }
+};
+typedef std::unique_ptr<BN_CTX, BN_CTX_Deleter> Unique_BN_CTX;
+
+static BIGNUM* toBigNum(jlong address) {
+ return reinterpret_cast<BIGNUM*>(static_cast<uintptr_t>(address));
+}
+
+// Exception handling: We follow the usual JNI convention of "throwing" an
+// exception if anything goes wrong, and returning junk, typically null.
+// The NativeBN_ routines should only be called from Java, or from code
+// that immediately returns the result to Java, and thus the
+// Java exception should be thrown before we ever see the junk.
+// This null BNs should never become visible, and we do not have to deal with
+// junk (nulls) as input.
+static void throwException(JNIEnv* env) {
+ long error = ERR_get_error();
+ // OpenSSL's error queue may contain multiple errors. Clean up after them.
+ ERR_clear_error();
+
+ if (error == 0) {
+ // An operation failed but did not push to the error queue. Throw a default
+ // exception.
+ jniThrowException(env, "java/lang/ArithmeticException", "Operation failed");
+ return;
+ }
+
+ char message[256];
+ ERR_error_string_n(error, message, sizeof(message));
+ int reason = ERR_GET_REASON(error);
+ if (reason == BN_R_DIV_BY_ZERO) {
+ jniThrowException(env, "java/lang/ArithmeticException", "BigInteger division by zero");
+ } else if (reason == BN_R_NO_INVERSE) {
+ jniThrowException(env, "java/lang/ArithmeticException", "BigInteger not invertible");
+ } else if (reason == ERR_R_MALLOC_FAILURE) {
+ jniThrowOutOfMemoryError(env, message);
+ } else {
+ jniThrowException(env, "java/lang/ArithmeticException", message);
+ }
+}
+
+static jlong NativeBN_BN_new(JNIEnv* env, jclass) {
+ jlong result = static_cast<jlong>(reinterpret_cast<uintptr_t>(BN_new()));
+ if (!result) {
+ throwException(env);
+ }
+ return result;
+}
+
+static void NativeBN_BN_free(JNIEnv*, jclass, jlong a) {
+ // Do nothing on a zero argument.
+ BN_free(toBigNum(a));
+}
+
+static void NativeBN_litEndInts2bn(JNIEnv* env, jclass, jintArray arr, int len, jboolean neg, jlong ret0) {
+ BIGNUM* ret = toBigNum(ret0);
+
+ ScopedIntArrayRO scopedArray(env, arr);
+
+ if (scopedArray.get() == NULL) {
+ return;
+ }
+
+ // We can simply interpret the little-endian integer stream as a
+ // little-endian byte stream and use BN_le2bn.
+ const uint8_t* tmpBytes = reinterpret_cast<const uint8_t *>(scopedArray.get());
+ size_t numBytes = len * sizeof(int);
+
+ if (!BN_le2bn(tmpBytes, numBytes, ret)) {
+ throwException(env);
+ }
+
+ BN_set_negative(ret, neg);
+}
+
+static jintArray NativeBN_bn2litEndInts(JNIEnv* env, jclass, jlong a0) {
+ BIGNUM* a = toBigNum(a0);
+
+ // The number of integers we need is BN_num_bytes(a) / sizeof(int), rounded up
+ int intLen = (BN_num_bytes(a) + sizeof(int) - 1) / sizeof(int);
+
+ // Allocate our result with the JNI boilerplate
+ jintArray result = env->NewIntArray(intLen);
+
+ if (result == NULL) {
+ throwException(env);
+ return NULL;
+ }
+
+ ScopedIntArrayRW ints(env, result);
+
+ unsigned int* uints = reinterpret_cast<unsigned int*>(ints.get());
+ if (uints == NULL) {
+ throwException(env);
+ return NULL;
+ }
+
+ // We can simply interpret a little-endian byte stream as a little-endian integer stream.
+ if (!BN_bn2le_padded(reinterpret_cast<uint8_t*>(uints), intLen * sizeof(int), a)) {
+ throwException(env);
+ return NULL;
+ }
+
+ return result;
+}
+
+static int NativeBN_sign(JNIEnv*, jclass, jlong a) {
+ if (BN_is_zero(toBigNum(a))) {
+ return 0;
+ } else if (BN_is_negative(toBigNum(a))) {
+ return -1;
+ }
+ return 1;
+}
+
+static void NativeBN_BN_set_negative(JNIEnv*, jclass, jlong b, int n) {
+ BN_set_negative(toBigNum(b), n);
+}
+
+static void NativeBN_BN_mul(JNIEnv* env, jclass, jlong r, jlong a, jlong b) {
+ Unique_BN_CTX ctx(BN_CTX_new());
+ if (!BN_mul(toBigNum(r), toBigNum(a), toBigNum(b), ctx.get())) {
+ throwException(env);
+ }
+}
+
+static void NativeBN_BN_div(JNIEnv* env, jclass, jlong q, jlong rem, jlong num, jlong divisor) {
+ Unique_BN_CTX ctx(BN_CTX_new());
+ if (!BN_div(toBigNum(q), toBigNum(rem), toBigNum(num), toBigNum(divisor), ctx.get())) {
+ throwException(env);
+ }
+}
+
+static void NativeBN_BN_mod_exp(JNIEnv* env, jclass, jlong r, jlong a, jlong p, jlong m) {
+ Unique_BN_CTX ctx(BN_CTX_new());
+ if (!BN_mod_exp(toBigNum(r), toBigNum(a), toBigNum(p), toBigNum(m), ctx.get())) {
+ throwException(env);
+ }
+}
+
+static JNINativeMethod gMethods[] = {
+ NATIVE_METHOD(NativeBN, BN_div, "(JJJJ)V"),
+ NATIVE_METHOD(NativeBN, BN_free, "(J)V"),
+ NATIVE_METHOD(NativeBN, BN_mod_exp, "(JJJJ)V"),
+ NATIVE_METHOD(NativeBN, BN_mul, "(JJJ)V"),
+ NATIVE_METHOD(NativeBN, BN_new, "()J"),
+ NATIVE_METHOD(NativeBN, BN_set_negative, "(JI)V"),
+ NATIVE_METHOD(NativeBN, bn2litEndInts, "(J)[I"),
+ NATIVE_METHOD(NativeBN, litEndInts2bn, "([IIZJ)V"),
+ NATIVE_METHOD(NativeBN, sign, "(J)I"),
+};
+void register_libcore_math_NativeBN(JNIEnv* env) {
+ jniRegisterNativeMethods(env, "libcore/math/NativeBN", gMethods, NELEM(gMethods));
+}
diff --git a/non_openjdk_java_files.bp b/non_openjdk_java_files.bp
index e3c8c16c9e..ce3a1e3dc0 100644
--- a/non_openjdk_java_files.bp
+++ b/non_openjdk_java_files.bp
@@ -158,18 +158,6 @@ filegroup {
"luni/src/main/java/android/system/UnixSocketAddress.java",
"luni/src/main/java/java/lang/FindBugsSuppressWarnings.java",
"luni/src/main/java/java/lang/ref/FinalizerReference.java",
- "luni/src/main/java/java/math/BigDecimal.java",
- "luni/src/main/java/java/math/BigInt.java",
- "luni/src/main/java/java/math/BigInteger.java",
- "luni/src/main/java/java/math/BitLevel.java",
- "luni/src/main/java/java/math/Conversion.java",
- "luni/src/main/java/java/math/Division.java",
- "luni/src/main/java/java/math/Logical.java",
- "luni/src/main/java/java/math/MathContext.java",
- "luni/src/main/java/java/math/Multiplication.java",
- "luni/src/main/java/java/math/NativeBN.java",
- "luni/src/main/java/java/math/Primality.java",
- "luni/src/main/java/java/math/RoundingMode.java",
"luni/src/main/java/java/net/DefaultFileNameMap.java",
"luni/src/main/java/java/nio/NIOAccess.java",
"luni/src/main/java/java/nio/NioUtils.java",
@@ -385,6 +373,7 @@ filegroup {
"luni/src/main/java/libcore/io/MemoryMappedFile.java",
"luni/src/main/java/libcore/io/NioBufferIterator.java",
"luni/src/main/java/libcore/math/MathUtils.java",
+ "luni/src/main/java/libcore/math/NativeBN.java",
"luni/src/main/java/libcore/net/event/NetworkEventListener.java",
"luni/src/main/java/libcore/net/http/HttpDate.java",
"luni/src/main/java/libcore/reflect/AnnotatedElements.java",
diff --git a/ojluni/src/main/java/java/math/BigDecimal.java b/ojluni/src/main/java/java/math/BigDecimal.java
new file mode 100644
index 0000000000..9e012a6a24
--- /dev/null
+++ b/ojluni/src/main/java/java/math/BigDecimal.java
@@ -0,0 +1,5285 @@
+/*
+ * Copyright (c) 1996, 2019, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+/*
+ * Portions Copyright IBM Corporation, 2001. All Rights Reserved.
+ */
+
+package java.math;
+
+import static java.math.BigInteger.LONG_MASK;
+import java.util.Arrays;
+
+/**
+ * Immutable, arbitrary-precision signed decimal numbers. A
+ * {@code BigDecimal} consists of an arbitrary precision integer
+ * <i>unscaled value</i> and a 32-bit integer <i>scale</i>. If zero
+ * or positive, the scale is the number of digits to the right of the
+ * decimal point. If negative, the unscaled value of the number is
+ * multiplied by ten to the power of the negation of the scale. The
+ * value of the number represented by the {@code BigDecimal} is
+ * therefore <tt>(unscaledValue &times; 10<sup>-scale</sup>)</tt>.
+ *
+ * <p>The {@code BigDecimal} class provides operations for
+ * arithmetic, scale manipulation, rounding, comparison, hashing, and
+ * format conversion. The {@link #toString} method provides a
+ * canonical representation of a {@code BigDecimal}.
+ *
+ * <p>The {@code BigDecimal} class gives its user complete control
+ * over rounding behavior. If no rounding mode is specified and the
+ * exact result cannot be represented, an exception is thrown;
+ * otherwise, calculations can be carried out to a chosen precision
+ * and rounding mode by supplying an appropriate {@link MathContext}
+ * object to the operation. In either case, eight <em>rounding
+ * modes</em> are provided for the control of rounding. Using the
+ * integer fields in this class (such as {@link #ROUND_HALF_UP}) to
+ * represent rounding mode is largely obsolete; the enumeration values
+ * of the {@code RoundingMode} {@code enum}, (such as {@link
+ * RoundingMode#HALF_UP}) should be used instead.
+ *
+ * <p>When a {@code MathContext} object is supplied with a precision
+ * setting of 0 (for example, {@link MathContext#UNLIMITED}),
+ * arithmetic operations are exact, as are the arithmetic methods
+ * which take no {@code MathContext} object. (This is the only
+ * behavior that was supported in releases prior to 5.) As a
+ * corollary of computing the exact result, the rounding mode setting
+ * of a {@code MathContext} object with a precision setting of 0 is
+ * not used and thus irrelevant. In the case of divide, the exact
+ * quotient could have an infinitely long decimal expansion; for
+ * example, 1 divided by 3. If the quotient has a nonterminating
+ * decimal expansion and the operation is specified to return an exact
+ * result, an {@code ArithmeticException} is thrown. Otherwise, the
+ * exact result of the division is returned, as done for other
+ * operations.
+ *
+ * <p>When the precision setting is not 0, the rules of
+ * {@code BigDecimal} arithmetic are broadly compatible with selected
+ * modes of operation of the arithmetic defined in ANSI X3.274-1996
+ * and ANSI X3.274-1996/AM 1-2000 (section 7.4). Unlike those
+ * standards, {@code BigDecimal} includes many rounding modes, which
+ * were mandatory for division in {@code BigDecimal} releases prior
+ * to 5. Any conflicts between these ANSI standards and the
+ * {@code BigDecimal} specification are resolved in favor of
+ * {@code BigDecimal}.
+ *
+ * <p>Since the same numerical value can have different
+ * representations (with different scales), the rules of arithmetic
+ * and rounding must specify both the numerical result and the scale
+ * used in the result's representation.
+ *
+ *
+ * <p>In general the rounding modes and precision setting determine
+ * how operations return results with a limited number of digits when
+ * the exact result has more digits (perhaps infinitely many in the
+ * case of division) than the number of digits returned.
+ *
+ * First, the
+ * total number of digits to return is specified by the
+ * {@code MathContext}'s {@code precision} setting; this determines
+ * the result's <i>precision</i>. The digit count starts from the
+ * leftmost nonzero digit of the exact result. The rounding mode
+ * determines how any discarded trailing digits affect the returned
+ * result.
+ *
+ * <p>For all arithmetic operators , the operation is carried out as
+ * though an exact intermediate result were first calculated and then
+ * rounded to the number of digits specified by the precision setting
+ * (if necessary), using the selected rounding mode. If the exact
+ * result is not returned, some digit positions of the exact result
+ * are discarded. When rounding increases the magnitude of the
+ * returned result, it is possible for a new digit position to be
+ * created by a carry propagating to a leading {@literal "9"} digit.
+ * For example, rounding the value 999.9 to three digits rounding up
+ * would be numerically equal to one thousand, represented as
+ * 100&times;10<sup>1</sup>. In such cases, the new {@literal "1"} is
+ * the leading digit position of the returned result.
+ *
+ * <p>Besides a logical exact result, each arithmetic operation has a
+ * preferred scale for representing a result. The preferred
+ * scale for each operation is listed in the table below.
+ *
+ * <table border>
+ * <caption><b>Preferred Scales for Results of Arithmetic Operations
+ * </b></caption>
+ * <tr><th>Operation</th><th>Preferred Scale of Result</th></tr>
+ * <tr><td>Add</td><td>max(addend.scale(), augend.scale())</td>
+ * <tr><td>Subtract</td><td>max(minuend.scale(), subtrahend.scale())</td>
+ * <tr><td>Multiply</td><td>multiplier.scale() + multiplicand.scale()</td>
+ * <tr><td>Divide</td><td>dividend.scale() - divisor.scale()</td>
+ * </table>
+ *
+ * These scales are the ones used by the methods which return exact
+ * arithmetic results; except that an exact divide may have to use a
+ * larger scale since the exact result may have more digits. For
+ * example, {@code 1/32} is {@code 0.03125}.
+ *
+ * <p>Before rounding, the scale of the logical exact intermediate
+ * result is the preferred scale for that operation. If the exact
+ * numerical result cannot be represented in {@code precision}
+ * digits, rounding selects the set of digits to return and the scale
+ * of the result is reduced from the scale of the intermediate result
+ * to the least scale which can represent the {@code precision}
+ * digits actually returned. If the exact result can be represented
+ * with at most {@code precision} digits, the representation
+ * of the result with the scale closest to the preferred scale is
+ * returned. In particular, an exactly representable quotient may be
+ * represented in fewer than {@code precision} digits by removing
+ * trailing zeros and decreasing the scale. For example, rounding to
+ * three digits using the {@linkplain RoundingMode#FLOOR floor}
+ * rounding mode, <br>
+ *
+ * {@code 19/100 = 0.19 // integer=19, scale=2} <br>
+ *
+ * but<br>
+ *
+ * {@code 21/110 = 0.190 // integer=190, scale=3} <br>
+ *
+ * <p>Note that for add, subtract, and multiply, the reduction in
+ * scale will equal the number of digit positions of the exact result
+ * which are discarded. If the rounding causes a carry propagation to
+ * create a new high-order digit position, an additional digit of the
+ * result is discarded than when no new digit position is created.
+ *
+ * <p>Other methods may have slightly different rounding semantics.
+ * For example, the result of the {@code pow} method using the
+ * {@linkplain #pow(int, MathContext) specified algorithm} can
+ * occasionally differ from the rounded mathematical result by more
+ * than one unit in the last place, one <i>{@linkplain #ulp() ulp}</i>.
+ *
+ * <p>Two types of operations are provided for manipulating the scale
+ * of a {@code BigDecimal}: scaling/rounding operations and decimal
+ * point motion operations. Scaling/rounding operations ({@link
+ * #setScale setScale} and {@link #round round}) return a
+ * {@code BigDecimal} whose value is approximately (or exactly) equal
+ * to that of the operand, but whose scale or precision is the
+ * specified value; that is, they increase or decrease the precision
+ * of the stored number with minimal effect on its value. Decimal
+ * point motion operations ({@link #movePointLeft movePointLeft} and
+ * {@link #movePointRight movePointRight}) return a
+ * {@code BigDecimal} created from the operand by moving the decimal
+ * point a specified distance in the specified direction.
+ *
+ * <p>For the sake of brevity and clarity, pseudo-code is used
+ * throughout the descriptions of {@code BigDecimal} methods. The
+ * pseudo-code expression {@code (i + j)} is shorthand for "a
+ * {@code BigDecimal} whose value is that of the {@code BigDecimal}
+ * {@code i} added to that of the {@code BigDecimal}
+ * {@code j}." The pseudo-code expression {@code (i == j)} is
+ * shorthand for "{@code true} if and only if the
+ * {@code BigDecimal} {@code i} represents the same value as the
+ * {@code BigDecimal} {@code j}." Other pseudo-code expressions
+ * are interpreted similarly. Square brackets are used to represent
+ * the particular {@code BigInteger} and scale pair defining a
+ * {@code BigDecimal} value; for example [19, 2] is the
+ * {@code BigDecimal} numerically equal to 0.19 having a scale of 2.
+ *
+ * <p>Note: care should be exercised if {@code BigDecimal} objects
+ * are used as keys in a {@link java.util.SortedMap SortedMap} or
+ * elements in a {@link java.util.SortedSet SortedSet} since
+ * {@code BigDecimal}'s <i>natural ordering</i> is <i>inconsistent
+ * with equals</i>. See {@link Comparable}, {@link
+ * java.util.SortedMap} or {@link java.util.SortedSet} for more
+ * information.
+ *
+ * <p>All methods and constructors for this class throw
+ * {@code NullPointerException} when passed a {@code null} object
+ * reference for any input parameter.
+ *
+ * @see BigInteger
+ * @see MathContext
+ * @see RoundingMode
+ * @see java.util.SortedMap
+ * @see java.util.SortedSet
+ * @author Josh Bloch
+ * @author Mike Cowlishaw
+ * @author Joseph D. Darcy
+ * @author Sergey V. Kuksenko
+ */
+public class BigDecimal extends Number implements Comparable<BigDecimal> {
+ /**
+ * The unscaled value of this BigDecimal, as returned by {@link
+ * #unscaledValue}.
+ *
+ * @serial
+ * @see #unscaledValue
+ */
+ private final BigInteger intVal;
+
+ /**
+ * The scale of this BigDecimal, as returned by {@link #scale}.
+ *
+ * @serial
+ * @see #scale
+ */
+ private final int scale; // Note: this may have any value, so
+ // calculations must be done in longs
+
+ /**
+ * The number of decimal digits in this BigDecimal, or 0 if the
+ * number of digits are not known (lookaside information). If
+ * nonzero, the value is guaranteed correct. Use the precision()
+ * method to obtain and set the value if it might be 0. This
+ * field is mutable until set nonzero.
+ *
+ * @since 1.5
+ */
+ private transient int precision;
+
+ /**
+ * Used to store the canonical string representation, if computed.
+ */
+ private transient String stringCache;
+
+ /**
+ * Sentinel value for {@link #intCompact} indicating the
+ * significand information is only available from {@code intVal}.
+ */
+ static final long INFLATED = Long.MIN_VALUE;
+
+ private static final BigInteger INFLATED_BIGINT = BigInteger.valueOf(INFLATED);
+
+ /**
+ * If the absolute value of the significand of this BigDecimal is
+ * less than or equal to {@code Long.MAX_VALUE}, the value can be
+ * compactly stored in this field and used in computations.
+ */
+ private final transient long intCompact;
+
+ // All 18-digit base ten strings fit into a long; not all 19-digit
+ // strings will
+ private static final int MAX_COMPACT_DIGITS = 18;
+
+ /* Appease the serialization gods */
+ private static final long serialVersionUID = 6108874887143696463L;
+
+ private static final ThreadLocal<StringBuilderHelper>
+ threadLocalStringBuilderHelper = new ThreadLocal<StringBuilderHelper>() {
+ @Override
+ protected StringBuilderHelper initialValue() {
+ return new StringBuilderHelper();
+ }
+ };
+
+ // Cache of common small BigDecimal values.
+ private static final BigDecimal zeroThroughTen[] = {
+ new BigDecimal(BigInteger.ZERO, 0, 0, 1),
+ new BigDecimal(BigInteger.ONE, 1, 0, 1),
+ new BigDecimal(BigInteger.valueOf(2), 2, 0, 1),
+ new BigDecimal(BigInteger.valueOf(3), 3, 0, 1),
+ new BigDecimal(BigInteger.valueOf(4), 4, 0, 1),
+ new BigDecimal(BigInteger.valueOf(5), 5, 0, 1),
+ new BigDecimal(BigInteger.valueOf(6), 6, 0, 1),
+ new BigDecimal(BigInteger.valueOf(7), 7, 0, 1),
+ new BigDecimal(BigInteger.valueOf(8), 8, 0, 1),
+ new BigDecimal(BigInteger.valueOf(9), 9, 0, 1),
+ new BigDecimal(BigInteger.TEN, 10, 0, 2),
+ };
+
+ // Cache of zero scaled by 0 - 15
+ private static final BigDecimal[] ZERO_SCALED_BY = {
+ zeroThroughTen[0],
+ new BigDecimal(BigInteger.ZERO, 0, 1, 1),
+ new BigDecimal(BigInteger.ZERO, 0, 2, 1),
+ new BigDecimal(BigInteger.ZERO, 0, 3, 1),
+ new BigDecimal(BigInteger.ZERO, 0, 4, 1),
+ new BigDecimal(BigInteger.ZERO, 0, 5, 1),
+ new BigDecimal(BigInteger.ZERO, 0, 6, 1),
+ new BigDecimal(BigInteger.ZERO, 0, 7, 1),
+ new BigDecimal(BigInteger.ZERO, 0, 8, 1),
+ new BigDecimal(BigInteger.ZERO, 0, 9, 1),
+ new BigDecimal(BigInteger.ZERO, 0, 10, 1),
+ new BigDecimal(BigInteger.ZERO, 0, 11, 1),
+ new BigDecimal(BigInteger.ZERO, 0, 12, 1),
+ new BigDecimal(BigInteger.ZERO, 0, 13, 1),
+ new BigDecimal(BigInteger.ZERO, 0, 14, 1),
+ new BigDecimal(BigInteger.ZERO, 0, 15, 1),
+ };
+
+ // Half of Long.MIN_VALUE & Long.MAX_VALUE.
+ private static final long HALF_LONG_MAX_VALUE = Long.MAX_VALUE / 2;
+ private static final long HALF_LONG_MIN_VALUE = Long.MIN_VALUE / 2;
+
+ // Constants
+ /**
+ * The value 0, with a scale of 0.
+ *
+ * @since 1.5
+ */
+ public static final BigDecimal ZERO =
+ zeroThroughTen[0];
+
+ /**
+ * The value 1, with a scale of 0.
+ *
+ * @since 1.5
+ */
+ public static final BigDecimal ONE =
+ zeroThroughTen[1];
+
+ /**
+ * The value 10, with a scale of 0.
+ *
+ * @since 1.5
+ */
+ public static final BigDecimal TEN =
+ zeroThroughTen[10];
+
+ // Constructors
+
+ /**
+ * Trusted package private constructor.
+ * Trusted simply means if val is INFLATED, intVal could not be null and
+ * if intVal is null, val could not be INFLATED.
+ */
+ BigDecimal(BigInteger intVal, long val, int scale, int prec) {
+ this.scale = scale;
+ this.precision = prec;
+ this.intCompact = val;
+ this.intVal = intVal;
+ }
+
+ /**
+ * Translates a character array representation of a
+ * {@code BigDecimal} into a {@code BigDecimal}, accepting the
+ * same sequence of characters as the {@link #BigDecimal(String)}
+ * constructor, while allowing a sub-array to be specified.
+ *
+ * <p>Note that if the sequence of characters is already available
+ * within a character array, using this constructor is faster than
+ * converting the {@code char} array to string and using the
+ * {@code BigDecimal(String)} constructor .
+ *
+ * @param in {@code char} array that is the source of characters.
+ * @param offset first character in the array to inspect.
+ * @param len number of characters to consider.
+ * @throws NumberFormatException if {@code in} is not a valid
+ * representation of a {@code BigDecimal} or the defined subarray
+ * is not wholly within {@code in}.
+ * @since 1.5
+ */
+ public BigDecimal(char[] in, int offset, int len) {
+ this(in,offset,len,MathContext.UNLIMITED);
+ }
+
+ /**
+ * Translates a character array representation of a
+ * {@code BigDecimal} into a {@code BigDecimal}, accepting the
+ * same sequence of characters as the {@link #BigDecimal(String)}
+ * constructor, while allowing a sub-array to be specified and
+ * with rounding according to the context settings.
+ *
+ * <p>Note that if the sequence of characters is already available
+ * within a character array, using this constructor is faster than
+ * converting the {@code char} array to string and using the
+ * {@code BigDecimal(String)} constructor .
+ *
+ * @param in {@code char} array that is the source of characters.
+ * @param offset first character in the array to inspect.
+ * @param len number of characters to consider..
+ * @param mc the context to use.
+ * @throws ArithmeticException if the result is inexact but the
+ * rounding mode is {@code UNNECESSARY}.
+ * @throws NumberFormatException if {@code in} is not a valid
+ * representation of a {@code BigDecimal} or the defined subarray
+ * is not wholly within {@code in}.
+ * @since 1.5
+ */
+ public BigDecimal(char[] in, int offset, int len, MathContext mc) {
+ // protect against huge length, negative values, and integer overflow
+ if ((in.length | len | offset) < 0 || len > in.length - offset) {
+ throw new NumberFormatException
+ ("Bad offset or len arguments for char[] input.");
+ }
+
+ // This is the primary string to BigDecimal constructor; all
+ // incoming strings end up here; it uses explicit (inline)
+ // parsing for speed and generates at most one intermediate
+ // (temporary) object (a char[] array) for non-compact case.
+
+ // Use locals for all fields values until completion
+ int prec = 0; // record precision value
+ int scl = 0; // record scale value
+ long rs = 0; // the compact value in long
+ BigInteger rb = null; // the inflated value in BigInteger
+ // use array bounds checking to handle too-long, len == 0,
+ // bad offset, etc.
+ try {
+ // handle the sign
+ boolean isneg = false; // assume positive
+ if (in[offset] == '-') {
+ isneg = true; // leading minus means negative
+ offset++;
+ len--;
+ } else if (in[offset] == '+') { // leading + allowed
+ offset++;
+ len--;
+ }
+
+ // should now be at numeric part of the significand
+ boolean dot = false; // true when there is a '.'
+ long exp = 0; // exponent
+ char c; // current character
+ boolean isCompact = (len <= MAX_COMPACT_DIGITS);
+ // integer significand array & idx is the index to it. The array
+ // is ONLY used when we can't use a compact representation.
+ int idx = 0;
+ if (isCompact) {
+ // First compact case, we need not to preserve the character
+ // and we can just compute the value in place.
+ for (; len > 0; offset++, len--) {
+ c = in[offset];
+ if ((c == '0')) { // have zero
+ if (prec == 0)
+ prec = 1;
+ else if (rs != 0) {
+ rs *= 10;
+ ++prec;
+ } // else digit is a redundant leading zero
+ if (dot)
+ ++scl;
+ } else if ((c >= '1' && c <= '9')) { // have digit
+ int digit = c - '0';
+ if (prec != 1 || rs != 0)
+ ++prec; // prec unchanged if preceded by 0s
+ rs = rs * 10 + digit;
+ if (dot)
+ ++scl;
+ } else if (c == '.') { // have dot
+ // have dot
+ if (dot) // two dots
+ throw new NumberFormatException();
+ dot = true;
+ } else if (Character.isDigit(c)) { // slow path
+ int digit = Character.digit(c, 10);
+ if (digit == 0) {
+ if (prec == 0)
+ prec = 1;
+ else if (rs != 0) {
+ rs *= 10;
+ ++prec;
+ } // else digit is a redundant leading zero
+ } else {
+ if (prec != 1 || rs != 0)
+ ++prec; // prec unchanged if preceded by 0s
+ rs = rs * 10 + digit;
+ }
+ if (dot)
+ ++scl;
+ } else if ((c == 'e') || (c == 'E')) {
+ exp = parseExp(in, offset, len);
+ // Next test is required for backwards compatibility
+ if ((int) exp != exp) // overflow
+ throw new NumberFormatException();
+ break; // [saves a test]
+ } else {
+ throw new NumberFormatException();
+ }
+ }
+ if (prec == 0) // no digits found
+ throw new NumberFormatException();
+ // Adjust scale if exp is not zero.
+ if (exp != 0) { // had significant exponent
+ scl = adjustScale(scl, exp);
+ }
+ rs = isneg ? -rs : rs;
+ int mcp = mc.precision;
+ int drop = prec - mcp; // prec has range [1, MAX_INT], mcp has range [0, MAX_INT];
+ // therefore, this subtract cannot overflow
+ if (mcp > 0 && drop > 0) { // do rounding
+ while (drop > 0) {
+ scl = checkScaleNonZero((long) scl - drop);
+ rs = divideAndRound(rs, LONG_TEN_POWERS_TABLE[drop], mc.roundingMode.oldMode);
+ prec = longDigitLength(rs);
+ drop = prec - mcp;
+ }
+ }
+ } else {
+ char coeff[] = new char[len];
+ for (; len > 0; offset++, len--) {
+ c = in[offset];
+ // have digit
+ if ((c >= '0' && c <= '9') || Character.isDigit(c)) {
+ // First compact case, we need not to preserve the character
+ // and we can just compute the value in place.
+ if (c == '0' || Character.digit(c, 10) == 0) {
+ if (prec == 0) {
+ coeff[idx] = c;
+ prec = 1;
+ } else if (idx != 0) {
+ coeff[idx++] = c;
+ ++prec;
+ } // else c must be a redundant leading zero
+ } else {
+ if (prec != 1 || idx != 0)
+ ++prec; // prec unchanged if preceded by 0s
+ coeff[idx++] = c;
+ }
+ if (dot)
+ ++scl;
+ continue;
+ }
+ // have dot
+ if (c == '.') {
+ // have dot
+ if (dot) // two dots
+ throw new NumberFormatException();
+ dot = true;
+ continue;
+ }
+ // exponent expected
+ if ((c != 'e') && (c != 'E'))
+ throw new NumberFormatException();
+ exp = parseExp(in, offset, len);
+ // Next test is required for backwards compatibility
+ if ((int) exp != exp) // overflow
+ throw new NumberFormatException();
+ break; // [saves a test]
+ }
+ // here when no characters left
+ if (prec == 0) // no digits found
+ throw new NumberFormatException();
+ // Adjust scale if exp is not zero.
+ if (exp != 0) { // had significant exponent
+ scl = adjustScale(scl, exp);
+ }
+ // Remove leading zeros from precision (digits count)
+ rb = new BigInteger(coeff, isneg ? -1 : 1, prec);
+ rs = compactValFor(rb);
+ int mcp = mc.precision;
+ if (mcp > 0 && (prec > mcp)) {
+ if (rs == INFLATED) {
+ int drop = prec - mcp;
+ while (drop > 0) {
+ scl = checkScaleNonZero((long) scl - drop);
+ rb = divideAndRoundByTenPow(rb, drop, mc.roundingMode.oldMode);
+ rs = compactValFor(rb);
+ if (rs != INFLATED) {
+ prec = longDigitLength(rs);
+ break;
+ }
+ prec = bigDigitLength(rb);
+ drop = prec - mcp;
+ }
+ }
+ if (rs != INFLATED) {
+ int drop = prec - mcp;
+ while (drop > 0) {
+ scl = checkScaleNonZero((long) scl - drop);
+ rs = divideAndRound(rs, LONG_TEN_POWERS_TABLE[drop], mc.roundingMode.oldMode);
+ prec = longDigitLength(rs);
+ drop = prec - mcp;
+ }
+ rb = null;
+ }
+ }
+ }
+ } catch (ArrayIndexOutOfBoundsException e) {
+ throw new NumberFormatException();
+ } catch (NegativeArraySizeException e) {
+ throw new NumberFormatException();
+ }
+ this.scale = scl;
+ this.precision = prec;
+ this.intCompact = rs;
+ this.intVal = rb;
+ }
+
+ private int adjustScale(int scl, long exp) {
+ long adjustedScale = scl - exp;
+ if (adjustedScale > Integer.MAX_VALUE || adjustedScale < Integer.MIN_VALUE)
+ throw new NumberFormatException("Scale out of range.");
+ scl = (int) adjustedScale;
+ return scl;
+ }
+
+ /*
+ * parse exponent
+ */
+ private static long parseExp(char[] in, int offset, int len){
+ long exp = 0;
+ offset++;
+ char c = in[offset];
+ len--;
+ boolean negexp = (c == '-');
+ // optional sign
+ if (negexp || c == '+') {
+ offset++;
+ c = in[offset];
+ len--;
+ }
+ if (len <= 0) // no exponent digits
+ throw new NumberFormatException();
+ // skip leading zeros in the exponent
+ while (len > 10 && (c=='0' || (Character.digit(c, 10) == 0))) {
+ offset++;
+ c = in[offset];
+ len--;
+ }
+ if (len > 10) // too many nonzero exponent digits
+ throw new NumberFormatException();
+ // c now holds first digit of exponent
+ for (;; len--) {
+ int v;
+ if (c >= '0' && c <= '9') {
+ v = c - '0';
+ } else {
+ v = Character.digit(c, 10);
+ if (v < 0) // not a digit
+ throw new NumberFormatException();
+ }
+ exp = exp * 10 + v;
+ if (len == 1)
+ break; // that was final character
+ offset++;
+ c = in[offset];
+ }
+ if (negexp) // apply sign
+ exp = -exp;
+ return exp;
+ }
+
+ /**
+ * Translates a character array representation of a
+ * {@code BigDecimal} into a {@code BigDecimal}, accepting the
+ * same sequence of characters as the {@link #BigDecimal(String)}
+ * constructor.
+ *
+ * <p>Note that if the sequence of characters is already available
+ * as a character array, using this constructor is faster than
+ * converting the {@code char} array to string and using the
+ * {@code BigDecimal(String)} constructor .
+ *
+ * @param in {@code char} array that is the source of characters.
+ * @throws NumberFormatException if {@code in} is not a valid
+ * representation of a {@code BigDecimal}.
+ * @since 1.5
+ */
+ public BigDecimal(char[] in) {
+ this(in, 0, in.length);
+ }
+
+ /**
+ * Translates a character array representation of a
+ * {@code BigDecimal} into a {@code BigDecimal}, accepting the
+ * same sequence of characters as the {@link #BigDecimal(String)}
+ * constructor and with rounding according to the context
+ * settings.
+ *
+ * <p>Note that if the sequence of characters is already available
+ * as a character array, using this constructor is faster than
+ * converting the {@code char} array to string and using the
+ * {@code BigDecimal(String)} constructor .
+ *
+ * @param in {@code char} array that is the source of characters.
+ * @param mc the context to use.
+ * @throws ArithmeticException if the result is inexact but the
+ * rounding mode is {@code UNNECESSARY}.
+ * @throws NumberFormatException if {@code in} is not a valid
+ * representation of a {@code BigDecimal}.
+ * @since 1.5
+ */
+ public BigDecimal(char[] in, MathContext mc) {
+ this(in, 0, in.length, mc);
+ }
+
+ /**
+ * Translates the string representation of a {@code BigDecimal}
+ * into a {@code BigDecimal}. The string representation consists
+ * of an optional sign, {@code '+'} (<tt> '&#92;u002B'</tt>) or
+ * {@code '-'} (<tt>'&#92;u002D'</tt>), followed by a sequence of
+ * zero or more decimal digits ("the integer"), optionally
+ * followed by a fraction, optionally followed by an exponent.
+ *
+ * <p>The fraction consists of a decimal point followed by zero
+ * or more decimal digits. The string must contain at least one
+ * digit in either the integer or the fraction. The number formed
+ * by the sign, the integer and the fraction is referred to as the
+ * <i>significand</i>.
+ *
+ * <p>The exponent consists of the character {@code 'e'}
+ * (<tt>'&#92;u0065'</tt>) or {@code 'E'} (<tt>'&#92;u0045'</tt>)
+ * followed by one or more decimal digits. The value of the
+ * exponent must lie between -{@link Integer#MAX_VALUE} ({@link
+ * Integer#MIN_VALUE}+1) and {@link Integer#MAX_VALUE}, inclusive.
+ *
+ * <p>More formally, the strings this constructor accepts are
+ * described by the following grammar:
+ * <blockquote>
+ * <dl>
+ * <dt><i>BigDecimalString:</i>
+ * <dd><i>Sign<sub>opt</sub> Significand Exponent<sub>opt</sub></i>
+ * <dt><i>Sign:</i>
+ * <dd>{@code +}
+ * <dd>{@code -}
+ * <dt><i>Significand:</i>
+ * <dd><i>IntegerPart</i> {@code .} <i>FractionPart<sub>opt</sub></i>
+ * <dd>{@code .} <i>FractionPart</i>
+ * <dd><i>IntegerPart</i>
+ * <dt><i>IntegerPart:</i>
+ * <dd><i>Digits</i>
+ * <dt><i>FractionPart:</i>
+ * <dd><i>Digits</i>
+ * <dt><i>Exponent:</i>
+ * <dd><i>ExponentIndicator SignedInteger</i>
+ * <dt><i>ExponentIndicator:</i>
+ * <dd>{@code e}
+ * <dd>{@code E}
+ * <dt><i>SignedInteger:</i>
+ * <dd><i>Sign<sub>opt</sub> Digits</i>
+ * <dt><i>Digits:</i>
+ * <dd><i>Digit</i>
+ * <dd><i>Digits Digit</i>
+ * <dt><i>Digit:</i>
+ * <dd>any character for which {@link Character#isDigit}
+ * returns {@code true}, including 0, 1, 2 ...
+ * </dl>
+ * </blockquote>
+ *
+ * <p>The scale of the returned {@code BigDecimal} will be the
+ * number of digits in the fraction, or zero if the string
+ * contains no decimal point, subject to adjustment for any
+ * exponent; if the string contains an exponent, the exponent is
+ * subtracted from the scale. The value of the resulting scale
+ * must lie between {@code Integer.MIN_VALUE} and
+ * {@code Integer.MAX_VALUE}, inclusive.
+ *
+ * <p>The character-to-digit mapping is provided by {@link
+ * java.lang.Character#digit} set to convert to radix 10. The
+ * String may not contain any extraneous characters (whitespace,
+ * for example).
+ *
+ * <p><b>Examples:</b><br>
+ * The value of the returned {@code BigDecimal} is equal to
+ * <i>significand</i> &times; 10<sup>&nbsp;<i>exponent</i></sup>.
+ * For each string on the left, the resulting representation
+ * [{@code BigInteger}, {@code scale}] is shown on the right.
+ * <pre>
+ * "0" [0,0]
+ * "0.00" [0,2]
+ * "123" [123,0]
+ * "-123" [-123,0]
+ * "1.23E3" [123,-1]
+ * "1.23E+3" [123,-1]
+ * "12.3E+7" [123,-6]
+ * "12.0" [120,1]
+ * "12.3" [123,1]
+ * "0.00123" [123,5]
+ * "-1.23E-12" [-123,14]
+ * "1234.5E-4" [12345,5]
+ * "0E+7" [0,-7]
+ * "-0" [0,0]
+ * </pre>
+ *
+ * <p>Note: For values other than {@code float} and
+ * {@code double} NaN and &plusmn;Infinity, this constructor is
+ * compatible with the values returned by {@link Float#toString}
+ * and {@link Double#toString}. This is generally the preferred
+ * way to convert a {@code float} or {@code double} into a
+ * BigDecimal, as it doesn't suffer from the unpredictability of
+ * the {@link #BigDecimal(double)} constructor.
+ *
+ * @param val String representation of {@code BigDecimal}.
+ *
+ * @throws NumberFormatException if {@code val} is not a valid
+ * representation of a {@code BigDecimal}.
+ */
+ public BigDecimal(String val) {
+ this(val.toCharArray(), 0, val.length());
+ }
+
+ /**
+ * Translates the string representation of a {@code BigDecimal}
+ * into a {@code BigDecimal}, accepting the same strings as the
+ * {@link #BigDecimal(String)} constructor, with rounding
+ * according to the context settings.
+ *
+ * @param val string representation of a {@code BigDecimal}.
+ * @param mc the context to use.
+ * @throws ArithmeticException if the result is inexact but the
+ * rounding mode is {@code UNNECESSARY}.
+ * @throws NumberFormatException if {@code val} is not a valid
+ * representation of a BigDecimal.
+ * @since 1.5
+ */
+ public BigDecimal(String val, MathContext mc) {
+ this(val.toCharArray(), 0, val.length(), mc);
+ }
+
+ /**
+ * Translates a {@code double} into a {@code BigDecimal} which
+ * is the exact decimal representation of the {@code double}'s
+ * binary floating-point value. The scale of the returned
+ * {@code BigDecimal} is the smallest value such that
+ * <tt>(10<sup>scale</sup> &times; val)</tt> is an integer.
+ * <p>
+ * <b>Notes:</b>
+ * <ol>
+ * <li>
+ * The results of this constructor can be somewhat unpredictable.
+ * One might assume that writing {@code new BigDecimal(0.1)} in
+ * Java creates a {@code BigDecimal} which is exactly equal to
+ * 0.1 (an unscaled value of 1, with a scale of 1), but it is
+ * actually equal to
+ * 0.1000000000000000055511151231257827021181583404541015625.
+ * This is because 0.1 cannot be represented exactly as a
+ * {@code double} (or, for that matter, as a binary fraction of
+ * any finite length). Thus, the value that is being passed
+ * <i>in</i> to the constructor is not exactly equal to 0.1,
+ * appearances notwithstanding.
+ *
+ * <li>
+ * The {@code String} constructor, on the other hand, is
+ * perfectly predictable: writing {@code new BigDecimal("0.1")}
+ * creates a {@code BigDecimal} which is <i>exactly</i> equal to
+ * 0.1, as one would expect. Therefore, it is generally
+ * recommended that the {@linkplain #BigDecimal(String)
+ * <tt>String</tt> constructor} be used in preference to this one.
+ *
+ * <li>
+ * When a {@code double} must be used as a source for a
+ * {@code BigDecimal}, note that this constructor provides an
+ * exact conversion; it does not give the same result as
+ * converting the {@code double} to a {@code String} using the
+ * {@link Double#toString(double)} method and then using the
+ * {@link #BigDecimal(String)} constructor. To get that result,
+ * use the {@code static} {@link #valueOf(double)} method.
+ * </ol>
+ *
+ * @param val {@code double} value to be converted to
+ * {@code BigDecimal}.
+ * @throws NumberFormatException if {@code val} is infinite or NaN.
+ */
+ public BigDecimal(double val) {
+ this(val,MathContext.UNLIMITED);
+ }
+
+ /**
+ * Translates a {@code double} into a {@code BigDecimal}, with
+ * rounding according to the context settings. The scale of the
+ * {@code BigDecimal} is the smallest value such that
+ * <tt>(10<sup>scale</sup> &times; val)</tt> is an integer.
+ *
+ * <p>The results of this constructor can be somewhat unpredictable
+ * and its use is generally not recommended; see the notes under
+ * the {@link #BigDecimal(double)} constructor.
+ *
+ * @param val {@code double} value to be converted to
+ * {@code BigDecimal}.
+ * @param mc the context to use.
+ * @throws ArithmeticException if the result is inexact but the
+ * RoundingMode is UNNECESSARY.
+ * @throws NumberFormatException if {@code val} is infinite or NaN.
+ * @since 1.5
+ */
+ public BigDecimal(double val, MathContext mc) {
+ if (Double.isInfinite(val) || Double.isNaN(val))
+ throw new NumberFormatException("Infinite or NaN");
+ // Translate the double into sign, exponent and significand, according
+ // to the formulae in JLS, Section 20.10.22.
+ long valBits = Double.doubleToLongBits(val);
+ int sign = ((valBits >> 63) == 0 ? 1 : -1);
+ int exponent = (int) ((valBits >> 52) & 0x7ffL);
+ long significand = (exponent == 0
+ ? (valBits & ((1L << 52) - 1)) << 1
+ : (valBits & ((1L << 52) - 1)) | (1L << 52));
+ exponent -= 1075;
+ // At this point, val == sign * significand * 2**exponent.
+
+ /*
+ * Special case zero to suppress nonterminating normalization and bogus
+ * scale calculation.
+ */
+ if (significand == 0) {
+ this.intVal = BigInteger.ZERO;
+ this.scale = 0;
+ this.intCompact = 0;
+ this.precision = 1;
+ return;
+ }
+ // Normalize
+ while ((significand & 1) == 0) { // i.e., significand is even
+ significand >>= 1;
+ exponent++;
+ }
+ int scale = 0;
+ // Calculate intVal and scale
+ BigInteger intVal;
+ long compactVal = sign * significand;
+ if (exponent == 0) {
+ intVal = (compactVal == INFLATED) ? INFLATED_BIGINT : null;
+ } else {
+ if (exponent < 0) {
+ intVal = BigInteger.valueOf(5).pow(-exponent).multiply(compactVal);
+ scale = -exponent;
+ } else { // (exponent > 0)
+ intVal = BigInteger.valueOf(2).pow(exponent).multiply(compactVal);
+ }
+ compactVal = compactValFor(intVal);
+ }
+ int prec = 0;
+ int mcp = mc.precision;
+ if (mcp > 0) { // do rounding
+ int mode = mc.roundingMode.oldMode;
+ int drop;
+ if (compactVal == INFLATED) {
+ prec = bigDigitLength(intVal);
+ drop = prec - mcp;
+ while (drop > 0) {
+ scale = checkScaleNonZero((long) scale - drop);
+ intVal = divideAndRoundByTenPow(intVal, drop, mode);
+ compactVal = compactValFor(intVal);
+ if (compactVal != INFLATED) {
+ break;
+ }
+ prec = bigDigitLength(intVal);
+ drop = prec - mcp;
+ }
+ }
+ if (compactVal != INFLATED) {
+ prec = longDigitLength(compactVal);
+ drop = prec - mcp;
+ while (drop > 0) {
+ scale = checkScaleNonZero((long) scale - drop);
+ compactVal = divideAndRound(compactVal, LONG_TEN_POWERS_TABLE[drop], mc.roundingMode.oldMode);
+ prec = longDigitLength(compactVal);
+ drop = prec - mcp;
+ }
+ intVal = null;
+ }
+ }
+ this.intVal = intVal;
+ this.intCompact = compactVal;
+ this.scale = scale;
+ this.precision = prec;
+ }
+
+ /**
+ * Translates a {@code BigInteger} into a {@code BigDecimal}.
+ * The scale of the {@code BigDecimal} is zero.
+ *
+ * @param val {@code BigInteger} value to be converted to
+ * {@code BigDecimal}.
+ */
+ public BigDecimal(BigInteger val) {
+ scale = 0;
+ intVal = val;
+ intCompact = compactValFor(val);
+ }
+
+ /**
+ * Translates a {@code BigInteger} into a {@code BigDecimal}
+ * rounding according to the context settings. The scale of the
+ * {@code BigDecimal} is zero.
+ *
+ * @param val {@code BigInteger} value to be converted to
+ * {@code BigDecimal}.
+ * @param mc the context to use.
+ * @throws ArithmeticException if the result is inexact but the
+ * rounding mode is {@code UNNECESSARY}.
+ * @since 1.5
+ */
+ public BigDecimal(BigInteger val, MathContext mc) {
+ this(val,0,mc);
+ }
+
+ /**
+ * Translates a {@code BigInteger} unscaled value and an
+ * {@code int} scale into a {@code BigDecimal}. The value of
+ * the {@code BigDecimal} is
+ * <tt>(unscaledVal &times; 10<sup>-scale</sup>)</tt>.
+ *
+ * @param unscaledVal unscaled value of the {@code BigDecimal}.
+ * @param scale scale of the {@code BigDecimal}.
+ */
+ public BigDecimal(BigInteger unscaledVal, int scale) {
+ // Negative scales are now allowed
+ this.intVal = unscaledVal;
+ this.intCompact = compactValFor(unscaledVal);
+ this.scale = scale;
+ }
+
+ /**
+ * Translates a {@code BigInteger} unscaled value and an
+ * {@code int} scale into a {@code BigDecimal}, with rounding
+ * according to the context settings. The value of the
+ * {@code BigDecimal} is <tt>(unscaledVal &times;
+ * 10<sup>-scale</sup>)</tt>, rounded according to the
+ * {@code precision} and rounding mode settings.
+ *
+ * @param unscaledVal unscaled value of the {@code BigDecimal}.
+ * @param scale scale of the {@code BigDecimal}.
+ * @param mc the context to use.
+ * @throws ArithmeticException if the result is inexact but the
+ * rounding mode is {@code UNNECESSARY}.
+ * @since 1.5
+ */
+ public BigDecimal(BigInteger unscaledVal, int scale, MathContext mc) {
+ long compactVal = compactValFor(unscaledVal);
+ int mcp = mc.precision;
+ int prec = 0;
+ if (mcp > 0) { // do rounding
+ int mode = mc.roundingMode.oldMode;
+ if (compactVal == INFLATED) {
+ prec = bigDigitLength(unscaledVal);
+ int drop = prec - mcp;
+ while (drop > 0) {
+ scale = checkScaleNonZero((long) scale - drop);
+ unscaledVal = divideAndRoundByTenPow(unscaledVal, drop, mode);
+ compactVal = compactValFor(unscaledVal);
+ if (compactVal != INFLATED) {
+ break;
+ }
+ prec = bigDigitLength(unscaledVal);
+ drop = prec - mcp;
+ }
+ }
+ if (compactVal != INFLATED) {
+ prec = longDigitLength(compactVal);
+ int drop = prec - mcp; // drop can't be more than 18
+ while (drop > 0) {
+ scale = checkScaleNonZero((long) scale - drop);
+ compactVal = divideAndRound(compactVal, LONG_TEN_POWERS_TABLE[drop], mode);
+ prec = longDigitLength(compactVal);
+ drop = prec - mcp;
+ }
+ unscaledVal = null;
+ }
+ }
+ this.intVal = unscaledVal;
+ this.intCompact = compactVal;
+ this.scale = scale;
+ this.precision = prec;
+ }
+
+ /**
+ * Translates an {@code int} into a {@code BigDecimal}. The
+ * scale of the {@code BigDecimal} is zero.
+ *
+ * @param val {@code int} value to be converted to
+ * {@code BigDecimal}.
+ * @since 1.5
+ */
+ public BigDecimal(int val) {
+ this.intCompact = val;
+ this.scale = 0;
+ this.intVal = null;
+ }
+
+ /**
+ * Translates an {@code int} into a {@code BigDecimal}, with
+ * rounding according to the context settings. The scale of the
+ * {@code BigDecimal}, before any rounding, is zero.
+ *
+ * @param val {@code int} value to be converted to {@code BigDecimal}.
+ * @param mc the context to use.
+ * @throws ArithmeticException if the result is inexact but the
+ * rounding mode is {@code UNNECESSARY}.
+ * @since 1.5
+ */
+ public BigDecimal(int val, MathContext mc) {
+ int mcp = mc.precision;
+ long compactVal = val;
+ int scale = 0;
+ int prec = 0;
+ if (mcp > 0) { // do rounding
+ prec = longDigitLength(compactVal);
+ int drop = prec - mcp; // drop can't be more than 18
+ while (drop > 0) {
+ scale = checkScaleNonZero((long) scale - drop);
+ compactVal = divideAndRound(compactVal, LONG_TEN_POWERS_TABLE[drop], mc.roundingMode.oldMode);
+ prec = longDigitLength(compactVal);
+ drop = prec - mcp;
+ }
+ }
+ this.intVal = null;
+ this.intCompact = compactVal;
+ this.scale = scale;
+ this.precision = prec;
+ }
+
+ /**
+ * Translates a {@code long} into a {@code BigDecimal}. The
+ * scale of the {@code BigDecimal} is zero.
+ *
+ * @param val {@code long} value to be converted to {@code BigDecimal}.
+ * @since 1.5
+ */
+ public BigDecimal(long val) {
+ this.intCompact = val;
+ this.intVal = (val == INFLATED) ? INFLATED_BIGINT : null;
+ this.scale = 0;
+ }
+
+ /**
+ * Translates a {@code long} into a {@code BigDecimal}, with
+ * rounding according to the context settings. The scale of the
+ * {@code BigDecimal}, before any rounding, is zero.
+ *
+ * @param val {@code long} value to be converted to {@code BigDecimal}.
+ * @param mc the context to use.
+ * @throws ArithmeticException if the result is inexact but the
+ * rounding mode is {@code UNNECESSARY}.
+ * @since 1.5
+ */
+ public BigDecimal(long val, MathContext mc) {
+ int mcp = mc.precision;
+ int mode = mc.roundingMode.oldMode;
+ int prec = 0;
+ int scale = 0;
+ BigInteger intVal = (val == INFLATED) ? INFLATED_BIGINT : null;
+ if (mcp > 0) { // do rounding
+ if (val == INFLATED) {
+ prec = 19;
+ int drop = prec - mcp;
+ while (drop > 0) {
+ scale = checkScaleNonZero((long) scale - drop);
+ intVal = divideAndRoundByTenPow(intVal, drop, mode);
+ val = compactValFor(intVal);
+ if (val != INFLATED) {
+ break;
+ }
+ prec = bigDigitLength(intVal);
+ drop = prec - mcp;
+ }
+ }
+ if (val != INFLATED) {
+ prec = longDigitLength(val);
+ int drop = prec - mcp;
+ while (drop > 0) {
+ scale = checkScaleNonZero((long) scale - drop);
+ val = divideAndRound(val, LONG_TEN_POWERS_TABLE[drop], mc.roundingMode.oldMode);
+ prec = longDigitLength(val);
+ drop = prec - mcp;
+ }
+ intVal = null;
+ }
+ }
+ this.intVal = intVal;
+ this.intCompact = val;
+ this.scale = scale;
+ this.precision = prec;
+ }
+
+ // Static Factory Methods
+
+ /**
+ * Translates a {@code long} unscaled value and an
+ * {@code int} scale into a {@code BigDecimal}. This
+ * {@literal "static factory method"} is provided in preference to
+ * a ({@code long}, {@code int}) constructor because it
+ * allows for reuse of frequently used {@code BigDecimal} values..
+ *
+ * @param unscaledVal unscaled value of the {@code BigDecimal}.
+ * @param scale scale of the {@code BigDecimal}.
+ * @return a {@code BigDecimal} whose value is
+ * <tt>(unscaledVal &times; 10<sup>-scale</sup>)</tt>.
+ */
+ public static BigDecimal valueOf(long unscaledVal, int scale) {
+ if (scale == 0)
+ return valueOf(unscaledVal);
+ else if (unscaledVal == 0) {
+ return zeroValueOf(scale);
+ }
+ return new BigDecimal(unscaledVal == INFLATED ?
+ INFLATED_BIGINT : null,
+ unscaledVal, scale, 0);
+ }
+
+ /**
+ * Translates a {@code long} value into a {@code BigDecimal}
+ * with a scale of zero. This {@literal "static factory method"}
+ * is provided in preference to a ({@code long}) constructor
+ * because it allows for reuse of frequently used
+ * {@code BigDecimal} values.
+ *
+ * @param val value of the {@code BigDecimal}.
+ * @return a {@code BigDecimal} whose value is {@code val}.
+ */
+ public static BigDecimal valueOf(long val) {
+ if (val >= 0 && val < zeroThroughTen.length)
+ return zeroThroughTen[(int)val];
+ else if (val != INFLATED)
+ return new BigDecimal(null, val, 0, 0);
+ return new BigDecimal(INFLATED_BIGINT, val, 0, 0);
+ }
+
+ static BigDecimal valueOf(long unscaledVal, int scale, int prec) {
+ if (scale == 0 && unscaledVal >= 0 && unscaledVal < zeroThroughTen.length) {
+ return zeroThroughTen[(int) unscaledVal];
+ } else if (unscaledVal == 0) {
+ return zeroValueOf(scale);
+ }
+ return new BigDecimal(unscaledVal == INFLATED ? INFLATED_BIGINT : null,
+ unscaledVal, scale, prec);
+ }
+
+ static BigDecimal valueOf(BigInteger intVal, int scale, int prec) {
+ long val = compactValFor(intVal);
+ if (val == 0) {
+ return zeroValueOf(scale);
+ } else if (scale == 0 && val >= 0 && val < zeroThroughTen.length) {
+ return zeroThroughTen[(int) val];
+ }
+ return new BigDecimal(intVal, val, scale, prec);
+ }
+
+ static BigDecimal zeroValueOf(int scale) {
+ if (scale >= 0 && scale < ZERO_SCALED_BY.length)
+ return ZERO_SCALED_BY[scale];
+ else
+ return new BigDecimal(BigInteger.ZERO, 0, scale, 1);
+ }
+
+ /**
+ * Translates a {@code double} into a {@code BigDecimal}, using
+ * the {@code double}'s canonical string representation provided
+ * by the {@link Double#toString(double)} method.
+ *
+ * <p><b>Note:</b> This is generally the preferred way to convert
+ * a {@code double} (or {@code float}) into a
+ * {@code BigDecimal}, as the value returned is equal to that
+ * resulting from constructing a {@code BigDecimal} from the
+ * result of using {@link Double#toString(double)}.
+ *
+ * @param val {@code double} to convert to a {@code BigDecimal}.
+ * @return a {@code BigDecimal} whose value is equal to or approximately
+ * equal to the value of {@code val}.
+ * @throws NumberFormatException if {@code val} is infinite or NaN.
+ * @since 1.5
+ */
+ public static BigDecimal valueOf(double val) {
+ // Reminder: a zero double returns '0.0', so we cannot fastpath
+ // to use the constant ZERO. This might be important enough to
+ // justify a factory approach, a cache, or a few private
+ // constants, later.
+ return new BigDecimal(Double.toString(val));
+ }
+
+ // Arithmetic Operations
+ /**
+ * Returns a {@code BigDecimal} whose value is {@code (this +
+ * augend)}, and whose scale is {@code max(this.scale(),
+ * augend.scale())}.
+ *
+ * @param augend value to be added to this {@code BigDecimal}.
+ * @return {@code this + augend}
+ */
+ public BigDecimal add(BigDecimal augend) {
+ if (this.intCompact != INFLATED) {
+ if ((augend.intCompact != INFLATED)) {
+ return add(this.intCompact, this.scale, augend.intCompact, augend.scale);
+ } else {
+ return add(this.intCompact, this.scale, augend.intVal, augend.scale);
+ }
+ } else {
+ if ((augend.intCompact != INFLATED)) {
+ return add(augend.intCompact, augend.scale, this.intVal, this.scale);
+ } else {
+ return add(this.intVal, this.scale, augend.intVal, augend.scale);
+ }
+ }
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is {@code (this + augend)},
+ * with rounding according to the context settings.
+ *
+ * If either number is zero and the precision setting is nonzero then
+ * the other number, rounded if necessary, is used as the result.
+ *
+ * @param augend value to be added to this {@code BigDecimal}.
+ * @param mc the context to use.
+ * @return {@code this + augend}, rounded as necessary.
+ * @throws ArithmeticException if the result is inexact but the
+ * rounding mode is {@code UNNECESSARY}.
+ * @since 1.5
+ */
+ public BigDecimal add(BigDecimal augend, MathContext mc) {
+ if (mc.precision == 0)
+ return add(augend);
+ BigDecimal lhs = this;
+
+ // If either number is zero then the other number, rounded and
+ // scaled if necessary, is used as the result.
+ {
+ boolean lhsIsZero = lhs.signum() == 0;
+ boolean augendIsZero = augend.signum() == 0;
+
+ if (lhsIsZero || augendIsZero) {
+ int preferredScale = Math.max(lhs.scale(), augend.scale());
+ BigDecimal result;
+
+ if (lhsIsZero && augendIsZero)
+ return zeroValueOf(preferredScale);
+ result = lhsIsZero ? doRound(augend, mc) : doRound(lhs, mc);
+
+ if (result.scale() == preferredScale)
+ return result;
+ else if (result.scale() > preferredScale) {
+ return stripZerosToMatchScale(result.intVal, result.intCompact, result.scale, preferredScale);
+ } else { // result.scale < preferredScale
+ int precisionDiff = mc.precision - result.precision();
+ int scaleDiff = preferredScale - result.scale();
+
+ if (precisionDiff >= scaleDiff)
+ return result.setScale(preferredScale); // can achieve target scale
+ else
+ return result.setScale(result.scale() + precisionDiff);
+ }
+ }
+ }
+
+ long padding = (long) lhs.scale - augend.scale;
+ if (padding != 0) { // scales differ; alignment needed
+ BigDecimal arg[] = preAlign(lhs, augend, padding, mc);
+ matchScale(arg);
+ lhs = arg[0];
+ augend = arg[1];
+ }
+ return doRound(lhs.inflated().add(augend.inflated()), lhs.scale, mc);
+ }
+
+ /**
+ * Returns an array of length two, the sum of whose entries is
+ * equal to the rounded sum of the {@code BigDecimal} arguments.
+ *
+ * <p>If the digit positions of the arguments have a sufficient
+ * gap between them, the value smaller in magnitude can be
+ * condensed into a {@literal "sticky bit"} and the end result will
+ * round the same way <em>if</em> the precision of the final
+ * result does not include the high order digit of the small
+ * magnitude operand.
+ *
+ * <p>Note that while strictly speaking this is an optimization,
+ * it makes a much wider range of additions practical.
+ *
+ * <p>This corresponds to a pre-shift operation in a fixed
+ * precision floating-point adder; this method is complicated by
+ * variable precision of the result as determined by the
+ * MathContext. A more nuanced operation could implement a
+ * {@literal "right shift"} on the smaller magnitude operand so
+ * that the number of digits of the smaller operand could be
+ * reduced even though the significands partially overlapped.
+ */
+ private BigDecimal[] preAlign(BigDecimal lhs, BigDecimal augend, long padding, MathContext mc) {
+ assert padding != 0;
+ BigDecimal big;
+ BigDecimal small;
+
+ if (padding < 0) { // lhs is big; augend is small
+ big = lhs;
+ small = augend;
+ } else { // lhs is small; augend is big
+ big = augend;
+ small = lhs;
+ }
+
+ /*
+ * This is the estimated scale of an ulp of the result; it assumes that
+ * the result doesn't have a carry-out on a true add (e.g. 999 + 1 =>
+ * 1000) or any subtractive cancellation on borrowing (e.g. 100 - 1.2 =>
+ * 98.8)
+ */
+ long estResultUlpScale = (long) big.scale - big.precision() + mc.precision;
+
+ /*
+ * The low-order digit position of big is big.scale(). This
+ * is true regardless of whether big has a positive or
+ * negative scale. The high-order digit position of small is
+ * small.scale - (small.precision() - 1). To do the full
+ * condensation, the digit positions of big and small must be
+ * disjoint *and* the digit positions of small should not be
+ * directly visible in the result.
+ */
+ long smallHighDigitPos = (long) small.scale - small.precision() + 1;
+ if (smallHighDigitPos > big.scale + 2 && // big and small disjoint
+ smallHighDigitPos > estResultUlpScale + 2) { // small digits not visible
+ small = BigDecimal.valueOf(small.signum(), this.checkScale(Math.max(big.scale, estResultUlpScale) + 3));
+ }
+
+ // Since addition is symmetric, preserving input order in
+ // returned operands doesn't matter
+ BigDecimal[] result = {big, small};
+ return result;
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is {@code (this -
+ * subtrahend)}, and whose scale is {@code max(this.scale(),
+ * subtrahend.scale())}.
+ *
+ * @param subtrahend value to be subtracted from this {@code BigDecimal}.
+ * @return {@code this - subtrahend}
+ */
+ public BigDecimal subtract(BigDecimal subtrahend) {
+ if (this.intCompact != INFLATED) {
+ if ((subtrahend.intCompact != INFLATED)) {
+ return add(this.intCompact, this.scale, -subtrahend.intCompact, subtrahend.scale);
+ } else {
+ return add(this.intCompact, this.scale, subtrahend.intVal.negate(), subtrahend.scale);
+ }
+ } else {
+ if ((subtrahend.intCompact != INFLATED)) {
+ // Pair of subtrahend values given before pair of
+ // values from this BigDecimal to avoid need for
+ // method overloading on the specialized add method
+ return add(-subtrahend.intCompact, subtrahend.scale, this.intVal, this.scale);
+ } else {
+ return add(this.intVal, this.scale, subtrahend.intVal.negate(), subtrahend.scale);
+ }
+ }
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is {@code (this - subtrahend)},
+ * with rounding according to the context settings.
+ *
+ * If {@code subtrahend} is zero then this, rounded if necessary, is used as the
+ * result. If this is zero then the result is {@code subtrahend.negate(mc)}.
+ *
+ * @param subtrahend value to be subtracted from this {@code BigDecimal}.
+ * @param mc the context to use.
+ * @return {@code this - subtrahend}, rounded as necessary.
+ * @throws ArithmeticException if the result is inexact but the
+ * rounding mode is {@code UNNECESSARY}.
+ * @since 1.5
+ */
+ public BigDecimal subtract(BigDecimal subtrahend, MathContext mc) {
+ if (mc.precision == 0)
+ return subtract(subtrahend);
+ // share the special rounding code in add()
+ return add(subtrahend.negate(), mc);
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is <tt>(this &times;
+ * multiplicand)</tt>, and whose scale is {@code (this.scale() +
+ * multiplicand.scale())}.
+ *
+ * @param multiplicand value to be multiplied by this {@code BigDecimal}.
+ * @return {@code this * multiplicand}
+ */
+ public BigDecimal multiply(BigDecimal multiplicand) {
+ int productScale = checkScale((long) scale + multiplicand.scale);
+ if (this.intCompact != INFLATED) {
+ if ((multiplicand.intCompact != INFLATED)) {
+ return multiply(this.intCompact, multiplicand.intCompact, productScale);
+ } else {
+ return multiply(this.intCompact, multiplicand.intVal, productScale);
+ }
+ } else {
+ if ((multiplicand.intCompact != INFLATED)) {
+ return multiply(multiplicand.intCompact, this.intVal, productScale);
+ } else {
+ return multiply(this.intVal, multiplicand.intVal, productScale);
+ }
+ }
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is <tt>(this &times;
+ * multiplicand)</tt>, with rounding according to the context settings.
+ *
+ * @param multiplicand value to be multiplied by this {@code BigDecimal}.
+ * @param mc the context to use.
+ * @return {@code this * multiplicand}, rounded as necessary.
+ * @throws ArithmeticException if the result is inexact but the
+ * rounding mode is {@code UNNECESSARY}.
+ * @since 1.5
+ */
+ public BigDecimal multiply(BigDecimal multiplicand, MathContext mc) {
+ if (mc.precision == 0)
+ return multiply(multiplicand);
+ int productScale = checkScale((long) scale + multiplicand.scale);
+ if (this.intCompact != INFLATED) {
+ if ((multiplicand.intCompact != INFLATED)) {
+ return multiplyAndRound(this.intCompact, multiplicand.intCompact, productScale, mc);
+ } else {
+ return multiplyAndRound(this.intCompact, multiplicand.intVal, productScale, mc);
+ }
+ } else {
+ if ((multiplicand.intCompact != INFLATED)) {
+ return multiplyAndRound(multiplicand.intCompact, this.intVal, productScale, mc);
+ } else {
+ return multiplyAndRound(this.intVal, multiplicand.intVal, productScale, mc);
+ }
+ }
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is {@code (this /
+ * divisor)}, and whose scale is as specified. If rounding must
+ * be performed to generate a result with the specified scale, the
+ * specified rounding mode is applied.
+ *
+ * <p>The new {@link #divide(BigDecimal, int, RoundingMode)} method
+ * should be used in preference to this legacy method.
+ *
+ * @param divisor value by which this {@code BigDecimal} is to be divided.
+ * @param scale scale of the {@code BigDecimal} quotient to be returned.
+ * @param roundingMode rounding mode to apply.
+ * @return {@code this / divisor}
+ * @throws ArithmeticException if {@code divisor} is zero,
+ * {@code roundingMode==ROUND_UNNECESSARY} and
+ * the specified scale is insufficient to represent the result
+ * of the division exactly.
+ * @throws IllegalArgumentException if {@code roundingMode} does not
+ * represent a valid rounding mode.
+ * @see #ROUND_UP
+ * @see #ROUND_DOWN
+ * @see #ROUND_CEILING
+ * @see #ROUND_FLOOR
+ * @see #ROUND_HALF_UP
+ * @see #ROUND_HALF_DOWN
+ * @see #ROUND_HALF_EVEN
+ * @see #ROUND_UNNECESSARY
+ */
+ public BigDecimal divide(BigDecimal divisor, int scale, int roundingMode) {
+ if (roundingMode < ROUND_UP || roundingMode > ROUND_UNNECESSARY)
+ throw new IllegalArgumentException("Invalid rounding mode");
+ if (this.intCompact != INFLATED) {
+ if ((divisor.intCompact != INFLATED)) {
+ return divide(this.intCompact, this.scale, divisor.intCompact, divisor.scale, scale, roundingMode);
+ } else {
+ return divide(this.intCompact, this.scale, divisor.intVal, divisor.scale, scale, roundingMode);
+ }
+ } else {
+ if ((divisor.intCompact != INFLATED)) {
+ return divide(this.intVal, this.scale, divisor.intCompact, divisor.scale, scale, roundingMode);
+ } else {
+ return divide(this.intVal, this.scale, divisor.intVal, divisor.scale, scale, roundingMode);
+ }
+ }
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is {@code (this /
+ * divisor)}, and whose scale is as specified. If rounding must
+ * be performed to generate a result with the specified scale, the
+ * specified rounding mode is applied.
+ *
+ * @param divisor value by which this {@code BigDecimal} is to be divided.
+ * @param scale scale of the {@code BigDecimal} quotient to be returned.
+ * @param roundingMode rounding mode to apply.
+ * @return {@code this / divisor}
+ * @throws ArithmeticException if {@code divisor} is zero,
+ * {@code roundingMode==RoundingMode.UNNECESSARY} and
+ * the specified scale is insufficient to represent the result
+ * of the division exactly.
+ * @since 1.5
+ */
+ public BigDecimal divide(BigDecimal divisor, int scale, RoundingMode roundingMode) {
+ return divide(divisor, scale, roundingMode.oldMode);
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is {@code (this /
+ * divisor)}, and whose scale is {@code this.scale()}. If
+ * rounding must be performed to generate a result with the given
+ * scale, the specified rounding mode is applied.
+ *
+ * <p>The new {@link #divide(BigDecimal, RoundingMode)} method
+ * should be used in preference to this legacy method.
+ *
+ * @param divisor value by which this {@code BigDecimal} is to be divided.
+ * @param roundingMode rounding mode to apply.
+ * @return {@code this / divisor}
+ * @throws ArithmeticException if {@code divisor==0}, or
+ * {@code roundingMode==ROUND_UNNECESSARY} and
+ * {@code this.scale()} is insufficient to represent the result
+ * of the division exactly.
+ * @throws IllegalArgumentException if {@code roundingMode} does not
+ * represent a valid rounding mode.
+ * @see #ROUND_UP
+ * @see #ROUND_DOWN
+ * @see #ROUND_CEILING
+ * @see #ROUND_FLOOR
+ * @see #ROUND_HALF_UP
+ * @see #ROUND_HALF_DOWN
+ * @see #ROUND_HALF_EVEN
+ * @see #ROUND_UNNECESSARY
+ */
+ public BigDecimal divide(BigDecimal divisor, int roundingMode) {
+ return this.divide(divisor, scale, roundingMode);
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is {@code (this /
+ * divisor)}, and whose scale is {@code this.scale()}. If
+ * rounding must be performed to generate a result with the given
+ * scale, the specified rounding mode is applied.
+ *
+ * @param divisor value by which this {@code BigDecimal} is to be divided.
+ * @param roundingMode rounding mode to apply.
+ * @return {@code this / divisor}
+ * @throws ArithmeticException if {@code divisor==0}, or
+ * {@code roundingMode==RoundingMode.UNNECESSARY} and
+ * {@code this.scale()} is insufficient to represent the result
+ * of the division exactly.
+ * @since 1.5
+ */
+ public BigDecimal divide(BigDecimal divisor, RoundingMode roundingMode) {
+ return this.divide(divisor, scale, roundingMode.oldMode);
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is {@code (this /
+ * divisor)}, and whose preferred scale is {@code (this.scale() -
+ * divisor.scale())}; if the exact quotient cannot be
+ * represented (because it has a non-terminating decimal
+ * expansion) an {@code ArithmeticException} is thrown.
+ *
+ * @param divisor value by which this {@code BigDecimal} is to be divided.
+ * @throws ArithmeticException if the exact quotient does not have a
+ * terminating decimal expansion
+ * @return {@code this / divisor}
+ * @since 1.5
+ * @author Joseph D. Darcy
+ */
+ public BigDecimal divide(BigDecimal divisor) {
+ /*
+ * Handle zero cases first.
+ */
+ if (divisor.signum() == 0) { // x/0
+ if (this.signum() == 0) // 0/0
+ throw new ArithmeticException("Division undefined"); // NaN
+ throw new ArithmeticException("Division by zero");
+ }
+
+ // Calculate preferred scale
+ int preferredScale = saturateLong((long) this.scale - divisor.scale);
+
+ if (this.signum() == 0) // 0/y
+ return zeroValueOf(preferredScale);
+ else {
+ /*
+ * If the quotient this/divisor has a terminating decimal
+ * expansion, the expansion can have no more than
+ * (a.precision() + ceil(10*b.precision)/3) digits.
+ * Therefore, create a MathContext object with this
+ * precision and do a divide with the UNNECESSARY rounding
+ * mode.
+ */
+ MathContext mc = new MathContext( (int)Math.min(this.precision() +
+ (long)Math.ceil(10.0*divisor.precision()/3.0),
+ Integer.MAX_VALUE),
+ RoundingMode.UNNECESSARY);
+ BigDecimal quotient;
+ try {
+ quotient = this.divide(divisor, mc);
+ } catch (ArithmeticException e) {
+ throw new ArithmeticException("Non-terminating decimal expansion; " +
+ "no exact representable decimal result.");
+ }
+
+ int quotientScale = quotient.scale();
+
+ // divide(BigDecimal, mc) tries to adjust the quotient to
+ // the desired one by removing trailing zeros; since the
+ // exact divide method does not have an explicit digit
+ // limit, we can add zeros too.
+ if (preferredScale > quotientScale)
+ return quotient.setScale(preferredScale, ROUND_UNNECESSARY);
+
+ return quotient;
+ }
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is {@code (this /
+ * divisor)}, with rounding according to the context settings.
+ *
+ * @param divisor value by which this {@code BigDecimal} is to be divided.
+ * @param mc the context to use.
+ * @return {@code this / divisor}, rounded as necessary.
+ * @throws ArithmeticException if the result is inexact but the
+ * rounding mode is {@code UNNECESSARY} or
+ * {@code mc.precision == 0} and the quotient has a
+ * non-terminating decimal expansion.
+ * @since 1.5
+ */
+ public BigDecimal divide(BigDecimal divisor, MathContext mc) {
+ int mcp = mc.precision;
+ if (mcp == 0)
+ return divide(divisor);
+
+ BigDecimal dividend = this;
+ long preferredScale = (long)dividend.scale - divisor.scale;
+ // Now calculate the answer. We use the existing
+ // divide-and-round method, but as this rounds to scale we have
+ // to normalize the values here to achieve the desired result.
+ // For x/y we first handle y=0 and x=0, and then normalize x and
+ // y to give x' and y' with the following constraints:
+ // (a) 0.1 <= x' < 1
+ // (b) x' <= y' < 10*x'
+ // Dividing x'/y' with the required scale set to mc.precision then
+ // will give a result in the range 0.1 to 1 rounded to exactly
+ // the right number of digits (except in the case of a result of
+ // 1.000... which can arise when x=y, or when rounding overflows
+ // The 1.000... case will reduce properly to 1.
+ if (divisor.signum() == 0) { // x/0
+ if (dividend.signum() == 0) // 0/0
+ throw new ArithmeticException("Division undefined"); // NaN
+ throw new ArithmeticException("Division by zero");
+ }
+ if (dividend.signum() == 0) // 0/y
+ return zeroValueOf(saturateLong(preferredScale));
+ int xscale = dividend.precision();
+ int yscale = divisor.precision();
+ if(dividend.intCompact!=INFLATED) {
+ if(divisor.intCompact!=INFLATED) {
+ return divide(dividend.intCompact, xscale, divisor.intCompact, yscale, preferredScale, mc);
+ } else {
+ return divide(dividend.intCompact, xscale, divisor.intVal, yscale, preferredScale, mc);
+ }
+ } else {
+ if(divisor.intCompact!=INFLATED) {
+ return divide(dividend.intVal, xscale, divisor.intCompact, yscale, preferredScale, mc);
+ } else {
+ return divide(dividend.intVal, xscale, divisor.intVal, yscale, preferredScale, mc);
+ }
+ }
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is the integer part
+ * of the quotient {@code (this / divisor)} rounded down. The
+ * preferred scale of the result is {@code (this.scale() -
+ * divisor.scale())}.
+ *
+ * @param divisor value by which this {@code BigDecimal} is to be divided.
+ * @return The integer part of {@code this / divisor}.
+ * @throws ArithmeticException if {@code divisor==0}
+ * @since 1.5
+ */
+ public BigDecimal divideToIntegralValue(BigDecimal divisor) {
+ // Calculate preferred scale
+ int preferredScale = saturateLong((long) this.scale - divisor.scale);
+ if (this.compareMagnitude(divisor) < 0) {
+ // much faster when this << divisor
+ return zeroValueOf(preferredScale);
+ }
+
+ if (this.signum() == 0 && divisor.signum() != 0)
+ return this.setScale(preferredScale, ROUND_UNNECESSARY);
+
+ // Perform a divide with enough digits to round to a correct
+ // integer value; then remove any fractional digits
+
+ int maxDigits = (int)Math.min(this.precision() +
+ (long)Math.ceil(10.0*divisor.precision()/3.0) +
+ Math.abs((long)this.scale() - divisor.scale()) + 2,
+ Integer.MAX_VALUE);
+ BigDecimal quotient = this.divide(divisor, new MathContext(maxDigits,
+ RoundingMode.DOWN));
+ if (quotient.scale > 0) {
+ quotient = quotient.setScale(0, RoundingMode.DOWN);
+ quotient = stripZerosToMatchScale(quotient.intVal, quotient.intCompact, quotient.scale, preferredScale);
+ }
+
+ if (quotient.scale < preferredScale) {
+ // pad with zeros if necessary
+ quotient = quotient.setScale(preferredScale, ROUND_UNNECESSARY);
+ }
+
+ return quotient;
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is the integer part
+ * of {@code (this / divisor)}. Since the integer part of the
+ * exact quotient does not depend on the rounding mode, the
+ * rounding mode does not affect the values returned by this
+ * method. The preferred scale of the result is
+ * {@code (this.scale() - divisor.scale())}. An
+ * {@code ArithmeticException} is thrown if the integer part of
+ * the exact quotient needs more than {@code mc.precision}
+ * digits.
+ *
+ * @param divisor value by which this {@code BigDecimal} is to be divided.
+ * @param mc the context to use.
+ * @return The integer part of {@code this / divisor}.
+ * @throws ArithmeticException if {@code divisor==0}
+ * @throws ArithmeticException if {@code mc.precision} {@literal >} 0 and the result
+ * requires a precision of more than {@code mc.precision} digits.
+ * @since 1.5
+ * @author Joseph D. Darcy
+ */
+ public BigDecimal divideToIntegralValue(BigDecimal divisor, MathContext mc) {
+ if (mc.precision == 0 || // exact result
+ (this.compareMagnitude(divisor) < 0)) // zero result
+ return divideToIntegralValue(divisor);
+
+ // Calculate preferred scale
+ int preferredScale = saturateLong((long)this.scale - divisor.scale);
+
+ /*
+ * Perform a normal divide to mc.precision digits. If the
+ * remainder has absolute value less than the divisor, the
+ * integer portion of the quotient fits into mc.precision
+ * digits. Next, remove any fractional digits from the
+ * quotient and adjust the scale to the preferred value.
+ */
+ BigDecimal result = this.divide(divisor, new MathContext(mc.precision, RoundingMode.DOWN));
+
+ if (result.scale() < 0) {
+ /*
+ * Result is an integer. See if quotient represents the
+ * full integer portion of the exact quotient; if it does,
+ * the computed remainder will be less than the divisor.
+ */
+ BigDecimal product = result.multiply(divisor);
+ // If the quotient is the full integer value,
+ // |dividend-product| < |divisor|.
+ if (this.subtract(product).compareMagnitude(divisor) >= 0) {
+ throw new ArithmeticException("Division impossible");
+ }
+ } else if (result.scale() > 0) {
+ /*
+ * Integer portion of quotient will fit into precision
+ * digits; recompute quotient to scale 0 to avoid double
+ * rounding and then try to adjust, if necessary.
+ */
+ result = result.setScale(0, RoundingMode.DOWN);
+ }
+ // else result.scale() == 0;
+
+ int precisionDiff;
+ if ((preferredScale > result.scale()) &&
+ (precisionDiff = mc.precision - result.precision()) > 0) {
+ return result.setScale(result.scale() +
+ Math.min(precisionDiff, preferredScale - result.scale) );
+ } else {
+ return stripZerosToMatchScale(result.intVal,result.intCompact,result.scale,preferredScale);
+ }
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is {@code (this % divisor)}.
+ *
+ * <p>The remainder is given by
+ * {@code this.subtract(this.divideToIntegralValue(divisor).multiply(divisor))}.
+ * Note that this is not the modulo operation (the result can be
+ * negative).
+ *
+ * @param divisor value by which this {@code BigDecimal} is to be divided.
+ * @return {@code this % divisor}.
+ * @throws ArithmeticException if {@code divisor==0}
+ * @since 1.5
+ */
+ public BigDecimal remainder(BigDecimal divisor) {
+ BigDecimal divrem[] = this.divideAndRemainder(divisor);
+ return divrem[1];
+ }
+
+
+ /**
+ * Returns a {@code BigDecimal} whose value is {@code (this %
+ * divisor)}, with rounding according to the context settings.
+ * The {@code MathContext} settings affect the implicit divide
+ * used to compute the remainder. The remainder computation
+ * itself is by definition exact. Therefore, the remainder may
+ * contain more than {@code mc.getPrecision()} digits.
+ *
+ * <p>The remainder is given by
+ * {@code this.subtract(this.divideToIntegralValue(divisor,
+ * mc).multiply(divisor))}. Note that this is not the modulo
+ * operation (the result can be negative).
+ *
+ * @param divisor value by which this {@code BigDecimal} is to be divided.
+ * @param mc the context to use.
+ * @return {@code this % divisor}, rounded as necessary.
+ * @throws ArithmeticException if {@code divisor==0}
+ * @throws ArithmeticException if the result is inexact but the
+ * rounding mode is {@code UNNECESSARY}, or {@code mc.precision}
+ * {@literal >} 0 and the result of {@code this.divideToIntgralValue(divisor)} would
+ * require a precision of more than {@code mc.precision} digits.
+ * @see #divideToIntegralValue(java.math.BigDecimal, java.math.MathContext)
+ * @since 1.5
+ */
+ public BigDecimal remainder(BigDecimal divisor, MathContext mc) {
+ BigDecimal divrem[] = this.divideAndRemainder(divisor, mc);
+ return divrem[1];
+ }
+
+ /**
+ * Returns a two-element {@code BigDecimal} array containing the
+ * result of {@code divideToIntegralValue} followed by the result of
+ * {@code remainder} on the two operands.
+ *
+ * <p>Note that if both the integer quotient and remainder are
+ * needed, this method is faster than using the
+ * {@code divideToIntegralValue} and {@code remainder} methods
+ * separately because the division need only be carried out once.
+ *
+ * @param divisor value by which this {@code BigDecimal} is to be divided,
+ * and the remainder computed.
+ * @return a two element {@code BigDecimal} array: the quotient
+ * (the result of {@code divideToIntegralValue}) is the initial element
+ * and the remainder is the final element.
+ * @throws ArithmeticException if {@code divisor==0}
+ * @see #divideToIntegralValue(java.math.BigDecimal, java.math.MathContext)
+ * @see #remainder(java.math.BigDecimal, java.math.MathContext)
+ * @since 1.5
+ */
+ public BigDecimal[] divideAndRemainder(BigDecimal divisor) {
+ // we use the identity x = i * y + r to determine r
+ BigDecimal[] result = new BigDecimal[2];
+
+ result[0] = this.divideToIntegralValue(divisor);
+ result[1] = this.subtract(result[0].multiply(divisor));
+ return result;
+ }
+
+ /**
+ * Returns a two-element {@code BigDecimal} array containing the
+ * result of {@code divideToIntegralValue} followed by the result of
+ * {@code remainder} on the two operands calculated with rounding
+ * according to the context settings.
+ *
+ * <p>Note that if both the integer quotient and remainder are
+ * needed, this method is faster than using the
+ * {@code divideToIntegralValue} and {@code remainder} methods
+ * separately because the division need only be carried out once.
+ *
+ * @param divisor value by which this {@code BigDecimal} is to be divided,
+ * and the remainder computed.
+ * @param mc the context to use.
+ * @return a two element {@code BigDecimal} array: the quotient
+ * (the result of {@code divideToIntegralValue}) is the
+ * initial element and the remainder is the final element.
+ * @throws ArithmeticException if {@code divisor==0}
+ * @throws ArithmeticException if the result is inexact but the
+ * rounding mode is {@code UNNECESSARY}, or {@code mc.precision}
+ * {@literal >} 0 and the result of {@code this.divideToIntgralValue(divisor)} would
+ * require a precision of more than {@code mc.precision} digits.
+ * @see #divideToIntegralValue(java.math.BigDecimal, java.math.MathContext)
+ * @see #remainder(java.math.BigDecimal, java.math.MathContext)
+ * @since 1.5
+ */
+ public BigDecimal[] divideAndRemainder(BigDecimal divisor, MathContext mc) {
+ if (mc.precision == 0)
+ return divideAndRemainder(divisor);
+
+ BigDecimal[] result = new BigDecimal[2];
+ BigDecimal lhs = this;
+
+ result[0] = lhs.divideToIntegralValue(divisor, mc);
+ result[1] = lhs.subtract(result[0].multiply(divisor));
+ return result;
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is
+ * <tt>(this<sup>n</sup>)</tt>, The power is computed exactly, to
+ * unlimited precision.
+ *
+ * <p>The parameter {@code n} must be in the range 0 through
+ * 999999999, inclusive. {@code ZERO.pow(0)} returns {@link
+ * #ONE}.
+ *
+ * Note that future releases may expand the allowable exponent
+ * range of this method.
+ *
+ * @param n power to raise this {@code BigDecimal} to.
+ * @return <tt>this<sup>n</sup></tt>
+ * @throws ArithmeticException if {@code n} is out of range.
+ * @since 1.5
+ */
+ public BigDecimal pow(int n) {
+ if (n < 0 || n > 999999999)
+ throw new ArithmeticException("Invalid operation");
+ // No need to calculate pow(n) if result will over/underflow.
+ // Don't attempt to support "supernormal" numbers.
+ int newScale = checkScale((long)scale * n);
+ return new BigDecimal(this.inflated().pow(n), newScale);
+ }
+
+
+ /**
+ * Returns a {@code BigDecimal} whose value is
+ * <tt>(this<sup>n</sup>)</tt>. The current implementation uses
+ * the core algorithm defined in ANSI standard X3.274-1996 with
+ * rounding according to the context settings. In general, the
+ * returned numerical value is within two ulps of the exact
+ * numerical value for the chosen precision. Note that future
+ * releases may use a different algorithm with a decreased
+ * allowable error bound and increased allowable exponent range.
+ *
+ * <p>The X3.274-1996 algorithm is:
+ *
+ * <ul>
+ * <li> An {@code ArithmeticException} exception is thrown if
+ * <ul>
+ * <li>{@code abs(n) > 999999999}
+ * <li>{@code mc.precision == 0} and {@code n < 0}
+ * <li>{@code mc.precision > 0} and {@code n} has more than
+ * {@code mc.precision} decimal digits
+ * </ul>
+ *
+ * <li> if {@code n} is zero, {@link #ONE} is returned even if
+ * {@code this} is zero, otherwise
+ * <ul>
+ * <li> if {@code n} is positive, the result is calculated via
+ * the repeated squaring technique into a single accumulator.
+ * The individual multiplications with the accumulator use the
+ * same math context settings as in {@code mc} except for a
+ * precision increased to {@code mc.precision + elength + 1}
+ * where {@code elength} is the number of decimal digits in
+ * {@code n}.
+ *
+ * <li> if {@code n} is negative, the result is calculated as if
+ * {@code n} were positive; this value is then divided into one
+ * using the working precision specified above.
+ *
+ * <li> The final value from either the positive or negative case
+ * is then rounded to the destination precision.
+ * </ul>
+ * </ul>
+ *
+ * @param n power to raise this {@code BigDecimal} to.
+ * @param mc the context to use.
+ * @return <tt>this<sup>n</sup></tt> using the ANSI standard X3.274-1996
+ * algorithm
+ * @throws ArithmeticException if the result is inexact but the
+ * rounding mode is {@code UNNECESSARY}, or {@code n} is out
+ * of range.
+ * @since 1.5
+ */
+ public BigDecimal pow(int n, MathContext mc) {
+ if (mc.precision == 0)
+ return pow(n);
+ if (n < -999999999 || n > 999999999)
+ throw new ArithmeticException("Invalid operation");
+ if (n == 0)
+ return ONE; // x**0 == 1 in X3.274
+ BigDecimal lhs = this;
+ MathContext workmc = mc; // working settings
+ int mag = Math.abs(n); // magnitude of n
+ if (mc.precision > 0) {
+ int elength = longDigitLength(mag); // length of n in digits
+ if (elength > mc.precision) // X3.274 rule
+ throw new ArithmeticException("Invalid operation");
+ workmc = new MathContext(mc.precision + elength + 1,
+ mc.roundingMode);
+ }
+ // ready to carry out power calculation...
+ BigDecimal acc = ONE; // accumulator
+ boolean seenbit = false; // set once we've seen a 1-bit
+ for (int i=1;;i++) { // for each bit [top bit ignored]
+ mag += mag; // shift left 1 bit
+ if (mag < 0) { // top bit is set
+ seenbit = true; // OK, we're off
+ acc = acc.multiply(lhs, workmc); // acc=acc*x
+ }
+ if (i == 31)
+ break; // that was the last bit
+ if (seenbit)
+ acc=acc.multiply(acc, workmc); // acc=acc*acc [square]
+ // else (!seenbit) no point in squaring ONE
+ }
+ // if negative n, calculate the reciprocal using working precision
+ if (n < 0) // [hence mc.precision>0]
+ acc=ONE.divide(acc, workmc);
+ // round to final precision and strip zeros
+ return doRound(acc, mc);
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is the absolute value
+ * of this {@code BigDecimal}, and whose scale is
+ * {@code this.scale()}.
+ *
+ * @return {@code abs(this)}
+ */
+ public BigDecimal abs() {
+ return (signum() < 0 ? negate() : this);
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is the absolute value
+ * of this {@code BigDecimal}, with rounding according to the
+ * context settings.
+ *
+ * @param mc the context to use.
+ * @return {@code abs(this)}, rounded as necessary.
+ * @throws ArithmeticException if the result is inexact but the
+ * rounding mode is {@code UNNECESSARY}.
+ * @since 1.5
+ */
+ public BigDecimal abs(MathContext mc) {
+ return (signum() < 0 ? negate(mc) : plus(mc));
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is {@code (-this)},
+ * and whose scale is {@code this.scale()}.
+ *
+ * @return {@code -this}.
+ */
+ public BigDecimal negate() {
+ if (intCompact == INFLATED) {
+ return new BigDecimal(intVal.negate(), INFLATED, scale, precision);
+ } else {
+ return valueOf(-intCompact, scale, precision);
+ }
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is {@code (-this)},
+ * with rounding according to the context settings.
+ *
+ * @param mc the context to use.
+ * @return {@code -this}, rounded as necessary.
+ * @throws ArithmeticException if the result is inexact but the
+ * rounding mode is {@code UNNECESSARY}.
+ * @since 1.5
+ */
+ public BigDecimal negate(MathContext mc) {
+ return negate().plus(mc);
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is {@code (+this)}, and whose
+ * scale is {@code this.scale()}.
+ *
+ * <p>This method, which simply returns this {@code BigDecimal}
+ * is included for symmetry with the unary minus method {@link
+ * #negate()}.
+ *
+ * @return {@code this}.
+ * @see #negate()
+ * @since 1.5
+ */
+ public BigDecimal plus() {
+ return this;
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is {@code (+this)},
+ * with rounding according to the context settings.
+ *
+ * <p>The effect of this method is identical to that of the {@link
+ * #round(MathContext)} method.
+ *
+ * @param mc the context to use.
+ * @return {@code this}, rounded as necessary. A zero result will
+ * have a scale of 0.
+ * @throws ArithmeticException if the result is inexact but the
+ * rounding mode is {@code UNNECESSARY}.
+ * @see #round(MathContext)
+ * @since 1.5
+ */
+ public BigDecimal plus(MathContext mc) {
+ if (mc.precision == 0) // no rounding please
+ return this;
+ return doRound(this, mc);
+ }
+
+ /**
+ * Returns the signum function of this {@code BigDecimal}.
+ *
+ * @return -1, 0, or 1 as the value of this {@code BigDecimal}
+ * is negative, zero, or positive.
+ */
+ public int signum() {
+ return (intCompact != INFLATED)?
+ Long.signum(intCompact):
+ intVal.signum();
+ }
+
+ /**
+ * Returns the <i>scale</i> of this {@code BigDecimal}. If zero
+ * or positive, the scale is the number of digits to the right of
+ * the decimal point. If negative, the unscaled value of the
+ * number is multiplied by ten to the power of the negation of the
+ * scale. For example, a scale of {@code -3} means the unscaled
+ * value is multiplied by 1000.
+ *
+ * @return the scale of this {@code BigDecimal}.
+ */
+ public int scale() {
+ return scale;
+ }
+
+ /**
+ * Returns the <i>precision</i> of this {@code BigDecimal}. (The
+ * precision is the number of digits in the unscaled value.)
+ *
+ * <p>The precision of a zero value is 1.
+ *
+ * @return the precision of this {@code BigDecimal}.
+ * @since 1.5
+ */
+ public int precision() {
+ int result = precision;
+ if (result == 0) {
+ long s = intCompact;
+ if (s != INFLATED)
+ result = longDigitLength(s);
+ else
+ result = bigDigitLength(intVal);
+ precision = result;
+ }
+ return result;
+ }
+
+
+ /**
+ * Returns a {@code BigInteger} whose value is the <i>unscaled
+ * value</i> of this {@code BigDecimal}. (Computes <tt>(this *
+ * 10<sup>this.scale()</sup>)</tt>.)
+ *
+ * @return the unscaled value of this {@code BigDecimal}.
+ * @since 1.2
+ */
+ public BigInteger unscaledValue() {
+ return this.inflated();
+ }
+
+ // Rounding Modes
+
+ /**
+ * Rounding mode to round away from zero. Always increments the
+ * digit prior to a nonzero discarded fraction. Note that this rounding
+ * mode never decreases the magnitude of the calculated value.
+ */
+ public final static int ROUND_UP = 0;
+
+ /**
+ * Rounding mode to round towards zero. Never increments the digit
+ * prior to a discarded fraction (i.e., truncates). Note that this
+ * rounding mode never increases the magnitude of the calculated value.
+ */
+ public final static int ROUND_DOWN = 1;
+
+ /**
+ * Rounding mode to round towards positive infinity. If the
+ * {@code BigDecimal} is positive, behaves as for
+ * {@code ROUND_UP}; if negative, behaves as for
+ * {@code ROUND_DOWN}. Note that this rounding mode never
+ * decreases the calculated value.
+ */
+ public final static int ROUND_CEILING = 2;
+
+ /**
+ * Rounding mode to round towards negative infinity. If the
+ * {@code BigDecimal} is positive, behave as for
+ * {@code ROUND_DOWN}; if negative, behave as for
+ * {@code ROUND_UP}. Note that this rounding mode never
+ * increases the calculated value.
+ */
+ public final static int ROUND_FLOOR = 3;
+
+ /**
+ * Rounding mode to round towards {@literal "nearest neighbor"}
+ * unless both neighbors are equidistant, in which case round up.
+ * Behaves as for {@code ROUND_UP} if the discarded fraction is
+ * &ge; 0.5; otherwise, behaves as for {@code ROUND_DOWN}. Note
+ * that this is the rounding mode that most of us were taught in
+ * grade school.
+ */
+ public final static int ROUND_HALF_UP = 4;
+
+ /**
+ * Rounding mode to round towards {@literal "nearest neighbor"}
+ * unless both neighbors are equidistant, in which case round
+ * down. Behaves as for {@code ROUND_UP} if the discarded
+ * fraction is {@literal >} 0.5; otherwise, behaves as for
+ * {@code ROUND_DOWN}.
+ */
+ public final static int ROUND_HALF_DOWN = 5;
+
+ /**
+ * Rounding mode to round towards the {@literal "nearest neighbor"}
+ * unless both neighbors are equidistant, in which case, round
+ * towards the even neighbor. Behaves as for
+ * {@code ROUND_HALF_UP} if the digit to the left of the
+ * discarded fraction is odd; behaves as for
+ * {@code ROUND_HALF_DOWN} if it's even. Note that this is the
+ * rounding mode that minimizes cumulative error when applied
+ * repeatedly over a sequence of calculations.
+ */
+ public final static int ROUND_HALF_EVEN = 6;
+
+ /**
+ * Rounding mode to assert that the requested operation has an exact
+ * result, hence no rounding is necessary. If this rounding mode is
+ * specified on an operation that yields an inexact result, an
+ * {@code ArithmeticException} is thrown.
+ */
+ public final static int ROUND_UNNECESSARY = 7;
+
+
+ // Scaling/Rounding Operations
+
+ /**
+ * Returns a {@code BigDecimal} rounded according to the
+ * {@code MathContext} settings. If the precision setting is 0 then
+ * no rounding takes place.
+ *
+ * <p>The effect of this method is identical to that of the
+ * {@link #plus(MathContext)} method.
+ *
+ * @param mc the context to use.
+ * @return a {@code BigDecimal} rounded according to the
+ * {@code MathContext} settings.
+ * @throws ArithmeticException if the rounding mode is
+ * {@code UNNECESSARY} and the
+ * {@code BigDecimal} operation would require rounding.
+ * @see #plus(MathContext)
+ * @since 1.5
+ */
+ public BigDecimal round(MathContext mc) {
+ return plus(mc);
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose scale is the specified
+ * value, and whose unscaled value is determined by multiplying or
+ * dividing this {@code BigDecimal}'s unscaled value by the
+ * appropriate power of ten to maintain its overall value. If the
+ * scale is reduced by the operation, the unscaled value must be
+ * divided (rather than multiplied), and the value may be changed;
+ * in this case, the specified rounding mode is applied to the
+ * division.
+ *
+ * <p>Note that since BigDecimal objects are immutable, calls of
+ * this method do <i>not</i> result in the original object being
+ * modified, contrary to the usual convention of having methods
+ * named <tt>set<i>X</i></tt> mutate field <i>{@code X}</i>.
+ * Instead, {@code setScale} returns an object with the proper
+ * scale; the returned object may or may not be newly allocated.
+ *
+ * @param newScale scale of the {@code BigDecimal} value to be returned.
+ * @param roundingMode The rounding mode to apply.
+ * @return a {@code BigDecimal} whose scale is the specified value,
+ * and whose unscaled value is determined by multiplying or
+ * dividing this {@code BigDecimal}'s unscaled value by the
+ * appropriate power of ten to maintain its overall value.
+ * @throws ArithmeticException if {@code roundingMode==UNNECESSARY}
+ * and the specified scaling operation would require
+ * rounding.
+ * @see RoundingMode
+ * @since 1.5
+ */
+ public BigDecimal setScale(int newScale, RoundingMode roundingMode) {
+ return setScale(newScale, roundingMode.oldMode);
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose scale is the specified
+ * value, and whose unscaled value is determined by multiplying or
+ * dividing this {@code BigDecimal}'s unscaled value by the
+ * appropriate power of ten to maintain its overall value. If the
+ * scale is reduced by the operation, the unscaled value must be
+ * divided (rather than multiplied), and the value may be changed;
+ * in this case, the specified rounding mode is applied to the
+ * division.
+ *
+ * <p>Note that since BigDecimal objects are immutable, calls of
+ * this method do <i>not</i> result in the original object being
+ * modified, contrary to the usual convention of having methods
+ * named <tt>set<i>X</i></tt> mutate field <i>{@code X}</i>.
+ * Instead, {@code setScale} returns an object with the proper
+ * scale; the returned object may or may not be newly allocated.
+ *
+ * <p>The new {@link #setScale(int, RoundingMode)} method should
+ * be used in preference to this legacy method.
+ *
+ * @param newScale scale of the {@code BigDecimal} value to be returned.
+ * @param roundingMode The rounding mode to apply.
+ * @return a {@code BigDecimal} whose scale is the specified value,
+ * and whose unscaled value is determined by multiplying or
+ * dividing this {@code BigDecimal}'s unscaled value by the
+ * appropriate power of ten to maintain its overall value.
+ * @throws ArithmeticException if {@code roundingMode==ROUND_UNNECESSARY}
+ * and the specified scaling operation would require
+ * rounding.
+ * @throws IllegalArgumentException if {@code roundingMode} does not
+ * represent a valid rounding mode.
+ * @see #ROUND_UP
+ * @see #ROUND_DOWN
+ * @see #ROUND_CEILING
+ * @see #ROUND_FLOOR
+ * @see #ROUND_HALF_UP
+ * @see #ROUND_HALF_DOWN
+ * @see #ROUND_HALF_EVEN
+ * @see #ROUND_UNNECESSARY
+ */
+ public BigDecimal setScale(int newScale, int roundingMode) {
+ if (roundingMode < ROUND_UP || roundingMode > ROUND_UNNECESSARY)
+ throw new IllegalArgumentException("Invalid rounding mode");
+
+ int oldScale = this.scale;
+ if (newScale == oldScale) // easy case
+ return this;
+ if (this.signum() == 0) // zero can have any scale
+ return zeroValueOf(newScale);
+ if(this.intCompact!=INFLATED) {
+ long rs = this.intCompact;
+ if (newScale > oldScale) {
+ int raise = checkScale((long) newScale - oldScale);
+ if ((rs = longMultiplyPowerTen(rs, raise)) != INFLATED) {
+ return valueOf(rs,newScale);
+ }
+ BigInteger rb = bigMultiplyPowerTen(raise);
+ return new BigDecimal(rb, INFLATED, newScale, (precision > 0) ? precision + raise : 0);
+ } else {
+ // newScale < oldScale -- drop some digits
+ // Can't predict the precision due to the effect of rounding.
+ int drop = checkScale((long) oldScale - newScale);
+ if (drop < LONG_TEN_POWERS_TABLE.length) {
+ return divideAndRound(rs, LONG_TEN_POWERS_TABLE[drop], newScale, roundingMode, newScale);
+ } else {
+ return divideAndRound(this.inflated(), bigTenToThe(drop), newScale, roundingMode, newScale);
+ }
+ }
+ } else {
+ if (newScale > oldScale) {
+ int raise = checkScale((long) newScale - oldScale);
+ BigInteger rb = bigMultiplyPowerTen(this.intVal,raise);
+ return new BigDecimal(rb, INFLATED, newScale, (precision > 0) ? precision + raise : 0);
+ } else {
+ // newScale < oldScale -- drop some digits
+ // Can't predict the precision due to the effect of rounding.
+ int drop = checkScale((long) oldScale - newScale);
+ if (drop < LONG_TEN_POWERS_TABLE.length)
+ return divideAndRound(this.intVal, LONG_TEN_POWERS_TABLE[drop], newScale, roundingMode,
+ newScale);
+ else
+ return divideAndRound(this.intVal, bigTenToThe(drop), newScale, roundingMode, newScale);
+ }
+ }
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose scale is the specified
+ * value, and whose value is numerically equal to this
+ * {@code BigDecimal}'s. Throws an {@code ArithmeticException}
+ * if this is not possible.
+ *
+ * <p>This call is typically used to increase the scale, in which
+ * case it is guaranteed that there exists a {@code BigDecimal}
+ * of the specified scale and the correct value. The call can
+ * also be used to reduce the scale if the caller knows that the
+ * {@code BigDecimal} has sufficiently many zeros at the end of
+ * its fractional part (i.e., factors of ten in its integer value)
+ * to allow for the rescaling without changing its value.
+ *
+ * <p>This method returns the same result as the two-argument
+ * versions of {@code setScale}, but saves the caller the trouble
+ * of specifying a rounding mode in cases where it is irrelevant.
+ *
+ * <p>Note that since {@code BigDecimal} objects are immutable,
+ * calls of this method do <i>not</i> result in the original
+ * object being modified, contrary to the usual convention of
+ * having methods named <tt>set<i>X</i></tt> mutate field
+ * <i>{@code X}</i>. Instead, {@code setScale} returns an
+ * object with the proper scale; the returned object may or may
+ * not be newly allocated.
+ *
+ * @param newScale scale of the {@code BigDecimal} value to be returned.
+ * @return a {@code BigDecimal} whose scale is the specified value, and
+ * whose unscaled value is determined by multiplying or dividing
+ * this {@code BigDecimal}'s unscaled value by the appropriate
+ * power of ten to maintain its overall value.
+ * @throws ArithmeticException if the specified scaling operation would
+ * require rounding.
+ * @see #setScale(int, int)
+ * @see #setScale(int, RoundingMode)
+ */
+ public BigDecimal setScale(int newScale) {
+ return setScale(newScale, ROUND_UNNECESSARY);
+ }
+
+ // Decimal Point Motion Operations
+
+ /**
+ * Returns a {@code BigDecimal} which is equivalent to this one
+ * with the decimal point moved {@code n} places to the left. If
+ * {@code n} is non-negative, the call merely adds {@code n} to
+ * the scale. If {@code n} is negative, the call is equivalent
+ * to {@code movePointRight(-n)}. The {@code BigDecimal}
+ * returned by this call has value <tt>(this &times;
+ * 10<sup>-n</sup>)</tt> and scale {@code max(this.scale()+n,
+ * 0)}.
+ *
+ * @param n number of places to move the decimal point to the left.
+ * @return a {@code BigDecimal} which is equivalent to this one with the
+ * decimal point moved {@code n} places to the left.
+ * @throws ArithmeticException if scale overflows.
+ */
+ public BigDecimal movePointLeft(int n) {
+ // Cannot use movePointRight(-n) in case of n==Integer.MIN_VALUE
+ int newScale = checkScale((long)scale + n);
+ BigDecimal num = new BigDecimal(intVal, intCompact, newScale, 0);
+ return num.scale < 0 ? num.setScale(0, ROUND_UNNECESSARY) : num;
+ }
+
+ /**
+ * Returns a {@code BigDecimal} which is equivalent to this one
+ * with the decimal point moved {@code n} places to the right.
+ * If {@code n} is non-negative, the call merely subtracts
+ * {@code n} from the scale. If {@code n} is negative, the call
+ * is equivalent to {@code movePointLeft(-n)}. The
+ * {@code BigDecimal} returned by this call has value <tt>(this
+ * &times; 10<sup>n</sup>)</tt> and scale {@code max(this.scale()-n,
+ * 0)}.
+ *
+ * @param n number of places to move the decimal point to the right.
+ * @return a {@code BigDecimal} which is equivalent to this one
+ * with the decimal point moved {@code n} places to the right.
+ * @throws ArithmeticException if scale overflows.
+ */
+ public BigDecimal movePointRight(int n) {
+ // Cannot use movePointLeft(-n) in case of n==Integer.MIN_VALUE
+ int newScale = checkScale((long)scale - n);
+ BigDecimal num = new BigDecimal(intVal, intCompact, newScale, 0);
+ return num.scale < 0 ? num.setScale(0, ROUND_UNNECESSARY) : num;
+ }
+
+ /**
+ * Returns a BigDecimal whose numerical value is equal to
+ * ({@code this} * 10<sup>n</sup>). The scale of
+ * the result is {@code (this.scale() - n)}.
+ *
+ * @param n the exponent power of ten to scale by
+ * @return a BigDecimal whose numerical value is equal to
+ * ({@code this} * 10<sup>n</sup>)
+ * @throws ArithmeticException if the scale would be
+ * outside the range of a 32-bit integer.
+ *
+ * @since 1.5
+ */
+ public BigDecimal scaleByPowerOfTen(int n) {
+ return new BigDecimal(intVal, intCompact,
+ checkScale((long)scale - n), precision);
+ }
+
+ /**
+ * Returns a {@code BigDecimal} which is numerically equal to
+ * this one but with any trailing zeros removed from the
+ * representation. For example, stripping the trailing zeros from
+ * the {@code BigDecimal} value {@code 600.0}, which has
+ * [{@code BigInteger}, {@code scale}] components equals to
+ * [6000, 1], yields {@code 6E2} with [{@code BigInteger},
+ * {@code scale}] components equals to [6, -2]. If
+ * this BigDecimal is numerically equal to zero, then
+ * {@code BigDecimal.ZERO} is returned.
+ *
+ * @return a numerically equal {@code BigDecimal} with any
+ * trailing zeros removed.
+ * @since 1.5
+ */
+ public BigDecimal stripTrailingZeros() {
+ if (intCompact == 0 || (intVal != null && intVal.signum() == 0)) {
+ return BigDecimal.ZERO;
+ } else if (intCompact != INFLATED) {
+ return createAndStripZerosToMatchScale(intCompact, scale, Long.MIN_VALUE);
+ } else {
+ return createAndStripZerosToMatchScale(intVal, scale, Long.MIN_VALUE);
+ }
+ }
+
+ // Comparison Operations
+
+ /**
+ * Compares this {@code BigDecimal} with the specified
+ * {@code BigDecimal}. Two {@code BigDecimal} objects that are
+ * equal in value but have a different scale (like 2.0 and 2.00)
+ * are considered equal by this method. This method is provided
+ * in preference to individual methods for each of the six boolean
+ * comparison operators ({@literal <}, ==,
+ * {@literal >}, {@literal >=}, !=, {@literal <=}). The
+ * suggested idiom for performing these comparisons is:
+ * {@code (x.compareTo(y)} &lt;<i>op</i>&gt; {@code 0)}, where
+ * &lt;<i>op</i>&gt; is one of the six comparison operators.
+ *
+ * @param val {@code BigDecimal} to which this {@code BigDecimal} is
+ * to be compared.
+ * @return -1, 0, or 1 as this {@code BigDecimal} is numerically
+ * less than, equal to, or greater than {@code val}.
+ */
+ public int compareTo(BigDecimal val) {
+ // Quick path for equal scale and non-inflated case.
+ if (scale == val.scale) {
+ long xs = intCompact;
+ long ys = val.intCompact;
+ if (xs != INFLATED && ys != INFLATED)
+ return xs != ys ? ((xs > ys) ? 1 : -1) : 0;
+ }
+ int xsign = this.signum();
+ int ysign = val.signum();
+ if (xsign != ysign)
+ return (xsign > ysign) ? 1 : -1;
+ if (xsign == 0)
+ return 0;
+ int cmp = compareMagnitude(val);
+ return (xsign > 0) ? cmp : -cmp;
+ }
+
+ /**
+ * Version of compareTo that ignores sign.
+ */
+ private int compareMagnitude(BigDecimal val) {
+ // Match scales, avoid unnecessary inflation
+ long ys = val.intCompact;
+ long xs = this.intCompact;
+ if (xs == 0)
+ return (ys == 0) ? 0 : -1;
+ if (ys == 0)
+ return 1;
+
+ long sdiff = (long)this.scale - val.scale;
+ if (sdiff != 0) {
+ // Avoid matching scales if the (adjusted) exponents differ
+ long xae = (long)this.precision() - this.scale; // [-1]
+ long yae = (long)val.precision() - val.scale; // [-1]
+ if (xae < yae)
+ return -1;
+ if (xae > yae)
+ return 1;
+ BigInteger rb = null;
+ if (sdiff < 0) {
+ // The cases sdiff <= Integer.MIN_VALUE intentionally fall through.
+ if ( sdiff > Integer.MIN_VALUE &&
+ (xs == INFLATED ||
+ (xs = longMultiplyPowerTen(xs, (int)-sdiff)) == INFLATED) &&
+ ys == INFLATED) {
+ rb = bigMultiplyPowerTen((int)-sdiff);
+ return rb.compareMagnitude(val.intVal);
+ }
+ } else { // sdiff > 0
+ // The cases sdiff > Integer.MAX_VALUE intentionally fall through.
+ if ( sdiff <= Integer.MAX_VALUE &&
+ (ys == INFLATED ||
+ (ys = longMultiplyPowerTen(ys, (int)sdiff)) == INFLATED) &&
+ xs == INFLATED) {
+ rb = val.bigMultiplyPowerTen((int)sdiff);
+ return this.intVal.compareMagnitude(rb);
+ }
+ }
+ }
+ if (xs != INFLATED)
+ return (ys != INFLATED) ? longCompareMagnitude(xs, ys) : -1;
+ else if (ys != INFLATED)
+ return 1;
+ else
+ return this.intVal.compareMagnitude(val.intVal);
+ }
+
+ /**
+ * Compares this {@code BigDecimal} with the specified
+ * {@code Object} for equality. Unlike {@link
+ * #compareTo(BigDecimal) compareTo}, this method considers two
+ * {@code BigDecimal} objects equal only if they are equal in
+ * value and scale (thus 2.0 is not equal to 2.00 when compared by
+ * this method).
+ *
+ * @param x {@code Object} to which this {@code BigDecimal} is
+ * to be compared.
+ * @return {@code true} if and only if the specified {@code Object} is a
+ * {@code BigDecimal} whose value and scale are equal to this
+ * {@code BigDecimal}'s.
+ * @see #compareTo(java.math.BigDecimal)
+ * @see #hashCode
+ */
+ @Override
+ public boolean equals(Object x) {
+ if (!(x instanceof BigDecimal))
+ return false;
+ BigDecimal xDec = (BigDecimal) x;
+ if (x == this)
+ return true;
+ if (scale != xDec.scale)
+ return false;
+ long s = this.intCompact;
+ long xs = xDec.intCompact;
+ if (s != INFLATED) {
+ if (xs == INFLATED)
+ xs = compactValFor(xDec.intVal);
+ return xs == s;
+ } else if (xs != INFLATED)
+ return xs == compactValFor(this.intVal);
+
+ return this.inflated().equals(xDec.inflated());
+ }
+
+ /**
+ * Returns the minimum of this {@code BigDecimal} and
+ * {@code val}.
+ *
+ * @param val value with which the minimum is to be computed.
+ * @return the {@code BigDecimal} whose value is the lesser of this
+ * {@code BigDecimal} and {@code val}. If they are equal,
+ * as defined by the {@link #compareTo(BigDecimal) compareTo}
+ * method, {@code this} is returned.
+ * @see #compareTo(java.math.BigDecimal)
+ */
+ public BigDecimal min(BigDecimal val) {
+ return (compareTo(val) <= 0 ? this : val);
+ }
+
+ /**
+ * Returns the maximum of this {@code BigDecimal} and {@code val}.
+ *
+ * @param val value with which the maximum is to be computed.
+ * @return the {@code BigDecimal} whose value is the greater of this
+ * {@code BigDecimal} and {@code val}. If they are equal,
+ * as defined by the {@link #compareTo(BigDecimal) compareTo}
+ * method, {@code this} is returned.
+ * @see #compareTo(java.math.BigDecimal)
+ */
+ public BigDecimal max(BigDecimal val) {
+ return (compareTo(val) >= 0 ? this : val);
+ }
+
+ // Hash Function
+
+ /**
+ * Returns the hash code for this {@code BigDecimal}. Note that
+ * two {@code BigDecimal} objects that are numerically equal but
+ * differ in scale (like 2.0 and 2.00) will generally <i>not</i>
+ * have the same hash code.
+ *
+ * @return hash code for this {@code BigDecimal}.
+ * @see #equals(Object)
+ */
+ @Override
+ public int hashCode() {
+ if (intCompact != INFLATED) {
+ long val2 = (intCompact < 0)? -intCompact : intCompact;
+ int temp = (int)( ((int)(val2 >>> 32)) * 31 +
+ (val2 & LONG_MASK));
+ return 31*((intCompact < 0) ?-temp:temp) + scale;
+ } else
+ return 31*intVal.hashCode() + scale;
+ }
+
+ // Format Converters
+
+ /**
+ * Returns the string representation of this {@code BigDecimal},
+ * using scientific notation if an exponent is needed.
+ *
+ * <p>A standard canonical string form of the {@code BigDecimal}
+ * is created as though by the following steps: first, the
+ * absolute value of the unscaled value of the {@code BigDecimal}
+ * is converted to a string in base ten using the characters
+ * {@code '0'} through {@code '9'} with no leading zeros (except
+ * if its value is zero, in which case a single {@code '0'}
+ * character is used).
+ *
+ * <p>Next, an <i>adjusted exponent</i> is calculated; this is the
+ * negated scale, plus the number of characters in the converted
+ * unscaled value, less one. That is,
+ * {@code -scale+(ulength-1)}, where {@code ulength} is the
+ * length of the absolute value of the unscaled value in decimal
+ * digits (its <i>precision</i>).
+ *
+ * <p>If the scale is greater than or equal to zero and the
+ * adjusted exponent is greater than or equal to {@code -6}, the
+ * number will be converted to a character form without using
+ * exponential notation. In this case, if the scale is zero then
+ * no decimal point is added and if the scale is positive a
+ * decimal point will be inserted with the scale specifying the
+ * number of characters to the right of the decimal point.
+ * {@code '0'} characters are added to the left of the converted
+ * unscaled value as necessary. If no character precedes the
+ * decimal point after this insertion then a conventional
+ * {@code '0'} character is prefixed.
+ *
+ * <p>Otherwise (that is, if the scale is negative, or the
+ * adjusted exponent is less than {@code -6}), the number will be
+ * converted to a character form using exponential notation. In
+ * this case, if the converted {@code BigInteger} has more than
+ * one digit a decimal point is inserted after the first digit.
+ * An exponent in character form is then suffixed to the converted
+ * unscaled value (perhaps with inserted decimal point); this
+ * comprises the letter {@code 'E'} followed immediately by the
+ * adjusted exponent converted to a character form. The latter is
+ * in base ten, using the characters {@code '0'} through
+ * {@code '9'} with no leading zeros, and is always prefixed by a
+ * sign character {@code '-'} (<tt>'&#92;u002D'</tt>) if the
+ * adjusted exponent is negative, {@code '+'}
+ * (<tt>'&#92;u002B'</tt>) otherwise).
+ *
+ * <p>Finally, the entire string is prefixed by a minus sign
+ * character {@code '-'} (<tt>'&#92;u002D'</tt>) if the unscaled
+ * value is less than zero. No sign character is prefixed if the
+ * unscaled value is zero or positive.
+ *
+ * <p><b>Examples:</b>
+ * <p>For each representation [<i>unscaled value</i>, <i>scale</i>]
+ * on the left, the resulting string is shown on the right.
+ * <pre>
+ * [123,0] "123"
+ * [-123,0] "-123"
+ * [123,-1] "1.23E+3"
+ * [123,-3] "1.23E+5"
+ * [123,1] "12.3"
+ * [123,5] "0.00123"
+ * [123,10] "1.23E-8"
+ * [-123,12] "-1.23E-10"
+ * </pre>
+ *
+ * <b>Notes:</b>
+ * <ol>
+ *
+ * <li>There is a one-to-one mapping between the distinguishable
+ * {@code BigDecimal} values and the result of this conversion.
+ * That is, every distinguishable {@code BigDecimal} value
+ * (unscaled value and scale) has a unique string representation
+ * as a result of using {@code toString}. If that string
+ * representation is converted back to a {@code BigDecimal} using
+ * the {@link #BigDecimal(String)} constructor, then the original
+ * value will be recovered.
+ *
+ * <li>The string produced for a given number is always the same;
+ * it is not affected by locale. This means that it can be used
+ * as a canonical string representation for exchanging decimal
+ * data, or as a key for a Hashtable, etc. Locale-sensitive
+ * number formatting and parsing is handled by the {@link
+ * java.text.NumberFormat} class and its subclasses.
+ *
+ * <li>The {@link #toEngineeringString} method may be used for
+ * presenting numbers with exponents in engineering notation, and the
+ * {@link #setScale(int,RoundingMode) setScale} method may be used for
+ * rounding a {@code BigDecimal} so it has a known number of digits after
+ * the decimal point.
+ *
+ * <li>The digit-to-character mapping provided by
+ * {@code Character.forDigit} is used.
+ *
+ * </ol>
+ *
+ * @return string representation of this {@code BigDecimal}.
+ * @see Character#forDigit
+ * @see #BigDecimal(java.lang.String)
+ */
+ @Override
+ public String toString() {
+ String sc = stringCache;
+ if (sc == null)
+ stringCache = sc = layoutChars(true);
+ return sc;
+ }
+
+ /**
+ * Returns a string representation of this {@code BigDecimal},
+ * using engineering notation if an exponent is needed.
+ *
+ * <p>Returns a string that represents the {@code BigDecimal} as
+ * described in the {@link #toString()} method, except that if
+ * exponential notation is used, the power of ten is adjusted to
+ * be a multiple of three (engineering notation) such that the
+ * integer part of nonzero values will be in the range 1 through
+ * 999. If exponential notation is used for zero values, a
+ * decimal point and one or two fractional zero digits are used so
+ * that the scale of the zero value is preserved. Note that
+ * unlike the output of {@link #toString()}, the output of this
+ * method is <em>not</em> guaranteed to recover the same [integer,
+ * scale] pair of this {@code BigDecimal} if the output string is
+ * converting back to a {@code BigDecimal} using the {@linkplain
+ * #BigDecimal(String) string constructor}. The result of this method meets
+ * the weaker constraint of always producing a numerically equal
+ * result from applying the string constructor to the method's output.
+ *
+ * @return string representation of this {@code BigDecimal}, using
+ * engineering notation if an exponent is needed.
+ * @since 1.5
+ */
+ public String toEngineeringString() {
+ return layoutChars(false);
+ }
+
+ /**
+ * Returns a string representation of this {@code BigDecimal}
+ * without an exponent field. For values with a positive scale,
+ * the number of digits to the right of the decimal point is used
+ * to indicate scale. For values with a zero or negative scale,
+ * the resulting string is generated as if the value were
+ * converted to a numerically equal value with zero scale and as
+ * if all the trailing zeros of the zero scale value were present
+ * in the result.
+ *
+ * The entire string is prefixed by a minus sign character '-'
+ * (<tt>'&#92;u002D'</tt>) if the unscaled value is less than
+ * zero. No sign character is prefixed if the unscaled value is
+ * zero or positive.
+ *
+ * Note that if the result of this method is passed to the
+ * {@linkplain #BigDecimal(String) string constructor}, only the
+ * numerical value of this {@code BigDecimal} will necessarily be
+ * recovered; the representation of the new {@code BigDecimal}
+ * may have a different scale. In particular, if this
+ * {@code BigDecimal} has a negative scale, the string resulting
+ * from this method will have a scale of zero when processed by
+ * the string constructor.
+ *
+ * (This method behaves analogously to the {@code toString}
+ * method in 1.4 and earlier releases.)
+ *
+ * @return a string representation of this {@code BigDecimal}
+ * without an exponent field.
+ * @since 1.5
+ * @see #toString()
+ * @see #toEngineeringString()
+ */
+ public String toPlainString() {
+ if(scale==0) {
+ if(intCompact!=INFLATED) {
+ return Long.toString(intCompact);
+ } else {
+ return intVal.toString();
+ }
+ }
+ if(this.scale<0) { // No decimal point
+ if(signum()==0) {
+ return "0";
+ }
+ int tailingZeros = checkScaleNonZero((-(long)scale));
+ StringBuilder buf;
+ if(intCompact!=INFLATED) {
+ buf = new StringBuilder(20+tailingZeros);
+ buf.append(intCompact);
+ } else {
+ String str = intVal.toString();
+ buf = new StringBuilder(str.length()+tailingZeros);
+ buf.append(str);
+ }
+ for (int i = 0; i < tailingZeros; i++)
+ buf.append('0');
+ return buf.toString();
+ }
+ String str ;
+ if(intCompact!=INFLATED) {
+ str = Long.toString(Math.abs(intCompact));
+ } else {
+ str = intVal.abs().toString();
+ }
+ return getValueString(signum(), str, scale);
+ }
+
+ /* Returns a digit.digit string */
+ private String getValueString(int signum, String intString, int scale) {
+ /* Insert decimal point */
+ StringBuilder buf;
+ int insertionPoint = intString.length() - scale;
+ if (insertionPoint == 0) { /* Point goes right before intVal */
+ return (signum<0 ? "-0." : "0.") + intString;
+ } else if (insertionPoint > 0) { /* Point goes inside intVal */
+ buf = new StringBuilder(intString);
+ buf.insert(insertionPoint, '.');
+ if (signum < 0)
+ buf.insert(0, '-');
+ } else { /* We must insert zeros between point and intVal */
+ buf = new StringBuilder(3-insertionPoint + intString.length());
+ buf.append(signum<0 ? "-0." : "0.");
+ for (int i=0; i<-insertionPoint; i++)
+ buf.append('0');
+ buf.append(intString);
+ }
+ return buf.toString();
+ }
+
+ /**
+ * Converts this {@code BigDecimal} to a {@code BigInteger}.
+ * This conversion is analogous to the
+ * <i>narrowing primitive conversion</i> from {@code double} to
+ * {@code long} as defined in section 5.1.3 of
+ * <cite>The Java&trade; Language Specification</cite>:
+ * any fractional part of this
+ * {@code BigDecimal} will be discarded. Note that this
+ * conversion can lose information about the precision of the
+ * {@code BigDecimal} value.
+ * <p>
+ * To have an exception thrown if the conversion is inexact (in
+ * other words if a nonzero fractional part is discarded), use the
+ * {@link #toBigIntegerExact()} method.
+ *
+ * @return this {@code BigDecimal} converted to a {@code BigInteger}.
+ */
+ public BigInteger toBigInteger() {
+ // force to an integer, quietly
+ return this.setScale(0, ROUND_DOWN).inflated();
+ }
+
+ /**
+ * Converts this {@code BigDecimal} to a {@code BigInteger},
+ * checking for lost information. An exception is thrown if this
+ * {@code BigDecimal} has a nonzero fractional part.
+ *
+ * @return this {@code BigDecimal} converted to a {@code BigInteger}.
+ * @throws ArithmeticException if {@code this} has a nonzero
+ * fractional part.
+ * @since 1.5
+ */
+ public BigInteger toBigIntegerExact() {
+ // round to an integer, with Exception if decimal part non-0
+ return this.setScale(0, ROUND_UNNECESSARY).inflated();
+ }
+
+ /**
+ * Converts this {@code BigDecimal} to a {@code long}.
+ * This conversion is analogous to the
+ * <i>narrowing primitive conversion</i> from {@code double} to
+ * {@code short} as defined in section 5.1.3 of
+ * <cite>The Java&trade; Language Specification</cite>:
+ * any fractional part of this
+ * {@code BigDecimal} will be discarded, and if the resulting
+ * "{@code BigInteger}" is too big to fit in a
+ * {@code long}, only the low-order 64 bits are returned.
+ * Note that this conversion can lose information about the
+ * overall magnitude and precision of this {@code BigDecimal} value as well
+ * as return a result with the opposite sign.
+ *
+ * @return this {@code BigDecimal} converted to a {@code long}.
+ */
+ public long longValue(){
+ if (intCompact != INFLATED && scale == 0) {
+ return intCompact;
+ } else {
+ // Fastpath zero and small values
+ if (this.signum() == 0 || fractionOnly() ||
+ // Fastpath very large-scale values that will result
+ // in a truncated value of zero. If the scale is -64
+ // or less, there are at least 64 powers of 10 in the
+ // value of the numerical result. Since 10 = 2*5, in
+ // that case there would also be 64 powers of 2 in the
+ // result, meaning all 64 bits of a long will be zero.
+ scale <= -64) {
+ return 0;
+ } else {
+ return toBigInteger().longValue();
+ }
+ }
+ }
+
+ /**
+ * Return true if a nonzero BigDecimal has an absolute value less
+ * than one; i.e. only has fraction digits.
+ */
+ private boolean fractionOnly() {
+ assert this.signum() != 0;
+ return (this.precision() - this.scale) <= 0;
+ }
+
+ /**
+ * Converts this {@code BigDecimal} to a {@code long}, checking
+ * for lost information. If this {@code BigDecimal} has a
+ * nonzero fractional part or is out of the possible range for a
+ * {@code long} result then an {@code ArithmeticException} is
+ * thrown.
+ *
+ * @return this {@code BigDecimal} converted to a {@code long}.
+ * @throws ArithmeticException if {@code this} has a nonzero
+ * fractional part, or will not fit in a {@code long}.
+ * @since 1.5
+ */
+ public long longValueExact() {
+ if (intCompact != INFLATED && scale == 0)
+ return intCompact;
+
+ // Fastpath zero
+ if (this.signum() == 0)
+ return 0;
+
+ // Fastpath numbers less than 1.0 (the latter can be very slow
+ // to round if very small)
+ if (fractionOnly())
+ throw new ArithmeticException("Rounding necessary");
+
+ // If more than 19 digits in integer part it cannot possibly fit
+ if ((precision() - scale) > 19) // [OK for negative scale too]
+ throw new java.lang.ArithmeticException("Overflow");
+
+ // round to an integer, with Exception if decimal part non-0
+ BigDecimal num = this.setScale(0, ROUND_UNNECESSARY);
+ if (num.precision() >= 19) // need to check carefully
+ LongOverflow.check(num);
+ return num.inflated().longValue();
+ }
+
+ private static class LongOverflow {
+ /** BigInteger equal to Long.MIN_VALUE. */
+ private static final BigInteger LONGMIN = BigInteger.valueOf(Long.MIN_VALUE);
+
+ /** BigInteger equal to Long.MAX_VALUE. */
+ private static final BigInteger LONGMAX = BigInteger.valueOf(Long.MAX_VALUE);
+
+ public static void check(BigDecimal num) {
+ BigInteger intVal = num.inflated();
+ if (intVal.compareTo(LONGMIN) < 0 ||
+ intVal.compareTo(LONGMAX) > 0)
+ throw new java.lang.ArithmeticException("Overflow");
+ }
+ }
+
+ /**
+ * Converts this {@code BigDecimal} to an {@code int}.
+ * This conversion is analogous to the
+ * <i>narrowing primitive conversion</i> from {@code double} to
+ * {@code short} as defined in section 5.1.3 of
+ * <cite>The Java&trade; Language Specification</cite>:
+ * any fractional part of this
+ * {@code BigDecimal} will be discarded, and if the resulting
+ * "{@code BigInteger}" is too big to fit in an
+ * {@code int}, only the low-order 32 bits are returned.
+ * Note that this conversion can lose information about the
+ * overall magnitude and precision of this {@code BigDecimal}
+ * value as well as return a result with the opposite sign.
+ *
+ * @return this {@code BigDecimal} converted to an {@code int}.
+ */
+ public int intValue() {
+ return (intCompact != INFLATED && scale == 0) ?
+ (int)intCompact :
+ (int)longValue();
+ }
+
+ /**
+ * Converts this {@code BigDecimal} to an {@code int}, checking
+ * for lost information. If this {@code BigDecimal} has a
+ * nonzero fractional part or is out of the possible range for an
+ * {@code int} result then an {@code ArithmeticException} is
+ * thrown.
+ *
+ * @return this {@code BigDecimal} converted to an {@code int}.
+ * @throws ArithmeticException if {@code this} has a nonzero
+ * fractional part, or will not fit in an {@code int}.
+ * @since 1.5
+ */
+ public int intValueExact() {
+ long num;
+ num = this.longValueExact(); // will check decimal part
+ if ((int)num != num)
+ throw new java.lang.ArithmeticException("Overflow");
+ return (int)num;
+ }
+
+ /**
+ * Converts this {@code BigDecimal} to a {@code short}, checking
+ * for lost information. If this {@code BigDecimal} has a
+ * nonzero fractional part or is out of the possible range for a
+ * {@code short} result then an {@code ArithmeticException} is
+ * thrown.
+ *
+ * @return this {@code BigDecimal} converted to a {@code short}.
+ * @throws ArithmeticException if {@code this} has a nonzero
+ * fractional part, or will not fit in a {@code short}.
+ * @since 1.5
+ */
+ public short shortValueExact() {
+ long num;
+ num = this.longValueExact(); // will check decimal part
+ if ((short)num != num)
+ throw new java.lang.ArithmeticException("Overflow");
+ return (short)num;
+ }
+
+ /**
+ * Converts this {@code BigDecimal} to a {@code byte}, checking
+ * for lost information. If this {@code BigDecimal} has a
+ * nonzero fractional part or is out of the possible range for a
+ * {@code byte} result then an {@code ArithmeticException} is
+ * thrown.
+ *
+ * @return this {@code BigDecimal} converted to a {@code byte}.
+ * @throws ArithmeticException if {@code this} has a nonzero
+ * fractional part, or will not fit in a {@code byte}.
+ * @since 1.5
+ */
+ public byte byteValueExact() {
+ long num;
+ num = this.longValueExact(); // will check decimal part
+ if ((byte)num != num)
+ throw new java.lang.ArithmeticException("Overflow");
+ return (byte)num;
+ }
+
+ /**
+ * Converts this {@code BigDecimal} to a {@code float}.
+ * This conversion is similar to the
+ * <i>narrowing primitive conversion</i> from {@code double} to
+ * {@code float} as defined in section 5.1.3 of
+ * <cite>The Java&trade; Language Specification</cite>:
+ * if this {@code BigDecimal} has too great a
+ * magnitude to represent as a {@code float}, it will be
+ * converted to {@link Float#NEGATIVE_INFINITY} or {@link
+ * Float#POSITIVE_INFINITY} as appropriate. Note that even when
+ * the return value is finite, this conversion can lose
+ * information about the precision of the {@code BigDecimal}
+ * value.
+ *
+ * @return this {@code BigDecimal} converted to a {@code float}.
+ */
+ public float floatValue(){
+ if(intCompact != INFLATED) {
+ if (scale == 0) {
+ return (float)intCompact;
+ } else {
+ /*
+ * If both intCompact and the scale can be exactly
+ * represented as float values, perform a single float
+ * multiply or divide to compute the (properly
+ * rounded) result.
+ */
+ if (Math.abs(intCompact) < 1L<<22 ) {
+ // Don't have too guard against
+ // Math.abs(MIN_VALUE) because of outer check
+ // against INFLATED.
+ if (scale > 0 && scale < float10pow.length) {
+ return (float)intCompact / float10pow[scale];
+ } else if (scale < 0 && scale > -float10pow.length) {
+ return (float)intCompact * float10pow[-scale];
+ }
+ }
+ }
+ }
+ // Somewhat inefficient, but guaranteed to work.
+ return Float.parseFloat(this.toString());
+ }
+
+ /**
+ * Converts this {@code BigDecimal} to a {@code double}.
+ * This conversion is similar to the
+ * <i>narrowing primitive conversion</i> from {@code double} to
+ * {@code float} as defined in section 5.1.3 of
+ * <cite>The Java&trade; Language Specification</cite>:
+ * if this {@code BigDecimal} has too great a
+ * magnitude represent as a {@code double}, it will be
+ * converted to {@link Double#NEGATIVE_INFINITY} or {@link
+ * Double#POSITIVE_INFINITY} as appropriate. Note that even when
+ * the return value is finite, this conversion can lose
+ * information about the precision of the {@code BigDecimal}
+ * value.
+ *
+ * @return this {@code BigDecimal} converted to a {@code double}.
+ */
+ public double doubleValue(){
+ if(intCompact != INFLATED) {
+ if (scale == 0) {
+ return (double)intCompact;
+ } else {
+ /*
+ * If both intCompact and the scale can be exactly
+ * represented as double values, perform a single
+ * double multiply or divide to compute the (properly
+ * rounded) result.
+ */
+ if (Math.abs(intCompact) < 1L<<52 ) {
+ // Don't have too guard against
+ // Math.abs(MIN_VALUE) because of outer check
+ // against INFLATED.
+ if (scale > 0 && scale < double10pow.length) {
+ return (double)intCompact / double10pow[scale];
+ } else if (scale < 0 && scale > -double10pow.length) {
+ return (double)intCompact * double10pow[-scale];
+ }
+ }
+ }
+ }
+ // Somewhat inefficient, but guaranteed to work.
+ return Double.parseDouble(this.toString());
+ }
+
+ /**
+ * Powers of 10 which can be represented exactly in {@code
+ * double}.
+ */
+ private static final double double10pow[] = {
+ 1.0e0, 1.0e1, 1.0e2, 1.0e3, 1.0e4, 1.0e5,
+ 1.0e6, 1.0e7, 1.0e8, 1.0e9, 1.0e10, 1.0e11,
+ 1.0e12, 1.0e13, 1.0e14, 1.0e15, 1.0e16, 1.0e17,
+ 1.0e18, 1.0e19, 1.0e20, 1.0e21, 1.0e22
+ };
+
+ /**
+ * Powers of 10 which can be represented exactly in {@code
+ * float}.
+ */
+ private static final float float10pow[] = {
+ 1.0e0f, 1.0e1f, 1.0e2f, 1.0e3f, 1.0e4f, 1.0e5f,
+ 1.0e6f, 1.0e7f, 1.0e8f, 1.0e9f, 1.0e10f
+ };
+
+ /**
+ * Returns the size of an ulp, a unit in the last place, of this
+ * {@code BigDecimal}. An ulp of a nonzero {@code BigDecimal}
+ * value is the positive distance between this value and the
+ * {@code BigDecimal} value next larger in magnitude with the
+ * same number of digits. An ulp of a zero value is numerically
+ * equal to 1 with the scale of {@code this}. The result is
+ * stored with the same scale as {@code this} so the result
+ * for zero and nonzero values is equal to {@code [1,
+ * this.scale()]}.
+ *
+ * @return the size of an ulp of {@code this}
+ * @since 1.5
+ */
+ public BigDecimal ulp() {
+ return BigDecimal.valueOf(1, this.scale(), 1);
+ }
+
+ // Private class to build a string representation for BigDecimal object.
+ // "StringBuilderHelper" is constructed as a thread local variable so it is
+ // thread safe. The StringBuilder field acts as a buffer to hold the temporary
+ // representation of BigDecimal. The cmpCharArray holds all the characters for
+ // the compact representation of BigDecimal (except for '-' sign' if it is
+ // negative) if its intCompact field is not INFLATED. It is shared by all
+ // calls to toString() and its variants in that particular thread.
+ static class StringBuilderHelper {
+ final StringBuilder sb; // Placeholder for BigDecimal string
+ final char[] cmpCharArray; // character array to place the intCompact
+
+ StringBuilderHelper() {
+ sb = new StringBuilder();
+ // All non negative longs can be made to fit into 19 character array.
+ cmpCharArray = new char[19];
+ }
+
+ // Accessors.
+ StringBuilder getStringBuilder() {
+ sb.setLength(0);
+ return sb;
+ }
+
+ char[] getCompactCharArray() {
+ return cmpCharArray;
+ }
+
+ /**
+ * Places characters representing the intCompact in {@code long} into
+ * cmpCharArray and returns the offset to the array where the
+ * representation starts.
+ *
+ * @param intCompact the number to put into the cmpCharArray.
+ * @return offset to the array where the representation starts.
+ * Note: intCompact must be greater or equal to zero.
+ */
+ int putIntCompact(long intCompact) {
+ assert intCompact >= 0;
+
+ long q;
+ int r;
+ // since we start from the least significant digit, charPos points to
+ // the last character in cmpCharArray.
+ int charPos = cmpCharArray.length;
+
+ // Get 2 digits/iteration using longs until quotient fits into an int
+ while (intCompact > Integer.MAX_VALUE) {
+ q = intCompact / 100;
+ r = (int)(intCompact - q * 100);
+ intCompact = q;
+ cmpCharArray[--charPos] = DIGIT_ONES[r];
+ cmpCharArray[--charPos] = DIGIT_TENS[r];
+ }
+
+ // Get 2 digits/iteration using ints when i2 >= 100
+ int q2;
+ int i2 = (int)intCompact;
+ while (i2 >= 100) {
+ q2 = i2 / 100;
+ r = i2 - q2 * 100;
+ i2 = q2;
+ cmpCharArray[--charPos] = DIGIT_ONES[r];
+ cmpCharArray[--charPos] = DIGIT_TENS[r];
+ }
+
+ cmpCharArray[--charPos] = DIGIT_ONES[i2];
+ if (i2 >= 10)
+ cmpCharArray[--charPos] = DIGIT_TENS[i2];
+
+ return charPos;
+ }
+
+ final static char[] DIGIT_TENS = {
+ '0', '0', '0', '0', '0', '0', '0', '0', '0', '0',
+ '1', '1', '1', '1', '1', '1', '1', '1', '1', '1',
+ '2', '2', '2', '2', '2', '2', '2', '2', '2', '2',
+ '3', '3', '3', '3', '3', '3', '3', '3', '3', '3',
+ '4', '4', '4', '4', '4', '4', '4', '4', '4', '4',
+ '5', '5', '5', '5', '5', '5', '5', '5', '5', '5',
+ '6', '6', '6', '6', '6', '6', '6', '6', '6', '6',
+ '7', '7', '7', '7', '7', '7', '7', '7', '7', '7',
+ '8', '8', '8', '8', '8', '8', '8', '8', '8', '8',
+ '9', '9', '9', '9', '9', '9', '9', '9', '9', '9',
+ };
+
+ final static char[] DIGIT_ONES = {
+ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
+ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
+ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
+ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
+ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
+ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
+ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
+ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
+ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
+ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
+ };
+ }
+
+ /**
+ * Lay out this {@code BigDecimal} into a {@code char[]} array.
+ * The Java 1.2 equivalent to this was called {@code getValueString}.
+ *
+ * @param sci {@code true} for Scientific exponential notation;
+ * {@code false} for Engineering
+ * @return string with canonical string representation of this
+ * {@code BigDecimal}
+ */
+ private String layoutChars(boolean sci) {
+ if (scale == 0) // zero scale is trivial
+ return (intCompact != INFLATED) ?
+ Long.toString(intCompact):
+ intVal.toString();
+ if (scale == 2 &&
+ intCompact >= 0 && intCompact < Integer.MAX_VALUE) {
+ // currency fast path
+ int lowInt = (int)intCompact % 100;
+ int highInt = (int)intCompact / 100;
+ return (Integer.toString(highInt) + '.' +
+ StringBuilderHelper.DIGIT_TENS[lowInt] +
+ StringBuilderHelper.DIGIT_ONES[lowInt]) ;
+ }
+
+ StringBuilderHelper sbHelper = threadLocalStringBuilderHelper.get();
+ char[] coeff;
+ int offset; // offset is the starting index for coeff array
+ // Get the significand as an absolute value
+ if (intCompact != INFLATED) {
+ offset = sbHelper.putIntCompact(Math.abs(intCompact));
+ coeff = sbHelper.getCompactCharArray();
+ } else {
+ offset = 0;
+ coeff = intVal.abs().toString().toCharArray();
+ }
+
+ // Construct a buffer, with sufficient capacity for all cases.
+ // If E-notation is needed, length will be: +1 if negative, +1
+ // if '.' needed, +2 for "E+", + up to 10 for adjusted exponent.
+ // Otherwise it could have +1 if negative, plus leading "0.00000"
+ StringBuilder buf = sbHelper.getStringBuilder();
+ if (signum() < 0) // prefix '-' if negative
+ buf.append('-');
+ int coeffLen = coeff.length - offset;
+ long adjusted = -(long)scale + (coeffLen -1);
+ if ((scale >= 0) && (adjusted >= -6)) { // plain number
+ int pad = scale - coeffLen; // count of padding zeros
+ if (pad >= 0) { // 0.xxx form
+ buf.append('0');
+ buf.append('.');
+ for (; pad>0; pad--) {
+ buf.append('0');
+ }
+ buf.append(coeff, offset, coeffLen);
+ } else { // xx.xx form
+ buf.append(coeff, offset, -pad);
+ buf.append('.');
+ buf.append(coeff, -pad + offset, scale);
+ }
+ } else { // E-notation is needed
+ if (sci) { // Scientific notation
+ buf.append(coeff[offset]); // first character
+ if (coeffLen > 1) { // more to come
+ buf.append('.');
+ buf.append(coeff, offset + 1, coeffLen - 1);
+ }
+ } else { // Engineering notation
+ int sig = (int)(adjusted % 3);
+ if (sig < 0)
+ sig += 3; // [adjusted was negative]
+ adjusted -= sig; // now a multiple of 3
+ sig++;
+ if (signum() == 0) {
+ switch (sig) {
+ case 1:
+ buf.append('0'); // exponent is a multiple of three
+ break;
+ case 2:
+ buf.append("0.00");
+ adjusted += 3;
+ break;
+ case 3:
+ buf.append("0.0");
+ adjusted += 3;
+ break;
+ default:
+ throw new AssertionError("Unexpected sig value " + sig);
+ }
+ } else if (sig >= coeffLen) { // significand all in integer
+ buf.append(coeff, offset, coeffLen);
+ // may need some zeros, too
+ for (int i = sig - coeffLen; i > 0; i--)
+ buf.append('0');
+ } else { // xx.xxE form
+ buf.append(coeff, offset, sig);
+ buf.append('.');
+ buf.append(coeff, offset + sig, coeffLen - sig);
+ }
+ }
+ if (adjusted != 0) { // [!sci could have made 0]
+ buf.append('E');
+ if (adjusted > 0) // force sign for positive
+ buf.append('+');
+ buf.append(adjusted);
+ }
+ }
+ return buf.toString();
+ }
+
+ /**
+ * Return 10 to the power n, as a {@code BigInteger}.
+ *
+ * @param n the power of ten to be returned (>=0)
+ * @return a {@code BigInteger} with the value (10<sup>n</sup>)
+ */
+ private static BigInteger bigTenToThe(int n) {
+ if (n < 0)
+ return BigInteger.ZERO;
+
+ if (n < BIG_TEN_POWERS_TABLE_MAX) {
+ BigInteger[] pows = BIG_TEN_POWERS_TABLE;
+ if (n < pows.length)
+ return pows[n];
+ else
+ return expandBigIntegerTenPowers(n);
+ }
+
+ return BigInteger.TEN.pow(n);
+ }
+
+ /**
+ * Expand the BIG_TEN_POWERS_TABLE array to contain at least 10**n.
+ *
+ * @param n the power of ten to be returned (>=0)
+ * @return a {@code BigDecimal} with the value (10<sup>n</sup>) and
+ * in the meantime, the BIG_TEN_POWERS_TABLE array gets
+ * expanded to the size greater than n.
+ */
+ private static BigInteger expandBigIntegerTenPowers(int n) {
+ synchronized(BigDecimal.class) {
+ BigInteger[] pows = BIG_TEN_POWERS_TABLE;
+ int curLen = pows.length;
+ // The following comparison and the above synchronized statement is
+ // to prevent multiple threads from expanding the same array.
+ if (curLen <= n) {
+ int newLen = curLen << 1;
+ while (newLen <= n)
+ newLen <<= 1;
+ pows = Arrays.copyOf(pows, newLen);
+ for (int i = curLen; i < newLen; i++)
+ pows[i] = pows[i - 1].multiply(BigInteger.TEN);
+ // Based on the following facts:
+ // 1. pows is a private local variable;
+ // 2. the following store is a volatile store.
+ // the newly created array elements can be safely published.
+ BIG_TEN_POWERS_TABLE = pows;
+ }
+ return pows[n];
+ }
+ }
+
+ private static final long[] LONG_TEN_POWERS_TABLE = {
+ 1, // 0 / 10^0
+ 10, // 1 / 10^1
+ 100, // 2 / 10^2
+ 1000, // 3 / 10^3
+ 10000, // 4 / 10^4
+ 100000, // 5 / 10^5
+ 1000000, // 6 / 10^6
+ 10000000, // 7 / 10^7
+ 100000000, // 8 / 10^8
+ 1000000000, // 9 / 10^9
+ 10000000000L, // 10 / 10^10
+ 100000000000L, // 11 / 10^11
+ 1000000000000L, // 12 / 10^12
+ 10000000000000L, // 13 / 10^13
+ 100000000000000L, // 14 / 10^14
+ 1000000000000000L, // 15 / 10^15
+ 10000000000000000L, // 16 / 10^16
+ 100000000000000000L, // 17 / 10^17
+ 1000000000000000000L // 18 / 10^18
+ };
+
+ private static volatile BigInteger BIG_TEN_POWERS_TABLE[] = {
+ BigInteger.ONE,
+ BigInteger.valueOf(10),
+ BigInteger.valueOf(100),
+ BigInteger.valueOf(1000),
+ BigInteger.valueOf(10000),
+ BigInteger.valueOf(100000),
+ BigInteger.valueOf(1000000),
+ BigInteger.valueOf(10000000),
+ BigInteger.valueOf(100000000),
+ BigInteger.valueOf(1000000000),
+ BigInteger.valueOf(10000000000L),
+ BigInteger.valueOf(100000000000L),
+ BigInteger.valueOf(1000000000000L),
+ BigInteger.valueOf(10000000000000L),
+ BigInteger.valueOf(100000000000000L),
+ BigInteger.valueOf(1000000000000000L),
+ BigInteger.valueOf(10000000000000000L),
+ BigInteger.valueOf(100000000000000000L),
+ BigInteger.valueOf(1000000000000000000L)
+ };
+
+ private static final int BIG_TEN_POWERS_TABLE_INITLEN =
+ BIG_TEN_POWERS_TABLE.length;
+ private static final int BIG_TEN_POWERS_TABLE_MAX =
+ 16 * BIG_TEN_POWERS_TABLE_INITLEN;
+
+ private static final long THRESHOLDS_TABLE[] = {
+ Long.MAX_VALUE, // 0
+ Long.MAX_VALUE/10L, // 1
+ Long.MAX_VALUE/100L, // 2
+ Long.MAX_VALUE/1000L, // 3
+ Long.MAX_VALUE/10000L, // 4
+ Long.MAX_VALUE/100000L, // 5
+ Long.MAX_VALUE/1000000L, // 6
+ Long.MAX_VALUE/10000000L, // 7
+ Long.MAX_VALUE/100000000L, // 8
+ Long.MAX_VALUE/1000000000L, // 9
+ Long.MAX_VALUE/10000000000L, // 10
+ Long.MAX_VALUE/100000000000L, // 11
+ Long.MAX_VALUE/1000000000000L, // 12
+ Long.MAX_VALUE/10000000000000L, // 13
+ Long.MAX_VALUE/100000000000000L, // 14
+ Long.MAX_VALUE/1000000000000000L, // 15
+ Long.MAX_VALUE/10000000000000000L, // 16
+ Long.MAX_VALUE/100000000000000000L, // 17
+ Long.MAX_VALUE/1000000000000000000L // 18
+ };
+
+ /**
+ * Compute val * 10 ^ n; return this product if it is
+ * representable as a long, INFLATED otherwise.
+ */
+ private static long longMultiplyPowerTen(long val, int n) {
+ if (val == 0 || n <= 0)
+ return val;
+ long[] tab = LONG_TEN_POWERS_TABLE;
+ long[] bounds = THRESHOLDS_TABLE;
+ if (n < tab.length && n < bounds.length) {
+ long tenpower = tab[n];
+ if (val == 1)
+ return tenpower;
+ if (Math.abs(val) <= bounds[n])
+ return val * tenpower;
+ }
+ return INFLATED;
+ }
+
+ /**
+ * Compute this * 10 ^ n.
+ * Needed mainly to allow special casing to trap zero value
+ */
+ private BigInteger bigMultiplyPowerTen(int n) {
+ if (n <= 0)
+ return this.inflated();
+
+ if (intCompact != INFLATED)
+ return bigTenToThe(n).multiply(intCompact);
+ else
+ return intVal.multiply(bigTenToThe(n));
+ }
+
+ /**
+ * Returns appropriate BigInteger from intVal field if intVal is
+ * null, i.e. the compact representation is in use.
+ */
+ private BigInteger inflated() {
+ if (intVal == null) {
+ return BigInteger.valueOf(intCompact);
+ }
+ return intVal;
+ }
+
+ /**
+ * Match the scales of two {@code BigDecimal}s to align their
+ * least significant digits.
+ *
+ * <p>If the scales of val[0] and val[1] differ, rescale
+ * (non-destructively) the lower-scaled {@code BigDecimal} so
+ * they match. That is, the lower-scaled reference will be
+ * replaced by a reference to a new object with the same scale as
+ * the other {@code BigDecimal}.
+ *
+ * @param val array of two elements referring to the two
+ * {@code BigDecimal}s to be aligned.
+ */
+ private static void matchScale(BigDecimal[] val) {
+ if (val[0].scale == val[1].scale) {
+ return;
+ } else if (val[0].scale < val[1].scale) {
+ val[0] = val[0].setScale(val[1].scale, ROUND_UNNECESSARY);
+ } else if (val[1].scale < val[0].scale) {
+ val[1] = val[1].setScale(val[0].scale, ROUND_UNNECESSARY);
+ }
+ }
+
+ private static class UnsafeHolder {
+ private static final sun.misc.Unsafe unsafe;
+ private static final long intCompactOffset;
+ private static final long intValOffset;
+ static {
+ try {
+ unsafe = sun.misc.Unsafe.getUnsafe();
+ intCompactOffset = unsafe.objectFieldOffset
+ (BigDecimal.class.getDeclaredField("intCompact"));
+ intValOffset = unsafe.objectFieldOffset
+ (BigDecimal.class.getDeclaredField("intVal"));
+ } catch (Exception ex) {
+ throw new ExceptionInInitializerError(ex);
+ }
+ }
+ static void setIntCompactVolatile(BigDecimal bd, long val) {
+ unsafe.putLongVolatile(bd, intCompactOffset, val);
+ }
+
+ static void setIntValVolatile(BigDecimal bd, BigInteger val) {
+ unsafe.putObjectVolatile(bd, intValOffset, val);
+ }
+ }
+
+ /**
+ * Reconstitute the {@code BigDecimal} instance from a stream (that is,
+ * deserialize it).
+ *
+ * @param s the stream being read.
+ */
+ private void readObject(java.io.ObjectInputStream s)
+ throws java.io.IOException, ClassNotFoundException {
+ // Read in all fields
+ s.defaultReadObject();
+ // validate possibly bad fields
+ if (intVal == null) {
+ String message = "BigDecimal: null intVal in stream";
+ throw new java.io.StreamCorruptedException(message);
+ // [all values of scale are now allowed]
+ }
+ UnsafeHolder.setIntCompactVolatile(this, compactValFor(intVal));
+ }
+
+ /**
+ * Serialize this {@code BigDecimal} to the stream in question
+ *
+ * @param s the stream to serialize to.
+ */
+ private void writeObject(java.io.ObjectOutputStream s)
+ throws java.io.IOException {
+ // Must inflate to maintain compatible serial form.
+ if (this.intVal == null)
+ UnsafeHolder.setIntValVolatile(this, BigInteger.valueOf(this.intCompact));
+ // Could reset intVal back to null if it has to be set.
+ s.defaultWriteObject();
+ }
+
+ /**
+ * Returns the length of the absolute value of a {@code long}, in decimal
+ * digits.
+ *
+ * @param x the {@code long}
+ * @return the length of the unscaled value, in deciaml digits.
+ */
+ static int longDigitLength(long x) {
+ /*
+ * As described in "Bit Twiddling Hacks" by Sean Anderson,
+ * (http://graphics.stanford.edu/~seander/bithacks.html)
+ * integer log 10 of x is within 1 of (1233/4096)* (1 +
+ * integer log 2 of x). The fraction 1233/4096 approximates
+ * log10(2). So we first do a version of log2 (a variant of
+ * Long class with pre-checks and opposite directionality) and
+ * then scale and check against powers table. This is a little
+ * simpler in present context than the version in Hacker's
+ * Delight sec 11-4. Adding one to bit length allows comparing
+ * downward from the LONG_TEN_POWERS_TABLE that we need
+ * anyway.
+ */
+ assert x != BigDecimal.INFLATED;
+ if (x < 0)
+ x = -x;
+ if (x < 10) // must screen for 0, might as well 10
+ return 1;
+ int r = ((64 - Long.numberOfLeadingZeros(x) + 1) * 1233) >>> 12;
+ long[] tab = LONG_TEN_POWERS_TABLE;
+ // if r >= length, must have max possible digits for long
+ return (r >= tab.length || x < tab[r]) ? r : r + 1;
+ }
+
+ /**
+ * Returns the length of the absolute value of a BigInteger, in
+ * decimal digits.
+ *
+ * @param b the BigInteger
+ * @return the length of the unscaled value, in decimal digits
+ */
+ private static int bigDigitLength(BigInteger b) {
+ /*
+ * Same idea as the long version, but we need a better
+ * approximation of log10(2). Using 646456993/2^31
+ * is accurate up to max possible reported bitLength.
+ */
+ if (b.signum == 0)
+ return 1;
+ int r = (int)((((long)b.bitLength() + 1) * 646456993) >>> 31);
+ return b.compareMagnitude(bigTenToThe(r)) < 0? r : r+1;
+ }
+
+ /**
+ * Check a scale for Underflow or Overflow. If this BigDecimal is
+ * nonzero, throw an exception if the scale is outof range. If this
+ * is zero, saturate the scale to the extreme value of the right
+ * sign if the scale is out of range.
+ *
+ * @param val The new scale.
+ * @throws ArithmeticException (overflow or underflow) if the new
+ * scale is out of range.
+ * @return validated scale as an int.
+ */
+ private int checkScale(long val) {
+ int asInt = (int)val;
+ if (asInt != val) {
+ asInt = val>Integer.MAX_VALUE ? Integer.MAX_VALUE : Integer.MIN_VALUE;
+ BigInteger b;
+ if (intCompact != 0 &&
+ ((b = intVal) == null || b.signum() != 0))
+ throw new ArithmeticException(asInt>0 ? "Underflow":"Overflow");
+ }
+ return asInt;
+ }
+
+ /**
+ * Returns the compact value for given {@code BigInteger}, or
+ * INFLATED if too big. Relies on internal representation of
+ * {@code BigInteger}.
+ */
+ private static long compactValFor(BigInteger b) {
+ int[] m = b.mag;
+ int len = m.length;
+ if (len == 0)
+ return 0;
+ int d = m[0];
+ if (len > 2 || (len == 2 && d < 0))
+ return INFLATED;
+
+ long u = (len == 2)?
+ (((long) m[1] & LONG_MASK) + (((long)d) << 32)) :
+ (((long)d) & LONG_MASK);
+ return (b.signum < 0)? -u : u;
+ }
+
+ private static int longCompareMagnitude(long x, long y) {
+ if (x < 0)
+ x = -x;
+ if (y < 0)
+ y = -y;
+ return (x < y) ? -1 : ((x == y) ? 0 : 1);
+ }
+
+ private static int saturateLong(long s) {
+ int i = (int)s;
+ return (s == i) ? i : (s < 0 ? Integer.MIN_VALUE : Integer.MAX_VALUE);
+ }
+
+ /*
+ * Internal printing routine
+ */
+ private static void print(String name, BigDecimal bd) {
+ System.err.format("%s:\tintCompact %d\tintVal %d\tscale %d\tprecision %d%n",
+ name,
+ bd.intCompact,
+ bd.intVal,
+ bd.scale,
+ bd.precision);
+ }
+
+ /**
+ * Check internal invariants of this BigDecimal. These invariants
+ * include:
+ *
+ * <ul>
+ *
+ * <li>The object must be initialized; either intCompact must not be
+ * INFLATED or intVal is non-null. Both of these conditions may
+ * be true.
+ *
+ * <li>If both intCompact and intVal and set, their values must be
+ * consistent.
+ *
+ * <li>If precision is nonzero, it must have the right value.
+ * </ul>
+ *
+ * Note: Since this is an audit method, we are not supposed to change the
+ * state of this BigDecimal object.
+ */
+ private BigDecimal audit() {
+ if (intCompact == INFLATED) {
+ if (intVal == null) {
+ print("audit", this);
+ throw new AssertionError("null intVal");
+ }
+ // Check precision
+ if (precision > 0 && precision != bigDigitLength(intVal)) {
+ print("audit", this);
+ throw new AssertionError("precision mismatch");
+ }
+ } else {
+ if (intVal != null) {
+ long val = intVal.longValue();
+ if (val != intCompact) {
+ print("audit", this);
+ throw new AssertionError("Inconsistent state, intCompact=" +
+ intCompact + "\t intVal=" + val);
+ }
+ }
+ // Check precision
+ if (precision > 0 && precision != longDigitLength(intCompact)) {
+ print("audit", this);
+ throw new AssertionError("precision mismatch");
+ }
+ }
+ return this;
+ }
+
+ /* the same as checkScale where value!=0 */
+ private static int checkScaleNonZero(long val) {
+ int asInt = (int)val;
+ if (asInt != val) {
+ throw new ArithmeticException(asInt>0 ? "Underflow":"Overflow");
+ }
+ return asInt;
+ }
+
+ private static int checkScale(long intCompact, long val) {
+ int asInt = (int)val;
+ if (asInt != val) {
+ asInt = val>Integer.MAX_VALUE ? Integer.MAX_VALUE : Integer.MIN_VALUE;
+ if (intCompact != 0)
+ throw new ArithmeticException(asInt>0 ? "Underflow":"Overflow");
+ }
+ return asInt;
+ }
+
+ private static int checkScale(BigInteger intVal, long val) {
+ int asInt = (int)val;
+ if (asInt != val) {
+ asInt = val>Integer.MAX_VALUE ? Integer.MAX_VALUE : Integer.MIN_VALUE;
+ if (intVal.signum() != 0)
+ throw new ArithmeticException(asInt>0 ? "Underflow":"Overflow");
+ }
+ return asInt;
+ }
+
+ /**
+ * Returns a {@code BigDecimal} rounded according to the MathContext
+ * settings;
+ * If rounding is needed a new {@code BigDecimal} is created and returned.
+ *
+ * @param val the value to be rounded
+ * @param mc the context to use.
+ * @return a {@code BigDecimal} rounded according to the MathContext
+ * settings. May return {@code value}, if no rounding needed.
+ * @throws ArithmeticException if the rounding mode is
+ * {@code RoundingMode.UNNECESSARY} and the
+ * result is inexact.
+ */
+ private static BigDecimal doRound(BigDecimal val, MathContext mc) {
+ int mcp = mc.precision;
+ boolean wasDivided = false;
+ if (mcp > 0) {
+ BigInteger intVal = val.intVal;
+ long compactVal = val.intCompact;
+ int scale = val.scale;
+ int prec = val.precision();
+ int mode = mc.roundingMode.oldMode;
+ int drop;
+ if (compactVal == INFLATED) {
+ drop = prec - mcp;
+ while (drop > 0) {
+ scale = checkScaleNonZero((long) scale - drop);
+ intVal = divideAndRoundByTenPow(intVal, drop, mode);
+ wasDivided = true;
+ compactVal = compactValFor(intVal);
+ if (compactVal != INFLATED) {
+ prec = longDigitLength(compactVal);
+ break;
+ }
+ prec = bigDigitLength(intVal);
+ drop = prec - mcp;
+ }
+ }
+ if (compactVal != INFLATED) {
+ drop = prec - mcp; // drop can't be more than 18
+ while (drop > 0) {
+ scale = checkScaleNonZero((long) scale - drop);
+ compactVal = divideAndRound(compactVal, LONG_TEN_POWERS_TABLE[drop], mc.roundingMode.oldMode);
+ wasDivided = true;
+ prec = longDigitLength(compactVal);
+ drop = prec - mcp;
+ intVal = null;
+ }
+ }
+ return wasDivided ? new BigDecimal(intVal,compactVal,scale,prec) : val;
+ }
+ return val;
+ }
+
+ /*
+ * Returns a {@code BigDecimal} created from {@code long} value with
+ * given scale rounded according to the MathContext settings
+ */
+ private static BigDecimal doRound(long compactVal, int scale, MathContext mc) {
+ int mcp = mc.precision;
+ if (mcp > 0 && mcp < 19) {
+ int prec = longDigitLength(compactVal);
+ int drop = prec - mcp; // drop can't be more than 18
+ while (drop > 0) {
+ scale = checkScaleNonZero((long) scale - drop);
+ compactVal = divideAndRound(compactVal, LONG_TEN_POWERS_TABLE[drop], mc.roundingMode.oldMode);
+ prec = longDigitLength(compactVal);
+ drop = prec - mcp;
+ }
+ return valueOf(compactVal, scale, prec);
+ }
+ return valueOf(compactVal, scale);
+ }
+
+ /*
+ * Returns a {@code BigDecimal} created from {@code BigInteger} value with
+ * given scale rounded according to the MathContext settings
+ */
+ private static BigDecimal doRound(BigInteger intVal, int scale, MathContext mc) {
+ int mcp = mc.precision;
+ int prec = 0;
+ if (mcp > 0) {
+ long compactVal = compactValFor(intVal);
+ int mode = mc.roundingMode.oldMode;
+ int drop;
+ if (compactVal == INFLATED) {
+ prec = bigDigitLength(intVal);
+ drop = prec - mcp;
+ while (drop > 0) {
+ scale = checkScaleNonZero((long) scale - drop);
+ intVal = divideAndRoundByTenPow(intVal, drop, mode);
+ compactVal = compactValFor(intVal);
+ if (compactVal != INFLATED) {
+ break;
+ }
+ prec = bigDigitLength(intVal);
+ drop = prec - mcp;
+ }
+ }
+ if (compactVal != INFLATED) {
+ prec = longDigitLength(compactVal);
+ drop = prec - mcp; // drop can't be more than 18
+ while (drop > 0) {
+ scale = checkScaleNonZero((long) scale - drop);
+ compactVal = divideAndRound(compactVal, LONG_TEN_POWERS_TABLE[drop], mc.roundingMode.oldMode);
+ prec = longDigitLength(compactVal);
+ drop = prec - mcp;
+ }
+ return valueOf(compactVal,scale,prec);
+ }
+ }
+ return new BigDecimal(intVal,INFLATED,scale,prec);
+ }
+
+ /*
+ * Divides {@code BigInteger} value by ten power.
+ */
+ private static BigInteger divideAndRoundByTenPow(BigInteger intVal, int tenPow, int roundingMode) {
+ if (tenPow < LONG_TEN_POWERS_TABLE.length)
+ intVal = divideAndRound(intVal, LONG_TEN_POWERS_TABLE[tenPow], roundingMode);
+ else
+ intVal = divideAndRound(intVal, bigTenToThe(tenPow), roundingMode);
+ return intVal;
+ }
+
+ /**
+ * Internally used for division operation for division {@code long} by
+ * {@code long}.
+ * The returned {@code BigDecimal} object is the quotient whose scale is set
+ * to the passed in scale. If the remainder is not zero, it will be rounded
+ * based on the passed in roundingMode. Also, if the remainder is zero and
+ * the last parameter, i.e. preferredScale is NOT equal to scale, the
+ * trailing zeros of the result is stripped to match the preferredScale.
+ */
+ private static BigDecimal divideAndRound(long ldividend, long ldivisor, int scale, int roundingMode,
+ int preferredScale) {
+
+ int qsign; // quotient sign
+ long q = ldividend / ldivisor; // store quotient in long
+ if (roundingMode == ROUND_DOWN && scale == preferredScale)
+ return valueOf(q, scale);
+ long r = ldividend % ldivisor; // store remainder in long
+ qsign = ((ldividend < 0) == (ldivisor < 0)) ? 1 : -1;
+ if (r != 0) {
+ boolean increment = needIncrement(ldivisor, roundingMode, qsign, q, r);
+ return valueOf((increment ? q + qsign : q), scale);
+ } else {
+ if (preferredScale != scale)
+ return createAndStripZerosToMatchScale(q, scale, preferredScale);
+ else
+ return valueOf(q, scale);
+ }
+ }
+
+ /**
+ * Divides {@code long} by {@code long} and do rounding based on the
+ * passed in roundingMode.
+ */
+ private static long divideAndRound(long ldividend, long ldivisor, int roundingMode) {
+ int qsign; // quotient sign
+ long q = ldividend / ldivisor; // store quotient in long
+ if (roundingMode == ROUND_DOWN)
+ return q;
+ long r = ldividend % ldivisor; // store remainder in long
+ qsign = ((ldividend < 0) == (ldivisor < 0)) ? 1 : -1;
+ if (r != 0) {
+ boolean increment = needIncrement(ldivisor, roundingMode, qsign, q, r);
+ return increment ? q + qsign : q;
+ } else {
+ return q;
+ }
+ }
+
+ /**
+ * Shared logic of need increment computation.
+ */
+ private static boolean commonNeedIncrement(int roundingMode, int qsign,
+ int cmpFracHalf, boolean oddQuot) {
+ switch(roundingMode) {
+ case ROUND_UNNECESSARY:
+ throw new ArithmeticException("Rounding necessary");
+
+ case ROUND_UP: // Away from zero
+ return true;
+
+ case ROUND_DOWN: // Towards zero
+ return false;
+
+ case ROUND_CEILING: // Towards +infinity
+ return qsign > 0;
+
+ case ROUND_FLOOR: // Towards -infinity
+ return qsign < 0;
+
+ default: // Some kind of half-way rounding
+ assert roundingMode >= ROUND_HALF_UP &&
+ roundingMode <= ROUND_HALF_EVEN: "Unexpected rounding mode" + RoundingMode.valueOf(roundingMode);
+
+ if (cmpFracHalf < 0 ) // We're closer to higher digit
+ return false;
+ else if (cmpFracHalf > 0 ) // We're closer to lower digit
+ return true;
+ else { // half-way
+ assert cmpFracHalf == 0;
+
+ switch(roundingMode) {
+ case ROUND_HALF_DOWN:
+ return false;
+
+ case ROUND_HALF_UP:
+ return true;
+
+ case ROUND_HALF_EVEN:
+ return oddQuot;
+
+ default:
+ throw new AssertionError("Unexpected rounding mode" + roundingMode);
+ }
+ }
+ }
+ }
+
+ /**
+ * Tests if quotient has to be incremented according the roundingMode
+ */
+ private static boolean needIncrement(long ldivisor, int roundingMode,
+ int qsign, long q, long r) {
+ assert r != 0L;
+
+ int cmpFracHalf;
+ if (r <= HALF_LONG_MIN_VALUE || r > HALF_LONG_MAX_VALUE) {
+ cmpFracHalf = 1; // 2 * r can't fit into long
+ } else {
+ cmpFracHalf = longCompareMagnitude(2 * r, ldivisor);
+ }
+
+ return commonNeedIncrement(roundingMode, qsign, cmpFracHalf, (q & 1L) != 0L);
+ }
+
+ /**
+ * Divides {@code BigInteger} value by {@code long} value and
+ * do rounding based on the passed in roundingMode.
+ */
+ private static BigInteger divideAndRound(BigInteger bdividend, long ldivisor, int roundingMode) {
+ boolean isRemainderZero; // record remainder is zero or not
+ int qsign; // quotient sign
+ long r = 0; // store quotient & remainder in long
+ MutableBigInteger mq = null; // store quotient
+ // Descend into mutables for faster remainder checks
+ MutableBigInteger mdividend = new MutableBigInteger(bdividend.mag);
+ mq = new MutableBigInteger();
+ r = mdividend.divide(ldivisor, mq);
+ isRemainderZero = (r == 0);
+ qsign = (ldivisor < 0) ? -bdividend.signum : bdividend.signum;
+ if (!isRemainderZero) {
+ if(needIncrement(ldivisor, roundingMode, qsign, mq, r)) {
+ mq.add(MutableBigInteger.ONE);
+ }
+ }
+ return mq.toBigInteger(qsign);
+ }
+
+ /**
+ * Internally used for division operation for division {@code BigInteger}
+ * by {@code long}.
+ * The returned {@code BigDecimal} object is the quotient whose scale is set
+ * to the passed in scale. If the remainder is not zero, it will be rounded
+ * based on the passed in roundingMode. Also, if the remainder is zero and
+ * the last parameter, i.e. preferredScale is NOT equal to scale, the
+ * trailing zeros of the result is stripped to match the preferredScale.
+ */
+ private static BigDecimal divideAndRound(BigInteger bdividend,
+ long ldivisor, int scale, int roundingMode, int preferredScale) {
+ boolean isRemainderZero; // record remainder is zero or not
+ int qsign; // quotient sign
+ long r = 0; // store quotient & remainder in long
+ MutableBigInteger mq = null; // store quotient
+ // Descend into mutables for faster remainder checks
+ MutableBigInteger mdividend = new MutableBigInteger(bdividend.mag);
+ mq = new MutableBigInteger();
+ r = mdividend.divide(ldivisor, mq);
+ isRemainderZero = (r == 0);
+ qsign = (ldivisor < 0) ? -bdividend.signum : bdividend.signum;
+ if (!isRemainderZero) {
+ if(needIncrement(ldivisor, roundingMode, qsign, mq, r)) {
+ mq.add(MutableBigInteger.ONE);
+ }
+ return mq.toBigDecimal(qsign, scale);
+ } else {
+ if (preferredScale != scale) {
+ long compactVal = mq.toCompactValue(qsign);
+ if(compactVal!=INFLATED) {
+ return createAndStripZerosToMatchScale(compactVal, scale, preferredScale);
+ }
+ BigInteger intVal = mq.toBigInteger(qsign);
+ return createAndStripZerosToMatchScale(intVal,scale, preferredScale);
+ } else {
+ return mq.toBigDecimal(qsign, scale);
+ }
+ }
+ }
+
+ /**
+ * Tests if quotient has to be incremented according the roundingMode
+ */
+ private static boolean needIncrement(long ldivisor, int roundingMode,
+ int qsign, MutableBigInteger mq, long r) {
+ assert r != 0L;
+
+ int cmpFracHalf;
+ if (r <= HALF_LONG_MIN_VALUE || r > HALF_LONG_MAX_VALUE) {
+ cmpFracHalf = 1; // 2 * r can't fit into long
+ } else {
+ cmpFracHalf = longCompareMagnitude(2 * r, ldivisor);
+ }
+
+ return commonNeedIncrement(roundingMode, qsign, cmpFracHalf, mq.isOdd());
+ }
+
+ /**
+ * Divides {@code BigInteger} value by {@code BigInteger} value and
+ * do rounding based on the passed in roundingMode.
+ */
+ private static BigInteger divideAndRound(BigInteger bdividend, BigInteger bdivisor, int roundingMode) {
+ boolean isRemainderZero; // record remainder is zero or not
+ int qsign; // quotient sign
+ // Descend into mutables for faster remainder checks
+ MutableBigInteger mdividend = new MutableBigInteger(bdividend.mag);
+ MutableBigInteger mq = new MutableBigInteger();
+ MutableBigInteger mdivisor = new MutableBigInteger(bdivisor.mag);
+ MutableBigInteger mr = mdividend.divide(mdivisor, mq);
+ isRemainderZero = mr.isZero();
+ qsign = (bdividend.signum != bdivisor.signum) ? -1 : 1;
+ if (!isRemainderZero) {
+ if (needIncrement(mdivisor, roundingMode, qsign, mq, mr)) {
+ mq.add(MutableBigInteger.ONE);
+ }
+ }
+ return mq.toBigInteger(qsign);
+ }
+
+ /**
+ * Internally used for division operation for division {@code BigInteger}
+ * by {@code BigInteger}.
+ * The returned {@code BigDecimal} object is the quotient whose scale is set
+ * to the passed in scale. If the remainder is not zero, it will be rounded
+ * based on the passed in roundingMode. Also, if the remainder is zero and
+ * the last parameter, i.e. preferredScale is NOT equal to scale, the
+ * trailing zeros of the result is stripped to match the preferredScale.
+ */
+ private static BigDecimal divideAndRound(BigInteger bdividend, BigInteger bdivisor, int scale, int roundingMode,
+ int preferredScale) {
+ boolean isRemainderZero; // record remainder is zero or not
+ int qsign; // quotient sign
+ // Descend into mutables for faster remainder checks
+ MutableBigInteger mdividend = new MutableBigInteger(bdividend.mag);
+ MutableBigInteger mq = new MutableBigInteger();
+ MutableBigInteger mdivisor = new MutableBigInteger(bdivisor.mag);
+ MutableBigInteger mr = mdividend.divide(mdivisor, mq);
+ isRemainderZero = mr.isZero();
+ qsign = (bdividend.signum != bdivisor.signum) ? -1 : 1;
+ if (!isRemainderZero) {
+ if (needIncrement(mdivisor, roundingMode, qsign, mq, mr)) {
+ mq.add(MutableBigInteger.ONE);
+ }
+ return mq.toBigDecimal(qsign, scale);
+ } else {
+ if (preferredScale != scale) {
+ long compactVal = mq.toCompactValue(qsign);
+ if (compactVal != INFLATED) {
+ return createAndStripZerosToMatchScale(compactVal, scale, preferredScale);
+ }
+ BigInteger intVal = mq.toBigInteger(qsign);
+ return createAndStripZerosToMatchScale(intVal, scale, preferredScale);
+ } else {
+ return mq.toBigDecimal(qsign, scale);
+ }
+ }
+ }
+
+ /**
+ * Tests if quotient has to be incremented according the roundingMode
+ */
+ private static boolean needIncrement(MutableBigInteger mdivisor, int roundingMode,
+ int qsign, MutableBigInteger mq, MutableBigInteger mr) {
+ assert !mr.isZero();
+ int cmpFracHalf = mr.compareHalf(mdivisor);
+ return commonNeedIncrement(roundingMode, qsign, cmpFracHalf, mq.isOdd());
+ }
+
+ /**
+ * Remove insignificant trailing zeros from this
+ * {@code BigInteger} value until the preferred scale is reached or no
+ * more zeros can be removed. If the preferred scale is less than
+ * Integer.MIN_VALUE, all the trailing zeros will be removed.
+ *
+ * @return new {@code BigDecimal} with a scale possibly reduced
+ * to be closed to the preferred scale.
+ */
+ private static BigDecimal createAndStripZerosToMatchScale(BigInteger intVal, int scale, long preferredScale) {
+ BigInteger qr[]; // quotient-remainder pair
+ while (intVal.compareMagnitude(BigInteger.TEN) >= 0
+ && scale > preferredScale) {
+ if (intVal.testBit(0))
+ break; // odd number cannot end in 0
+ qr = intVal.divideAndRemainder(BigInteger.TEN);
+ if (qr[1].signum() != 0)
+ break; // non-0 remainder
+ intVal = qr[0];
+ scale = checkScale(intVal,(long) scale - 1); // could Overflow
+ }
+ return valueOf(intVal, scale, 0);
+ }
+
+ /**
+ * Remove insignificant trailing zeros from this
+ * {@code long} value until the preferred scale is reached or no
+ * more zeros can be removed. If the preferred scale is less than
+ * Integer.MIN_VALUE, all the trailing zeros will be removed.
+ *
+ * @return new {@code BigDecimal} with a scale possibly reduced
+ * to be closed to the preferred scale.
+ */
+ private static BigDecimal createAndStripZerosToMatchScale(long compactVal, int scale, long preferredScale) {
+ while (Math.abs(compactVal) >= 10L && scale > preferredScale) {
+ if ((compactVal & 1L) != 0L)
+ break; // odd number cannot end in 0
+ long r = compactVal % 10L;
+ if (r != 0L)
+ break; // non-0 remainder
+ compactVal /= 10;
+ scale = checkScale(compactVal, (long) scale - 1); // could Overflow
+ }
+ return valueOf(compactVal, scale);
+ }
+
+ private static BigDecimal stripZerosToMatchScale(BigInteger intVal, long intCompact, int scale, int preferredScale) {
+ if(intCompact!=INFLATED) {
+ return createAndStripZerosToMatchScale(intCompact, scale, preferredScale);
+ } else {
+ return createAndStripZerosToMatchScale(intVal==null ? INFLATED_BIGINT : intVal,
+ scale, preferredScale);
+ }
+ }
+
+ /*
+ * returns INFLATED if oveflow
+ */
+ private static long add(long xs, long ys){
+ long sum = xs + ys;
+ // See "Hacker's Delight" section 2-12 for explanation of
+ // the overflow test.
+ if ( (((sum ^ xs) & (sum ^ ys))) >= 0L) { // not overflowed
+ return sum;
+ }
+ return INFLATED;
+ }
+
+ private static BigDecimal add(long xs, long ys, int scale){
+ long sum = add(xs, ys);
+ if (sum!=INFLATED)
+ return BigDecimal.valueOf(sum, scale);
+ return new BigDecimal(BigInteger.valueOf(xs).add(ys), scale);
+ }
+
+ private static BigDecimal add(final long xs, int scale1, final long ys, int scale2) {
+ long sdiff = (long) scale1 - scale2;
+ if (sdiff == 0) {
+ return add(xs, ys, scale1);
+ } else if (sdiff < 0) {
+ int raise = checkScale(xs,-sdiff);
+ long scaledX = longMultiplyPowerTen(xs, raise);
+ if (scaledX != INFLATED) {
+ return add(scaledX, ys, scale2);
+ } else {
+ BigInteger bigsum = bigMultiplyPowerTen(xs,raise).add(ys);
+ return ((xs^ys)>=0) ? // same sign test
+ new BigDecimal(bigsum, INFLATED, scale2, 0)
+ : valueOf(bigsum, scale2, 0);
+ }
+ } else {
+ int raise = checkScale(ys,sdiff);
+ long scaledY = longMultiplyPowerTen(ys, raise);
+ if (scaledY != INFLATED) {
+ return add(xs, scaledY, scale1);
+ } else {
+ BigInteger bigsum = bigMultiplyPowerTen(ys,raise).add(xs);
+ return ((xs^ys)>=0) ?
+ new BigDecimal(bigsum, INFLATED, scale1, 0)
+ : valueOf(bigsum, scale1, 0);
+ }
+ }
+ }
+
+ private static BigDecimal add(final long xs, int scale1, BigInteger snd, int scale2) {
+ int rscale = scale1;
+ long sdiff = (long)rscale - scale2;
+ boolean sameSigns = (Long.signum(xs) == snd.signum);
+ BigInteger sum;
+ if (sdiff < 0) {
+ int raise = checkScale(xs,-sdiff);
+ rscale = scale2;
+ long scaledX = longMultiplyPowerTen(xs, raise);
+ if (scaledX == INFLATED) {
+ sum = snd.add(bigMultiplyPowerTen(xs,raise));
+ } else {
+ sum = snd.add(scaledX);
+ }
+ } else { //if (sdiff > 0) {
+ int raise = checkScale(snd,sdiff);
+ snd = bigMultiplyPowerTen(snd,raise);
+ sum = snd.add(xs);
+ }
+ return (sameSigns) ?
+ new BigDecimal(sum, INFLATED, rscale, 0) :
+ valueOf(sum, rscale, 0);
+ }
+
+ private static BigDecimal add(BigInteger fst, int scale1, BigInteger snd, int scale2) {
+ int rscale = scale1;
+ long sdiff = (long)rscale - scale2;
+ if (sdiff != 0) {
+ if (sdiff < 0) {
+ int raise = checkScale(fst,-sdiff);
+ rscale = scale2;
+ fst = bigMultiplyPowerTen(fst,raise);
+ } else {
+ int raise = checkScale(snd,sdiff);
+ snd = bigMultiplyPowerTen(snd,raise);
+ }
+ }
+ BigInteger sum = fst.add(snd);
+ return (fst.signum == snd.signum) ?
+ new BigDecimal(sum, INFLATED, rscale, 0) :
+ valueOf(sum, rscale, 0);
+ }
+
+ private static BigInteger bigMultiplyPowerTen(long value, int n) {
+ if (n <= 0)
+ return BigInteger.valueOf(value);
+ return bigTenToThe(n).multiply(value);
+ }
+
+ private static BigInteger bigMultiplyPowerTen(BigInteger value, int n) {
+ if (n <= 0)
+ return value;
+ if(n<LONG_TEN_POWERS_TABLE.length) {
+ return value.multiply(LONG_TEN_POWERS_TABLE[n]);
+ }
+ return value.multiply(bigTenToThe(n));
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is {@code (xs /
+ * ys)}, with rounding according to the context settings.
+ *
+ * Fast path - used only when (xscale <= yscale && yscale < 18
+ * && mc.presision<18) {
+ */
+ private static BigDecimal divideSmallFastPath(final long xs, int xscale,
+ final long ys, int yscale,
+ long preferredScale, MathContext mc) {
+ int mcp = mc.precision;
+ int roundingMode = mc.roundingMode.oldMode;
+
+ assert (xscale <= yscale) && (yscale < 18) && (mcp < 18);
+ int xraise = yscale - xscale; // xraise >=0
+ long scaledX = (xraise==0) ? xs :
+ longMultiplyPowerTen(xs, xraise); // can't overflow here!
+ BigDecimal quotient;
+
+ int cmp = longCompareMagnitude(scaledX, ys);
+ if(cmp > 0) { // satisfy constraint (b)
+ yscale -= 1; // [that is, divisor *= 10]
+ int scl = checkScaleNonZero(preferredScale + yscale - xscale + mcp);
+ if (checkScaleNonZero((long) mcp + yscale - xscale) > 0) {
+ // assert newScale >= xscale
+ int raise = checkScaleNonZero((long) mcp + yscale - xscale);
+ long scaledXs;
+ if ((scaledXs = longMultiplyPowerTen(xs, raise)) == INFLATED) {
+ quotient = null;
+ if((mcp-1) >=0 && (mcp-1)<LONG_TEN_POWERS_TABLE.length) {
+ quotient = multiplyDivideAndRound(LONG_TEN_POWERS_TABLE[mcp-1], scaledX, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
+ }
+ if(quotient==null) {
+ BigInteger rb = bigMultiplyPowerTen(scaledX,mcp-1);
+ quotient = divideAndRound(rb, ys,
+ scl, roundingMode, checkScaleNonZero(preferredScale));
+ }
+ } else {
+ quotient = divideAndRound(scaledXs, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
+ }
+ } else {
+ int newScale = checkScaleNonZero((long) xscale - mcp);
+ // assert newScale >= yscale
+ if (newScale == yscale) { // easy case
+ quotient = divideAndRound(xs, ys, scl, roundingMode,checkScaleNonZero(preferredScale));
+ } else {
+ int raise = checkScaleNonZero((long) newScale - yscale);
+ long scaledYs;
+ if ((scaledYs = longMultiplyPowerTen(ys, raise)) == INFLATED) {
+ BigInteger rb = bigMultiplyPowerTen(ys,raise);
+ quotient = divideAndRound(BigInteger.valueOf(xs),
+ rb, scl, roundingMode,checkScaleNonZero(preferredScale));
+ } else {
+ quotient = divideAndRound(xs, scaledYs, scl, roundingMode,checkScaleNonZero(preferredScale));
+ }
+ }
+ }
+ } else {
+ // abs(scaledX) <= abs(ys)
+ // result is "scaledX * 10^msp / ys"
+ int scl = checkScaleNonZero(preferredScale + yscale - xscale + mcp);
+ if(cmp==0) {
+ // abs(scaleX)== abs(ys) => result will be scaled 10^mcp + correct sign
+ quotient = roundedTenPower(((scaledX < 0) == (ys < 0)) ? 1 : -1, mcp, scl, checkScaleNonZero(preferredScale));
+ } else {
+ // abs(scaledX) < abs(ys)
+ long scaledXs;
+ if ((scaledXs = longMultiplyPowerTen(scaledX, mcp)) == INFLATED) {
+ quotient = null;
+ if(mcp<LONG_TEN_POWERS_TABLE.length) {
+ quotient = multiplyDivideAndRound(LONG_TEN_POWERS_TABLE[mcp], scaledX, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
+ }
+ if(quotient==null) {
+ BigInteger rb = bigMultiplyPowerTen(scaledX,mcp);
+ quotient = divideAndRound(rb, ys,
+ scl, roundingMode, checkScaleNonZero(preferredScale));
+ }
+ } else {
+ quotient = divideAndRound(scaledXs, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
+ }
+ }
+ }
+ // doRound, here, only affects 1000000000 case.
+ return doRound(quotient,mc);
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is {@code (xs /
+ * ys)}, with rounding according to the context settings.
+ */
+ private static BigDecimal divide(final long xs, int xscale, final long ys, int yscale, long preferredScale, MathContext mc) {
+ int mcp = mc.precision;
+ if(xscale <= yscale && yscale < 18 && mcp<18) {
+ return divideSmallFastPath(xs, xscale, ys, yscale, preferredScale, mc);
+ }
+ if (compareMagnitudeNormalized(xs, xscale, ys, yscale) > 0) {// satisfy constraint (b)
+ yscale -= 1; // [that is, divisor *= 10]
+ }
+ int roundingMode = mc.roundingMode.oldMode;
+ // In order to find out whether the divide generates the exact result,
+ // we avoid calling the above divide method. 'quotient' holds the
+ // return BigDecimal object whose scale will be set to 'scl'.
+ int scl = checkScaleNonZero(preferredScale + yscale - xscale + mcp);
+ BigDecimal quotient;
+ if (checkScaleNonZero((long) mcp + yscale - xscale) > 0) {
+ int raise = checkScaleNonZero((long) mcp + yscale - xscale);
+ long scaledXs;
+ if ((scaledXs = longMultiplyPowerTen(xs, raise)) == INFLATED) {
+ BigInteger rb = bigMultiplyPowerTen(xs,raise);
+ quotient = divideAndRound(rb, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
+ } else {
+ quotient = divideAndRound(scaledXs, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
+ }
+ } else {
+ int newScale = checkScaleNonZero((long) xscale - mcp);
+ // assert newScale >= yscale
+ if (newScale == yscale) { // easy case
+ quotient = divideAndRound(xs, ys, scl, roundingMode,checkScaleNonZero(preferredScale));
+ } else {
+ int raise = checkScaleNonZero((long) newScale - yscale);
+ long scaledYs;
+ if ((scaledYs = longMultiplyPowerTen(ys, raise)) == INFLATED) {
+ BigInteger rb = bigMultiplyPowerTen(ys,raise);
+ quotient = divideAndRound(BigInteger.valueOf(xs),
+ rb, scl, roundingMode,checkScaleNonZero(preferredScale));
+ } else {
+ quotient = divideAndRound(xs, scaledYs, scl, roundingMode,checkScaleNonZero(preferredScale));
+ }
+ }
+ }
+ // doRound, here, only affects 1000000000 case.
+ return doRound(quotient,mc);
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is {@code (xs /
+ * ys)}, with rounding according to the context settings.
+ */
+ private static BigDecimal divide(BigInteger xs, int xscale, long ys, int yscale, long preferredScale, MathContext mc) {
+ // Normalize dividend & divisor so that both fall into [0.1, 0.999...]
+ if ((-compareMagnitudeNormalized(ys, yscale, xs, xscale)) > 0) {// satisfy constraint (b)
+ yscale -= 1; // [that is, divisor *= 10]
+ }
+ int mcp = mc.precision;
+ int roundingMode = mc.roundingMode.oldMode;
+
+ // In order to find out whether the divide generates the exact result,
+ // we avoid calling the above divide method. 'quotient' holds the
+ // return BigDecimal object whose scale will be set to 'scl'.
+ BigDecimal quotient;
+ int scl = checkScaleNonZero(preferredScale + yscale - xscale + mcp);
+ if (checkScaleNonZero((long) mcp + yscale - xscale) > 0) {
+ int raise = checkScaleNonZero((long) mcp + yscale - xscale);
+ BigInteger rb = bigMultiplyPowerTen(xs,raise);
+ quotient = divideAndRound(rb, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
+ } else {
+ int newScale = checkScaleNonZero((long) xscale - mcp);
+ // assert newScale >= yscale
+ if (newScale == yscale) { // easy case
+ quotient = divideAndRound(xs, ys, scl, roundingMode,checkScaleNonZero(preferredScale));
+ } else {
+ int raise = checkScaleNonZero((long) newScale - yscale);
+ long scaledYs;
+ if ((scaledYs = longMultiplyPowerTen(ys, raise)) == INFLATED) {
+ BigInteger rb = bigMultiplyPowerTen(ys,raise);
+ quotient = divideAndRound(xs, rb, scl, roundingMode,checkScaleNonZero(preferredScale));
+ } else {
+ quotient = divideAndRound(xs, scaledYs, scl, roundingMode,checkScaleNonZero(preferredScale));
+ }
+ }
+ }
+ // doRound, here, only affects 1000000000 case.
+ return doRound(quotient, mc);
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is {@code (xs /
+ * ys)}, with rounding according to the context settings.
+ */
+ private static BigDecimal divide(long xs, int xscale, BigInteger ys, int yscale, long preferredScale, MathContext mc) {
+ // Normalize dividend & divisor so that both fall into [0.1, 0.999...]
+ if (compareMagnitudeNormalized(xs, xscale, ys, yscale) > 0) {// satisfy constraint (b)
+ yscale -= 1; // [that is, divisor *= 10]
+ }
+ int mcp = mc.precision;
+ int roundingMode = mc.roundingMode.oldMode;
+
+ // In order to find out whether the divide generates the exact result,
+ // we avoid calling the above divide method. 'quotient' holds the
+ // return BigDecimal object whose scale will be set to 'scl'.
+ BigDecimal quotient;
+ int scl = checkScaleNonZero(preferredScale + yscale - xscale + mcp);
+ if (checkScaleNonZero((long) mcp + yscale - xscale) > 0) {
+ int raise = checkScaleNonZero((long) mcp + yscale - xscale);
+ BigInteger rb = bigMultiplyPowerTen(xs,raise);
+ quotient = divideAndRound(rb, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
+ } else {
+ int newScale = checkScaleNonZero((long) xscale - mcp);
+ int raise = checkScaleNonZero((long) newScale - yscale);
+ BigInteger rb = bigMultiplyPowerTen(ys,raise);
+ quotient = divideAndRound(BigInteger.valueOf(xs), rb, scl, roundingMode,checkScaleNonZero(preferredScale));
+ }
+ // doRound, here, only affects 1000000000 case.
+ return doRound(quotient, mc);
+ }
+
+ /**
+ * Returns a {@code BigDecimal} whose value is {@code (xs /
+ * ys)}, with rounding according to the context settings.
+ */
+ private static BigDecimal divide(BigInteger xs, int xscale, BigInteger ys, int yscale, long preferredScale, MathContext mc) {
+ // Normalize dividend & divisor so that both fall into [0.1, 0.999...]
+ if (compareMagnitudeNormalized(xs, xscale, ys, yscale) > 0) {// satisfy constraint (b)
+ yscale -= 1; // [that is, divisor *= 10]
+ }
+ int mcp = mc.precision;
+ int roundingMode = mc.roundingMode.oldMode;
+
+ // In order to find out whether the divide generates the exact result,
+ // we avoid calling the above divide method. 'quotient' holds the
+ // return BigDecimal object whose scale will be set to 'scl'.
+ BigDecimal quotient;
+ int scl = checkScaleNonZero(preferredScale + yscale - xscale + mcp);
+ if (checkScaleNonZero((long) mcp + yscale - xscale) > 0) {
+ int raise = checkScaleNonZero((long) mcp + yscale - xscale);
+ BigInteger rb = bigMultiplyPowerTen(xs,raise);
+ quotient = divideAndRound(rb, ys, scl, roundingMode, checkScaleNonZero(preferredScale));
+ } else {
+ int newScale = checkScaleNonZero((long) xscale - mcp);
+ int raise = checkScaleNonZero((long) newScale - yscale);
+ BigInteger rb = bigMultiplyPowerTen(ys,raise);
+ quotient = divideAndRound(xs, rb, scl, roundingMode,checkScaleNonZero(preferredScale));
+ }
+ // doRound, here, only affects 1000000000 case.
+ return doRound(quotient, mc);
+ }
+
+ /*
+ * performs divideAndRound for (dividend0*dividend1, divisor)
+ * returns null if quotient can't fit into long value;
+ */
+ private static BigDecimal multiplyDivideAndRound(long dividend0, long dividend1, long divisor, int scale, int roundingMode,
+ int preferredScale) {
+ int qsign = Long.signum(dividend0)*Long.signum(dividend1)*Long.signum(divisor);
+ dividend0 = Math.abs(dividend0);
+ dividend1 = Math.abs(dividend1);
+ divisor = Math.abs(divisor);
+ // multiply dividend0 * dividend1
+ long d0_hi = dividend0 >>> 32;
+ long d0_lo = dividend0 & LONG_MASK;
+ long d1_hi = dividend1 >>> 32;
+ long d1_lo = dividend1 & LONG_MASK;
+ long product = d0_lo * d1_lo;
+ long d0 = product & LONG_MASK;
+ long d1 = product >>> 32;
+ product = d0_hi * d1_lo + d1;
+ d1 = product & LONG_MASK;
+ long d2 = product >>> 32;
+ product = d0_lo * d1_hi + d1;
+ d1 = product & LONG_MASK;
+ d2 += product >>> 32;
+ long d3 = d2>>>32;
+ d2 &= LONG_MASK;
+ product = d0_hi*d1_hi + d2;
+ d2 = product & LONG_MASK;
+ d3 = ((product>>>32) + d3) & LONG_MASK;
+ final long dividendHi = make64(d3,d2);
+ final long dividendLo = make64(d1,d0);
+ // divide
+ return divideAndRound128(dividendHi, dividendLo, divisor, qsign, scale, roundingMode, preferredScale);
+ }
+
+ private static final long DIV_NUM_BASE = (1L<<32); // Number base (32 bits).
+
+ /*
+ * divideAndRound 128-bit value by long divisor.
+ * returns null if quotient can't fit into long value;
+ * Specialized version of Knuth's division
+ */
+ private static BigDecimal divideAndRound128(final long dividendHi, final long dividendLo, long divisor, int sign,
+ int scale, int roundingMode, int preferredScale) {
+ if (dividendHi >= divisor) {
+ return null;
+ }
+
+ final int shift = Long.numberOfLeadingZeros(divisor);
+ divisor <<= shift;
+
+ final long v1 = divisor >>> 32;
+ final long v0 = divisor & LONG_MASK;
+
+ long tmp = dividendLo << shift;
+ long u1 = tmp >>> 32;
+ long u0 = tmp & LONG_MASK;
+
+ tmp = (dividendHi << shift) | (dividendLo >>> 64 - shift);
+ long u2 = tmp & LONG_MASK;
+ long q1, r_tmp;
+ if (v1 == 1) {
+ q1 = tmp;
+ r_tmp = 0;
+ } else if (tmp >= 0) {
+ q1 = tmp / v1;
+ r_tmp = tmp - q1 * v1;
+ } else {
+ long[] rq = divRemNegativeLong(tmp, v1);
+ q1 = rq[1];
+ r_tmp = rq[0];
+ }
+
+ while(q1 >= DIV_NUM_BASE || unsignedLongCompare(q1*v0, make64(r_tmp, u1))) {
+ q1--;
+ r_tmp += v1;
+ if (r_tmp >= DIV_NUM_BASE)
+ break;
+ }
+
+ tmp = mulsub(u2,u1,v1,v0,q1);
+ u1 = tmp & LONG_MASK;
+ long q0;
+ if (v1 == 1) {
+ q0 = tmp;
+ r_tmp = 0;
+ } else if (tmp >= 0) {
+ q0 = tmp / v1;
+ r_tmp = tmp - q0 * v1;
+ } else {
+ long[] rq = divRemNegativeLong(tmp, v1);
+ q0 = rq[1];
+ r_tmp = rq[0];
+ }
+
+ while(q0 >= DIV_NUM_BASE || unsignedLongCompare(q0*v0,make64(r_tmp,u0))) {
+ q0--;
+ r_tmp += v1;
+ if (r_tmp >= DIV_NUM_BASE)
+ break;
+ }
+
+ if((int)q1 < 0) {
+ // result (which is positive and unsigned here)
+ // can't fit into long due to sign bit is used for value
+ MutableBigInteger mq = new MutableBigInteger(new int[]{(int)q1, (int)q0});
+ if (roundingMode == ROUND_DOWN && scale == preferredScale) {
+ return mq.toBigDecimal(sign, scale);
+ }
+ long r = mulsub(u1, u0, v1, v0, q0) >>> shift;
+ if (r != 0) {
+ if(needIncrement(divisor >>> shift, roundingMode, sign, mq, r)){
+ mq.add(MutableBigInteger.ONE);
+ }
+ return mq.toBigDecimal(sign, scale);
+ } else {
+ if (preferredScale != scale) {
+ BigInteger intVal = mq.toBigInteger(sign);
+ return createAndStripZerosToMatchScale(intVal,scale, preferredScale);
+ } else {
+ return mq.toBigDecimal(sign, scale);
+ }
+ }
+ }
+
+ long q = make64(q1,q0);
+ q*=sign;
+
+ if (roundingMode == ROUND_DOWN && scale == preferredScale)
+ return valueOf(q, scale);
+
+ long r = mulsub(u1, u0, v1, v0, q0) >>> shift;
+ if (r != 0) {
+ boolean increment = needIncrement(divisor >>> shift, roundingMode, sign, q, r);
+ return valueOf((increment ? q + sign : q), scale);
+ } else {
+ if (preferredScale != scale) {
+ return createAndStripZerosToMatchScale(q, scale, preferredScale);
+ } else {
+ return valueOf(q, scale);
+ }
+ }
+ }
+
+ /*
+ * calculate divideAndRound for ldividend*10^raise / divisor
+ * when abs(dividend)==abs(divisor);
+ */
+ private static BigDecimal roundedTenPower(int qsign, int raise, int scale, int preferredScale) {
+ if (scale > preferredScale) {
+ int diff = scale - preferredScale;
+ if(diff < raise) {
+ return scaledTenPow(raise - diff, qsign, preferredScale);
+ } else {
+ return valueOf(qsign,scale-raise);
+ }
+ } else {
+ return scaledTenPow(raise, qsign, scale);
+ }
+ }
+
+ static BigDecimal scaledTenPow(int n, int sign, int scale) {
+ if (n < LONG_TEN_POWERS_TABLE.length)
+ return valueOf(sign*LONG_TEN_POWERS_TABLE[n],scale);
+ else {
+ BigInteger unscaledVal = bigTenToThe(n);
+ if(sign==-1) {
+ unscaledVal = unscaledVal.negate();
+ }
+ return new BigDecimal(unscaledVal, INFLATED, scale, n+1);
+ }
+ }
+
+ /**
+ * Calculate the quotient and remainder of dividing a negative long by
+ * another long.
+ *
+ * @param n the numerator; must be negative
+ * @param d the denominator; must not be unity
+ * @return a two-element {@long} array with the remainder and quotient in
+ * the initial and final elements, respectively
+ */
+ private static long[] divRemNegativeLong(long n, long d) {
+ assert n < 0 : "Non-negative numerator " + n;
+ assert d != 1 : "Unity denominator";
+
+ // Approximate the quotient and remainder
+ long q = (n >>> 1) / (d >>> 1);
+ long r = n - q * d;
+
+ // Correct the approximation
+ while (r < 0) {
+ r += d;
+ q--;
+ }
+ while (r >= d) {
+ r -= d;
+ q++;
+ }
+
+ // n - q*d == r && 0 <= r < d, hence we're done.
+ return new long[] {r, q};
+ }
+
+ private static long make64(long hi, long lo) {
+ return hi<<32 | lo;
+ }
+
+ private static long mulsub(long u1, long u0, final long v1, final long v0, long q0) {
+ long tmp = u0 - q0*v0;
+ return make64(u1 + (tmp>>>32) - q0*v1,tmp & LONG_MASK);
+ }
+
+ private static boolean unsignedLongCompare(long one, long two) {
+ return (one+Long.MIN_VALUE) > (two+Long.MIN_VALUE);
+ }
+
+ private static boolean unsignedLongCompareEq(long one, long two) {
+ return (one+Long.MIN_VALUE) >= (two+Long.MIN_VALUE);
+ }
+
+
+ // Compare Normalize dividend & divisor so that both fall into [0.1, 0.999...]
+ private static int compareMagnitudeNormalized(long xs, int xscale, long ys, int yscale) {
+ // assert xs!=0 && ys!=0
+ int sdiff = xscale - yscale;
+ if (sdiff != 0) {
+ if (sdiff < 0) {
+ xs = longMultiplyPowerTen(xs, -sdiff);
+ } else { // sdiff > 0
+ ys = longMultiplyPowerTen(ys, sdiff);
+ }
+ }
+ if (xs != INFLATED)
+ return (ys != INFLATED) ? longCompareMagnitude(xs, ys) : -1;
+ else
+ return 1;
+ }
+
+ // Compare Normalize dividend & divisor so that both fall into [0.1, 0.999...]
+ private static int compareMagnitudeNormalized(long xs, int xscale, BigInteger ys, int yscale) {
+ // assert "ys can't be represented as long"
+ if (xs == 0)
+ return -1;
+ int sdiff = xscale - yscale;
+ if (sdiff < 0) {
+ if (longMultiplyPowerTen(xs, -sdiff) == INFLATED ) {
+ return bigMultiplyPowerTen(xs, -sdiff).compareMagnitude(ys);
+ }
+ }
+ return -1;
+ }
+
+ // Compare Normalize dividend & divisor so that both fall into [0.1, 0.999...]
+ private static int compareMagnitudeNormalized(BigInteger xs, int xscale, BigInteger ys, int yscale) {
+ int sdiff = xscale - yscale;
+ if (sdiff < 0) {
+ return bigMultiplyPowerTen(xs, -sdiff).compareMagnitude(ys);
+ } else { // sdiff >= 0
+ return xs.compareMagnitude(bigMultiplyPowerTen(ys, sdiff));
+ }
+ }
+
+ private static long multiply(long x, long y){
+ long product = x * y;
+ long ax = Math.abs(x);
+ long ay = Math.abs(y);
+ if (((ax | ay) >>> 31 == 0) || (y == 0) || (product / y == x)){
+ return product;
+ }
+ return INFLATED;
+ }
+
+ private static BigDecimal multiply(long x, long y, int scale) {
+ long product = multiply(x, y);
+ if(product!=INFLATED) {
+ return valueOf(product,scale);
+ }
+ return new BigDecimal(BigInteger.valueOf(x).multiply(y),INFLATED,scale,0);
+ }
+
+ private static BigDecimal multiply(long x, BigInteger y, int scale) {
+ if(x==0) {
+ return zeroValueOf(scale);
+ }
+ return new BigDecimal(y.multiply(x),INFLATED,scale,0);
+ }
+
+ private static BigDecimal multiply(BigInteger x, BigInteger y, int scale) {
+ return new BigDecimal(x.multiply(y),INFLATED,scale,0);
+ }
+
+ /**
+ * Multiplies two long values and rounds according {@code MathContext}
+ */
+ private static BigDecimal multiplyAndRound(long x, long y, int scale, MathContext mc) {
+ long product = multiply(x, y);
+ if(product!=INFLATED) {
+ return doRound(product, scale, mc);
+ }
+ // attempt to do it in 128 bits
+ int rsign = 1;
+ if(x < 0) {
+ x = -x;
+ rsign = -1;
+ }
+ if(y < 0) {
+ y = -y;
+ rsign *= -1;
+ }
+ // multiply dividend0 * dividend1
+ long m0_hi = x >>> 32;
+ long m0_lo = x & LONG_MASK;
+ long m1_hi = y >>> 32;
+ long m1_lo = y & LONG_MASK;
+ product = m0_lo * m1_lo;
+ long m0 = product & LONG_MASK;
+ long m1 = product >>> 32;
+ product = m0_hi * m1_lo + m1;
+ m1 = product & LONG_MASK;
+ long m2 = product >>> 32;
+ product = m0_lo * m1_hi + m1;
+ m1 = product & LONG_MASK;
+ m2 += product >>> 32;
+ long m3 = m2>>>32;
+ m2 &= LONG_MASK;
+ product = m0_hi*m1_hi + m2;
+ m2 = product & LONG_MASK;
+ m3 = ((product>>>32) + m3) & LONG_MASK;
+ final long mHi = make64(m3,m2);
+ final long mLo = make64(m1,m0);
+ BigDecimal res = doRound128(mHi, mLo, rsign, scale, mc);
+ if(res!=null) {
+ return res;
+ }
+ res = new BigDecimal(BigInteger.valueOf(x).multiply(y*rsign), INFLATED, scale, 0);
+ return doRound(res,mc);
+ }
+
+ private static BigDecimal multiplyAndRound(long x, BigInteger y, int scale, MathContext mc) {
+ if(x==0) {
+ return zeroValueOf(scale);
+ }
+ return doRound(y.multiply(x), scale, mc);
+ }
+
+ private static BigDecimal multiplyAndRound(BigInteger x, BigInteger y, int scale, MathContext mc) {
+ return doRound(x.multiply(y), scale, mc);
+ }
+
+ /**
+ * rounds 128-bit value according {@code MathContext}
+ * returns null if result can't be repsented as compact BigDecimal.
+ */
+ private static BigDecimal doRound128(long hi, long lo, int sign, int scale, MathContext mc) {
+ int mcp = mc.precision;
+ int drop;
+ BigDecimal res = null;
+ if(((drop = precision(hi, lo) - mcp) > 0)&&(drop<LONG_TEN_POWERS_TABLE.length)) {
+ scale = checkScaleNonZero((long)scale - drop);
+ res = divideAndRound128(hi, lo, LONG_TEN_POWERS_TABLE[drop], sign, scale, mc.roundingMode.oldMode, scale);
+ }
+ if(res!=null) {
+ return doRound(res,mc);
+ }
+ return null;
+ }
+
+ private static final long[][] LONGLONG_TEN_POWERS_TABLE = {
+ { 0L, 0x8AC7230489E80000L }, //10^19
+ { 0x5L, 0x6bc75e2d63100000L }, //10^20
+ { 0x36L, 0x35c9adc5dea00000L }, //10^21
+ { 0x21eL, 0x19e0c9bab2400000L }, //10^22
+ { 0x152dL, 0x02c7e14af6800000L }, //10^23
+ { 0xd3c2L, 0x1bcecceda1000000L }, //10^24
+ { 0x84595L, 0x161401484a000000L }, //10^25
+ { 0x52b7d2L, 0xdcc80cd2e4000000L }, //10^26
+ { 0x33b2e3cL, 0x9fd0803ce8000000L }, //10^27
+ { 0x204fce5eL, 0x3e25026110000000L }, //10^28
+ { 0x1431e0faeL, 0x6d7217caa0000000L }, //10^29
+ { 0xc9f2c9cd0L, 0x4674edea40000000L }, //10^30
+ { 0x7e37be2022L, 0xc0914b2680000000L }, //10^31
+ { 0x4ee2d6d415bL, 0x85acef8100000000L }, //10^32
+ { 0x314dc6448d93L, 0x38c15b0a00000000L }, //10^33
+ { 0x1ed09bead87c0L, 0x378d8e6400000000L }, //10^34
+ { 0x13426172c74d82L, 0x2b878fe800000000L }, //10^35
+ { 0xc097ce7bc90715L, 0xb34b9f1000000000L }, //10^36
+ { 0x785ee10d5da46d9L, 0x00f436a000000000L }, //10^37
+ { 0x4b3b4ca85a86c47aL, 0x098a224000000000L }, //10^38
+ };
+
+ /*
+ * returns precision of 128-bit value
+ */
+ private static int precision(long hi, long lo){
+ if(hi==0) {
+ if(lo>=0) {
+ return longDigitLength(lo);
+ }
+ return (unsignedLongCompareEq(lo, LONGLONG_TEN_POWERS_TABLE[0][1])) ? 20 : 19;
+ // 0x8AC7230489E80000L = unsigned 2^19
+ }
+ int r = ((128 - Long.numberOfLeadingZeros(hi) + 1) * 1233) >>> 12;
+ int idx = r-19;
+ return (idx >= LONGLONG_TEN_POWERS_TABLE.length || longLongCompareMagnitude(hi, lo,
+ LONGLONG_TEN_POWERS_TABLE[idx][0], LONGLONG_TEN_POWERS_TABLE[idx][1])) ? r : r + 1;
+ }
+
+ /*
+ * returns true if 128 bit number <hi0,lo0> is less than <hi1,lo1>
+ * hi0 & hi1 should be non-negative
+ */
+ private static boolean longLongCompareMagnitude(long hi0, long lo0, long hi1, long lo1) {
+ if(hi0!=hi1) {
+ return hi0<hi1;
+ }
+ return (lo0+Long.MIN_VALUE) <(lo1+Long.MIN_VALUE);
+ }
+
+ private static BigDecimal divide(long dividend, int dividendScale, long divisor, int divisorScale, int scale, int roundingMode) {
+ if (checkScale(dividend,(long)scale + divisorScale) > dividendScale) {
+ int newScale = scale + divisorScale;
+ int raise = newScale - dividendScale;
+ if(raise<LONG_TEN_POWERS_TABLE.length) {
+ long xs = dividend;
+ if ((xs = longMultiplyPowerTen(xs, raise)) != INFLATED) {
+ return divideAndRound(xs, divisor, scale, roundingMode, scale);
+ }
+ BigDecimal q = multiplyDivideAndRound(LONG_TEN_POWERS_TABLE[raise], dividend, divisor, scale, roundingMode, scale);
+ if(q!=null) {
+ return q;
+ }
+ }
+ BigInteger scaledDividend = bigMultiplyPowerTen(dividend, raise);
+ return divideAndRound(scaledDividend, divisor, scale, roundingMode, scale);
+ } else {
+ int newScale = checkScale(divisor,(long)dividendScale - scale);
+ int raise = newScale - divisorScale;
+ if(raise<LONG_TEN_POWERS_TABLE.length) {
+ long ys = divisor;
+ if ((ys = longMultiplyPowerTen(ys, raise)) != INFLATED) {
+ return divideAndRound(dividend, ys, scale, roundingMode, scale);
+ }
+ }
+ BigInteger scaledDivisor = bigMultiplyPowerTen(divisor, raise);
+ return divideAndRound(BigInteger.valueOf(dividend), scaledDivisor, scale, roundingMode, scale);
+ }
+ }
+
+ private static BigDecimal divide(BigInteger dividend, int dividendScale, long divisor, int divisorScale, int scale, int roundingMode) {
+ if (checkScale(dividend,(long)scale + divisorScale) > dividendScale) {
+ int newScale = scale + divisorScale;
+ int raise = newScale - dividendScale;
+ BigInteger scaledDividend = bigMultiplyPowerTen(dividend, raise);
+ return divideAndRound(scaledDividend, divisor, scale, roundingMode, scale);
+ } else {
+ int newScale = checkScale(divisor,(long)dividendScale - scale);
+ int raise = newScale - divisorScale;
+ if(raise<LONG_TEN_POWERS_TABLE.length) {
+ long ys = divisor;
+ if ((ys = longMultiplyPowerTen(ys, raise)) != INFLATED) {
+ return divideAndRound(dividend, ys, scale, roundingMode, scale);
+ }
+ }
+ BigInteger scaledDivisor = bigMultiplyPowerTen(divisor, raise);
+ return divideAndRound(dividend, scaledDivisor, scale, roundingMode, scale);
+ }
+ }
+
+ private static BigDecimal divide(long dividend, int dividendScale, BigInteger divisor, int divisorScale, int scale, int roundingMode) {
+ if (checkScale(dividend,(long)scale + divisorScale) > dividendScale) {
+ int newScale = scale + divisorScale;
+ int raise = newScale - dividendScale;
+ BigInteger scaledDividend = bigMultiplyPowerTen(dividend, raise);
+ return divideAndRound(scaledDividend, divisor, scale, roundingMode, scale);
+ } else {
+ int newScale = checkScale(divisor,(long)dividendScale - scale);
+ int raise = newScale - divisorScale;
+ BigInteger scaledDivisor = bigMultiplyPowerTen(divisor, raise);
+ return divideAndRound(BigInteger.valueOf(dividend), scaledDivisor, scale, roundingMode, scale);
+ }
+ }
+
+ private static BigDecimal divide(BigInteger dividend, int dividendScale, BigInteger divisor, int divisorScale, int scale, int roundingMode) {
+ if (checkScale(dividend,(long)scale + divisorScale) > dividendScale) {
+ int newScale = scale + divisorScale;
+ int raise = newScale - dividendScale;
+ BigInteger scaledDividend = bigMultiplyPowerTen(dividend, raise);
+ return divideAndRound(scaledDividend, divisor, scale, roundingMode, scale);
+ } else {
+ int newScale = checkScale(divisor,(long)dividendScale - scale);
+ int raise = newScale - divisorScale;
+ BigInteger scaledDivisor = bigMultiplyPowerTen(divisor, raise);
+ return divideAndRound(dividend, scaledDivisor, scale, roundingMode, scale);
+ }
+ }
+
+}
diff --git a/ojluni/src/main/java/java/math/BigInteger.java b/ojluni/src/main/java/java/math/BigInteger.java
new file mode 100644
index 0000000000..47fb1ea3bd
--- /dev/null
+++ b/ojluni/src/main/java/java/math/BigInteger.java
@@ -0,0 +1,4812 @@
+/*
+ * Copyright (c) 1996, 2018, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+/*
+ * Portions Copyright (c) 1995 Colin Plumb. All rights reserved.
+ */
+
+package java.math;
+
+import java.io.IOException;
+import java.io.ObjectInputStream;
+import java.io.ObjectOutputStream;
+import java.io.ObjectStreamField;
+import java.util.Arrays;
+import java.util.Random;
+import java.util.concurrent.ThreadLocalRandom;
+import libcore.math.NativeBN;
+import sun.misc.DoubleConsts;
+import sun.misc.FloatConsts;
+import libcore.util.NonNull;
+
+/**
+ * Immutable arbitrary-precision integers. All operations behave as if
+ * BigIntegers were represented in two's-complement notation (like Java's
+ * primitive integer types). BigInteger provides analogues to all of Java's
+ * primitive integer operators, and all relevant methods from java.lang.Math.
+ * Additionally, BigInteger provides operations for modular arithmetic, GCD
+ * calculation, primality testing, prime generation, bit manipulation,
+ * and a few other miscellaneous operations.
+ *
+ * <p>Semantics of arithmetic operations exactly mimic those of Java's integer
+ * arithmetic operators, as defined in <i>The Java Language Specification</i>.
+ * For example, division by zero throws an {@code ArithmeticException}, and
+ * division of a negative by a positive yields a negative (or zero) remainder.
+ * All of the details in the Spec concerning overflow are ignored, as
+ * BigIntegers are made as large as necessary to accommodate the results of an
+ * operation.
+ *
+ * <p>Semantics of shift operations extend those of Java's shift operators
+ * to allow for negative shift distances. A right-shift with a negative
+ * shift distance results in a left shift, and vice-versa. The unsigned
+ * right shift operator ({@code >>>}) is omitted, as this operation makes
+ * little sense in combination with the "infinite word size" abstraction
+ * provided by this class.
+ *
+ * <p>Semantics of bitwise logical operations exactly mimic those of Java's
+ * bitwise integer operators. The binary operators ({@code and},
+ * {@code or}, {@code xor}) implicitly perform sign extension on the shorter
+ * of the two operands prior to performing the operation.
+ *
+ * <p>Comparison operations perform signed integer comparisons, analogous to
+ * those performed by Java's relational and equality operators.
+ *
+ * <p>Modular arithmetic operations are provided to compute residues, perform
+ * exponentiation, and compute multiplicative inverses. These methods always
+ * return a non-negative result, between {@code 0} and {@code (modulus - 1)},
+ * inclusive.
+ *
+ * <p>Bit operations operate on a single bit of the two's-complement
+ * representation of their operand. If necessary, the operand is sign-
+ * extended so that it contains the designated bit. None of the single-bit
+ * operations can produce a BigInteger with a different sign from the
+ * BigInteger being operated on, as they affect only a single bit, and the
+ * "infinite word size" abstraction provided by this class ensures that there
+ * are infinitely many "virtual sign bits" preceding each BigInteger.
+ *
+ * <p>For the sake of brevity and clarity, pseudo-code is used throughout the
+ * descriptions of BigInteger methods. The pseudo-code expression
+ * {@code (i + j)} is shorthand for "a BigInteger whose value is
+ * that of the BigInteger {@code i} plus that of the BigInteger {@code j}."
+ * The pseudo-code expression {@code (i == j)} is shorthand for
+ * "{@code true} if and only if the BigInteger {@code i} represents the same
+ * value as the BigInteger {@code j}." Other pseudo-code expressions are
+ * interpreted similarly.
+ *
+ * <p>All methods and constructors in this class throw
+ * {@code NullPointerException} when passed
+ * a null object reference for any input parameter.
+ *
+ * BigInteger must support values in the range
+ * -2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive) to
+ * +2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive)
+ * and may support values outside of that range.
+ *
+ * The range of probable prime values is limited and may be less than
+ * the full supported positive range of {@code BigInteger}.
+ * The range must be at least 1 to 2<sup>500000000</sup>.
+ *
+ * @implNote
+ * BigInteger constructors and operations throw {@code ArithmeticException} when
+ * the result is out of the supported range of
+ * -2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive) to
+ * +2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive).
+ *
+ * @see BigDecimal
+ * @author Josh Bloch
+ * @author Michael McCloskey
+ * @author Alan Eliasen
+ * @author Timothy Buktu
+ * @since JDK1.1
+ */
+
+public class BigInteger extends Number implements Comparable<BigInteger> {
+ // Android-changed: Added @NonNull annotations.
+
+ /**
+ * The signum of this BigInteger: -1 for negative, 0 for zero, or
+ * 1 for positive. Note that the BigInteger zero <i>must</i> have
+ * a signum of 0. This is necessary to ensures that there is exactly one
+ * representation for each BigInteger value.
+ *
+ * @serial
+ */
+ final int signum;
+
+ /**
+ * The magnitude of this BigInteger, in <i>big-endian</i> order: the
+ * zeroth element of this array is the most-significant int of the
+ * magnitude. The magnitude must be "minimal" in that the most-significant
+ * int ({@code mag[0]}) must be non-zero. This is necessary to
+ * ensure that there is exactly one representation for each BigInteger
+ * value. Note that this implies that the BigInteger zero has a
+ * zero-length mag array.
+ */
+ final int[] mag;
+
+ // These "redundant fields" are initialized with recognizable nonsense
+ // values, and cached the first time they are needed (or never, if they
+ // aren't needed).
+
+ /**
+ * One plus the bitCount of this BigInteger. Zeros means uninitialized.
+ *
+ * @serial
+ * @see #bitCount
+ * @deprecated Deprecated since logical value is offset from stored
+ * value and correction factor is applied in accessor method.
+ */
+ @Deprecated
+ private int bitCount;
+
+ /**
+ * One plus the bitLength of this BigInteger. Zeros means uninitialized.
+ * (either value is acceptable).
+ *
+ * @serial
+ * @see #bitLength()
+ * @deprecated Deprecated since logical value is offset from stored
+ * value and correction factor is applied in accessor method.
+ */
+ @Deprecated
+ private int bitLength;
+
+ /**
+ * Two plus the lowest set bit of this BigInteger, as returned by
+ * getLowestSetBit().
+ *
+ * @serial
+ * @see #getLowestSetBit
+ * @deprecated Deprecated since logical value is offset from stored
+ * value and correction factor is applied in accessor method.
+ */
+ @Deprecated
+ private int lowestSetBit;
+
+ /**
+ * Two plus the index of the lowest-order int in the magnitude of this
+ * BigInteger that contains a nonzero int, or -2 (either value is acceptable).
+ * The least significant int has int-number 0, the next int in order of
+ * increasing significance has int-number 1, and so forth.
+ * @deprecated Deprecated since logical value is offset from stored
+ * value and correction factor is applied in accessor method.
+ */
+ @Deprecated
+ private int firstNonzeroIntNum;
+
+ /**
+ * This mask is used to obtain the value of an int as if it were unsigned.
+ */
+ final static long LONG_MASK = 0xffffffffL;
+
+ /**
+ * This constant limits {@code mag.length} of BigIntegers to the supported
+ * range.
+ */
+ private static final int MAX_MAG_LENGTH = Integer.MAX_VALUE / Integer.SIZE + 1; // (1 << 26)
+
+ /**
+ * Bit lengths larger than this constant can cause overflow in searchLen
+ * calculation and in BitSieve.singleSearch method.
+ */
+ private static final int PRIME_SEARCH_BIT_LENGTH_LIMIT = 500000000;
+
+ /**
+ * The threshold value for using Karatsuba multiplication. If the number
+ * of ints in both mag arrays are greater than this number, then
+ * Karatsuba multiplication will be used. This value is found
+ * experimentally to work well.
+ */
+ private static final int KARATSUBA_THRESHOLD = 80;
+
+ /**
+ * The threshold value for using 3-way Toom-Cook multiplication.
+ * If the number of ints in each mag array is greater than the
+ * Karatsuba threshold, and the number of ints in at least one of
+ * the mag arrays is greater than this threshold, then Toom-Cook
+ * multiplication will be used.
+ */
+ private static final int TOOM_COOK_THRESHOLD = 240;
+
+ /**
+ * The threshold value for using Karatsuba squaring. If the number
+ * of ints in the number are larger than this value,
+ * Karatsuba squaring will be used. This value is found
+ * experimentally to work well.
+ */
+ private static final int KARATSUBA_SQUARE_THRESHOLD = 128;
+
+ /**
+ * The threshold value for using Toom-Cook squaring. If the number
+ * of ints in the number are larger than this value,
+ * Toom-Cook squaring will be used. This value is found
+ * experimentally to work well.
+ */
+ private static final int TOOM_COOK_SQUARE_THRESHOLD = 216;
+
+ /**
+ * The threshold value for using Burnikel-Ziegler division. If the number
+ * of ints in the divisor are larger than this value, Burnikel-Ziegler
+ * division may be used. This value is found experimentally to work well.
+ */
+ static final int BURNIKEL_ZIEGLER_THRESHOLD = 80;
+
+ /**
+ * The offset value for using Burnikel-Ziegler division. If the number
+ * of ints in the divisor exceeds the Burnikel-Ziegler threshold, and the
+ * number of ints in the dividend is greater than the number of ints in the
+ * divisor plus this value, Burnikel-Ziegler division will be used. This
+ * value is found experimentally to work well.
+ */
+ static final int BURNIKEL_ZIEGLER_OFFSET = 40;
+
+ /**
+ * The threshold value for using Schoenhage recursive base conversion. If
+ * the number of ints in the number are larger than this value,
+ * the Schoenhage algorithm will be used. In practice, it appears that the
+ * Schoenhage routine is faster for any threshold down to 2, and is
+ * relatively flat for thresholds between 2-25, so this choice may be
+ * varied within this range for very small effect.
+ */
+ private static final int SCHOENHAGE_BASE_CONVERSION_THRESHOLD = 20;
+
+ /**
+ * The threshold value for using squaring code to perform multiplication
+ * of a {@code BigInteger} instance by itself. If the number of ints in
+ * the number are larger than this value, {@code multiply(this)} will
+ * return {@code square()}.
+ */
+ private static final int MULTIPLY_SQUARE_THRESHOLD = 20;
+
+ /**
+ * The threshold for using an intrinsic version of
+ * implMontgomeryXXX to perform Montgomery multiplication. If the
+ * number of ints in the number is more than this value we do not
+ * use the intrinsic.
+ */
+ private static final int MONTGOMERY_INTRINSIC_THRESHOLD = 512;
+
+
+ // Constructors
+
+ /**
+ * Translates a byte array containing the two's-complement binary
+ * representation of a BigInteger into a BigInteger. The input array is
+ * assumed to be in <i>big-endian</i> byte-order: the most significant
+ * byte is in the zeroth element.
+ *
+ * @param val big-endian two's-complement binary representation of
+ * BigInteger.
+ * @throws NumberFormatException {@code val} is zero bytes long.
+ */
+ public BigInteger(byte[] val) {
+ if (val.length == 0)
+ throw new NumberFormatException("Zero length BigInteger");
+
+ if (val[0] < 0) {
+ mag = makePositive(val);
+ signum = -1;
+ } else {
+ mag = stripLeadingZeroBytes(val);
+ signum = (mag.length == 0 ? 0 : 1);
+ }
+ if (mag.length >= MAX_MAG_LENGTH) {
+ checkRange();
+ }
+ }
+
+ /**
+ * This private constructor translates an int array containing the
+ * two's-complement binary representation of a BigInteger into a
+ * BigInteger. The input array is assumed to be in <i>big-endian</i>
+ * int-order: the most significant int is in the zeroth element.
+ */
+ private BigInteger(int[] val) {
+ if (val.length == 0)
+ throw new NumberFormatException("Zero length BigInteger");
+
+ if (val[0] < 0) {
+ mag = makePositive(val);
+ signum = -1;
+ } else {
+ mag = trustedStripLeadingZeroInts(val);
+ signum = (mag.length == 0 ? 0 : 1);
+ }
+ if (mag.length >= MAX_MAG_LENGTH) {
+ checkRange();
+ }
+ }
+
+ /**
+ * Translates the sign-magnitude representation of a BigInteger into a
+ * BigInteger. The sign is represented as an integer signum value: -1 for
+ * negative, 0 for zero, or 1 for positive. The magnitude is a byte array
+ * in <i>big-endian</i> byte-order: the most significant byte is in the
+ * zeroth element. A zero-length magnitude array is permissible, and will
+ * result in a BigInteger value of 0, whether signum is -1, 0 or 1.
+ *
+ * @param signum signum of the number (-1 for negative, 0 for zero, 1
+ * for positive).
+ * @param magnitude big-endian binary representation of the magnitude of
+ * the number.
+ * @throws NumberFormatException {@code signum} is not one of the three
+ * legal values (-1, 0, and 1), or {@code signum} is 0 and
+ * {@code magnitude} contains one or more non-zero bytes.
+ */
+ public BigInteger(int signum, byte[] magnitude) {
+ this.mag = stripLeadingZeroBytes(magnitude);
+
+ if (signum < -1 || signum > 1)
+ throw(new NumberFormatException("Invalid signum value"));
+
+ if (this.mag.length == 0) {
+ this.signum = 0;
+ } else {
+ if (signum == 0)
+ throw(new NumberFormatException("signum-magnitude mismatch"));
+ this.signum = signum;
+ }
+ if (mag.length >= MAX_MAG_LENGTH) {
+ checkRange();
+ }
+ }
+
+ /**
+ * A constructor for internal use that translates the sign-magnitude
+ * representation of a BigInteger into a BigInteger. It checks the
+ * arguments and copies the magnitude so this constructor would be
+ * safe for external use.
+ */
+ private BigInteger(int signum, int[] magnitude) {
+ this.mag = stripLeadingZeroInts(magnitude);
+
+ if (signum < -1 || signum > 1)
+ throw(new NumberFormatException("Invalid signum value"));
+
+ if (this.mag.length == 0) {
+ this.signum = 0;
+ } else {
+ if (signum == 0)
+ throw(new NumberFormatException("signum-magnitude mismatch"));
+ this.signum = signum;
+ }
+ if (mag.length >= MAX_MAG_LENGTH) {
+ checkRange();
+ }
+ }
+
+ /**
+ * Translates the String representation of a BigInteger in the
+ * specified radix into a BigInteger. The String representation
+ * consists of an optional minus or plus sign followed by a
+ * sequence of one or more digits in the specified radix. The
+ * character-to-digit mapping is provided by {@code
+ * Character.digit}. The String may not contain any extraneous
+ * characters (whitespace, for example).
+ *
+ * @param val String representation of BigInteger.
+ * @param radix radix to be used in interpreting {@code val}.
+ * @throws NumberFormatException {@code val} is not a valid representation
+ * of a BigInteger in the specified radix, or {@code radix} is
+ * outside the range from {@link Character#MIN_RADIX} to
+ * {@link Character#MAX_RADIX}, inclusive.
+ * @see Character#digit
+ */
+ public BigInteger(@NonNull String val, int radix) {
+ int cursor = 0, numDigits;
+ final int len = val.length();
+
+ if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
+ throw new NumberFormatException("Radix out of range");
+ if (len == 0)
+ throw new NumberFormatException("Zero length BigInteger");
+
+ // Check for at most one leading sign
+ int sign = 1;
+ int index1 = val.lastIndexOf('-');
+ int index2 = val.lastIndexOf('+');
+ if (index1 >= 0) {
+ if (index1 != 0 || index2 >= 0) {
+ throw new NumberFormatException("Illegal embedded sign character");
+ }
+ sign = -1;
+ cursor = 1;
+ } else if (index2 >= 0) {
+ if (index2 != 0) {
+ throw new NumberFormatException("Illegal embedded sign character");
+ }
+ cursor = 1;
+ }
+ if (cursor == len)
+ throw new NumberFormatException("Zero length BigInteger");
+
+ // Skip leading zeros and compute number of digits in magnitude
+ while (cursor < len &&
+ Character.digit(val.charAt(cursor), radix) == 0) {
+ cursor++;
+ }
+
+ if (cursor == len) {
+ signum = 0;
+ mag = ZERO.mag;
+ return;
+ }
+
+ numDigits = len - cursor;
+ signum = sign;
+
+ // Pre-allocate array of expected size. May be too large but can
+ // never be too small. Typically exact.
+ long numBits = ((numDigits * bitsPerDigit[radix]) >>> 10) + 1;
+ if (numBits + 31 >= (1L << 32)) {
+ reportOverflow();
+ }
+ int numWords = (int) (numBits + 31) >>> 5;
+ int[] magnitude = new int[numWords];
+
+ // Process first (potentially short) digit group
+ int firstGroupLen = numDigits % digitsPerInt[radix];
+ if (firstGroupLen == 0)
+ firstGroupLen = digitsPerInt[radix];
+ String group = val.substring(cursor, cursor += firstGroupLen);
+ magnitude[numWords - 1] = Integer.parseInt(group, radix);
+ if (magnitude[numWords - 1] < 0)
+ throw new NumberFormatException("Illegal digit");
+
+ // Process remaining digit groups
+ int superRadix = intRadix[radix];
+ int groupVal = 0;
+ while (cursor < len) {
+ group = val.substring(cursor, cursor += digitsPerInt[radix]);
+ groupVal = Integer.parseInt(group, radix);
+ if (groupVal < 0)
+ throw new NumberFormatException("Illegal digit");
+ destructiveMulAdd(magnitude, superRadix, groupVal);
+ }
+ // Required for cases where the array was overallocated.
+ mag = trustedStripLeadingZeroInts(magnitude);
+ if (mag.length >= MAX_MAG_LENGTH) {
+ checkRange();
+ }
+ }
+
+ /*
+ * Constructs a new BigInteger using a char array with radix=10.
+ * Sign is precalculated outside and not allowed in the val.
+ */
+ BigInteger(char[] val, int sign, int len) {
+ int cursor = 0, numDigits;
+
+ // Skip leading zeros and compute number of digits in magnitude
+ while (cursor < len && Character.digit(val[cursor], 10) == 0) {
+ cursor++;
+ }
+ if (cursor == len) {
+ signum = 0;
+ mag = ZERO.mag;
+ return;
+ }
+
+ numDigits = len - cursor;
+ signum = sign;
+ // Pre-allocate array of expected size
+ int numWords;
+ if (len < 10) {
+ numWords = 1;
+ } else {
+ long numBits = ((numDigits * bitsPerDigit[10]) >>> 10) + 1;
+ if (numBits + 31 >= (1L << 32)) {
+ reportOverflow();
+ }
+ numWords = (int) (numBits + 31) >>> 5;
+ }
+ int[] magnitude = new int[numWords];
+
+ // Process first (potentially short) digit group
+ int firstGroupLen = numDigits % digitsPerInt[10];
+ if (firstGroupLen == 0)
+ firstGroupLen = digitsPerInt[10];
+ magnitude[numWords - 1] = parseInt(val, cursor, cursor += firstGroupLen);
+
+ // Process remaining digit groups
+ while (cursor < len) {
+ int groupVal = parseInt(val, cursor, cursor += digitsPerInt[10]);
+ destructiveMulAdd(magnitude, intRadix[10], groupVal);
+ }
+ mag = trustedStripLeadingZeroInts(magnitude);
+ if (mag.length >= MAX_MAG_LENGTH) {
+ checkRange();
+ }
+ }
+
+ // Create an integer with the digits between the two indexes
+ // Assumes start < end. The result may be negative, but it
+ // is to be treated as an unsigned value.
+ private int parseInt(char[] source, int start, int end) {
+ int result = Character.digit(source[start++], 10);
+ if (result == -1)
+ throw new NumberFormatException(new String(source));
+
+ for (int index = start; index < end; index++) {
+ int nextVal = Character.digit(source[index], 10);
+ if (nextVal == -1)
+ throw new NumberFormatException(new String(source));
+ result = 10*result + nextVal;
+ }
+
+ return result;
+ }
+
+ // bitsPerDigit in the given radix times 1024
+ // Rounded up to avoid underallocation.
+ private static long bitsPerDigit[] = { 0, 0,
+ 1024, 1624, 2048, 2378, 2648, 2875, 3072, 3247, 3402, 3543, 3672,
+ 3790, 3899, 4001, 4096, 4186, 4271, 4350, 4426, 4498, 4567, 4633,
+ 4696, 4756, 4814, 4870, 4923, 4975, 5025, 5074, 5120, 5166, 5210,
+ 5253, 5295};
+
+ // Multiply x array times word y in place, and add word z
+ private static void destructiveMulAdd(int[] x, int y, int z) {
+ // Perform the multiplication word by word
+ long ylong = y & LONG_MASK;
+ long zlong = z & LONG_MASK;
+ int len = x.length;
+
+ long product = 0;
+ long carry = 0;
+ for (int i = len-1; i >= 0; i--) {
+ product = ylong * (x[i] & LONG_MASK) + carry;
+ x[i] = (int)product;
+ carry = product >>> 32;
+ }
+
+ // Perform the addition
+ long sum = (x[len-1] & LONG_MASK) + zlong;
+ x[len-1] = (int)sum;
+ carry = sum >>> 32;
+ for (int i = len-2; i >= 0; i--) {
+ sum = (x[i] & LONG_MASK) + carry;
+ x[i] = (int)sum;
+ carry = sum >>> 32;
+ }
+ }
+
+ /**
+ * Translates the decimal String representation of a BigInteger into a
+ * BigInteger. The String representation consists of an optional minus
+ * sign followed by a sequence of one or more decimal digits. The
+ * character-to-digit mapping is provided by {@code Character.digit}.
+ * The String may not contain any extraneous characters (whitespace, for
+ * example).
+ *
+ * @param val decimal String representation of BigInteger.
+ * @throws NumberFormatException {@code val} is not a valid representation
+ * of a BigInteger.
+ * @see Character#digit
+ */
+ public BigInteger(@NonNull String val) {
+ this(val, 10);
+ }
+
+ /**
+ * Constructs a randomly generated BigInteger, uniformly distributed over
+ * the range 0 to (2<sup>{@code numBits}</sup> - 1), inclusive.
+ * The uniformity of the distribution assumes that a fair source of random
+ * bits is provided in {@code rnd}. Note that this constructor always
+ * constructs a non-negative BigInteger.
+ *
+ * @param numBits maximum bitLength of the new BigInteger.
+ * @param rnd source of randomness to be used in computing the new
+ * BigInteger.
+ * @throws IllegalArgumentException {@code numBits} is negative.
+ * @see #bitLength()
+ */
+ public BigInteger(int numBits, @NonNull Random rnd) {
+ this(1, randomBits(numBits, rnd));
+ }
+
+ private static byte[] randomBits(int numBits, Random rnd) {
+ if (numBits < 0)
+ throw new IllegalArgumentException("numBits must be non-negative");
+ int numBytes = (int)(((long)numBits+7)/8); // avoid overflow
+ byte[] randomBits = new byte[numBytes];
+
+ // Generate random bytes and mask out any excess bits
+ if (numBytes > 0) {
+ rnd.nextBytes(randomBits);
+ int excessBits = 8*numBytes - numBits;
+ randomBits[0] &= (1 << (8-excessBits)) - 1;
+ }
+ return randomBits;
+ }
+
+ /**
+ * Constructs a randomly generated positive BigInteger that is probably
+ * prime, with the specified bitLength.
+ *
+ * <p>It is recommended that the {@link #probablePrime probablePrime}
+ * method be used in preference to this constructor unless there
+ * is a compelling need to specify a certainty.
+ *
+ * @param bitLength bitLength of the returned BigInteger.
+ * @param certainty a measure of the uncertainty that the caller is
+ * willing to tolerate. The probability that the new BigInteger
+ * represents a prime number will exceed
+ * (1 - 1/2<sup>{@code certainty}</sup>). The execution time of
+ * this constructor is proportional to the value of this parameter.
+ * @param rnd source of random bits used to select candidates to be
+ * tested for primality.
+ * @throws ArithmeticException {@code bitLength < 2} or {@code bitLength} is too large.
+ * @see #bitLength()
+ */
+ public BigInteger(int bitLength, int certainty, @NonNull Random rnd) {
+ BigInteger prime;
+
+ if (bitLength < 2)
+ throw new ArithmeticException("bitLength < 2");
+ prime = (bitLength < SMALL_PRIME_THRESHOLD
+ ? smallPrime(bitLength, certainty, rnd)
+ : largePrime(bitLength, certainty, rnd));
+ signum = 1;
+ mag = prime.mag;
+ }
+
+ // Minimum size in bits that the requested prime number has
+ // before we use the large prime number generating algorithms.
+ // The cutoff of 95 was chosen empirically for best performance.
+ private static final int SMALL_PRIME_THRESHOLD = 95;
+
+ // Certainty required to meet the spec of probablePrime
+ private static final int DEFAULT_PRIME_CERTAINTY = 100;
+
+ /**
+ * Returns a positive BigInteger that is probably prime, with the
+ * specified bitLength. The probability that a BigInteger returned
+ * by this method is composite does not exceed 2<sup>-100</sup>.
+ *
+ * @param bitLength bitLength of the returned BigInteger.
+ * @param rnd source of random bits used to select candidates to be
+ * tested for primality.
+ * @return a BigInteger of {@code bitLength} bits that is probably prime
+ * @throws ArithmeticException {@code bitLength < 2} or {@code bitLength} is too large.
+ * @see #bitLength()
+ * @since 1.4
+ */
+ @NonNull public static BigInteger probablePrime(int bitLength, @NonNull Random rnd) {
+ if (bitLength < 2)
+ throw new ArithmeticException("bitLength < 2");
+
+ return (bitLength < SMALL_PRIME_THRESHOLD ?
+ smallPrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd) :
+ largePrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd));
+ }
+
+ /**
+ * Find a random number of the specified bitLength that is probably prime.
+ * This method is used for smaller primes, its performance degrades on
+ * larger bitlengths.
+ *
+ * This method assumes bitLength > 1.
+ */
+ private static BigInteger smallPrime(int bitLength, int certainty, @NonNull Random rnd) {
+ int magLen = (bitLength + 31) >>> 5;
+ int temp[] = new int[magLen];
+ int highBit = 1 << ((bitLength+31) & 0x1f); // High bit of high int
+ int highMask = (highBit << 1) - 1; // Bits to keep in high int
+
+ while (true) {
+ // Construct a candidate
+ for (int i=0; i < magLen; i++)
+ temp[i] = rnd.nextInt();
+ temp[0] = (temp[0] & highMask) | highBit; // Ensure exact length
+ if (bitLength > 2)
+ temp[magLen-1] |= 1; // Make odd if bitlen > 2
+
+ BigInteger p = new BigInteger(temp, 1);
+
+ // Do cheap "pre-test" if applicable
+ if (bitLength > 6) {
+ long r = p.remainder(SMALL_PRIME_PRODUCT).longValue();
+ if ((r%3==0) || (r%5==0) || (r%7==0) || (r%11==0) ||
+ (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) ||
+ (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0))
+ continue; // Candidate is composite; try another
+ }
+
+ // All candidates of bitLength 2 and 3 are prime by this point
+ if (bitLength < 4)
+ return p;
+
+ // Do expensive test if we survive pre-test (or it's inapplicable)
+ if (p.primeToCertainty(certainty, rnd))
+ return p;
+ }
+ }
+
+ private static final BigInteger SMALL_PRIME_PRODUCT
+ = valueOf(3L*5*7*11*13*17*19*23*29*31*37*41);
+
+ /**
+ * Find a random number of the specified bitLength that is probably prime.
+ * This method is more appropriate for larger bitlengths since it uses
+ * a sieve to eliminate most composites before using a more expensive
+ * test.
+ */
+ private static BigInteger largePrime(int bitLength, int certainty, @NonNull Random rnd) {
+ BigInteger p;
+ p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
+ p.mag[p.mag.length-1] &= 0xfffffffe;
+
+ // Use a sieve length likely to contain the next prime number
+ int searchLen = getPrimeSearchLen(bitLength);
+ BitSieve searchSieve = new BitSieve(p, searchLen);
+ BigInteger candidate = searchSieve.retrieve(p, certainty, rnd);
+
+ while ((candidate == null) || (candidate.bitLength() != bitLength)) {
+ p = p.add(BigInteger.valueOf(2*searchLen));
+ if (p.bitLength() != bitLength)
+ p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
+ p.mag[p.mag.length-1] &= 0xfffffffe;
+ searchSieve = new BitSieve(p, searchLen);
+ candidate = searchSieve.retrieve(p, certainty, rnd);
+ }
+ return candidate;
+ }
+
+ /**
+ * Returns the first integer greater than this {@code BigInteger} that
+ * is probably prime. The probability that the number returned by this
+ * method is composite does not exceed 2<sup>-100</sup>. This method will
+ * never skip over a prime when searching: if it returns {@code p}, there
+ * is no prime {@code q} such that {@code this < q < p}.
+ *
+ * @return the first integer greater than this {@code BigInteger} that
+ * is probably prime.
+ * @throws ArithmeticException {@code this < 0} or {@code this} is too large.
+ * @since 1.5
+ */
+ @NonNull public BigInteger nextProbablePrime() {
+ if (this.signum < 0)
+ throw new ArithmeticException("start < 0: " + this);
+
+ // Handle trivial cases
+ if ((this.signum == 0) || this.equals(ONE))
+ return TWO;
+
+ BigInteger result = this.add(ONE);
+
+ // Fastpath for small numbers
+ if (result.bitLength() < SMALL_PRIME_THRESHOLD) {
+
+ // Ensure an odd number
+ if (!result.testBit(0))
+ result = result.add(ONE);
+
+ while (true) {
+ // Do cheap "pre-test" if applicable
+ if (result.bitLength() > 6) {
+ long r = result.remainder(SMALL_PRIME_PRODUCT).longValue();
+ if ((r%3==0) || (r%5==0) || (r%7==0) || (r%11==0) ||
+ (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) ||
+ (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0)) {
+ result = result.add(TWO);
+ continue; // Candidate is composite; try another
+ }
+ }
+
+ // All candidates of bitLength 2 and 3 are prime by this point
+ if (result.bitLength() < 4)
+ return result;
+
+ // The expensive test
+ if (result.primeToCertainty(DEFAULT_PRIME_CERTAINTY, null))
+ return result;
+
+ result = result.add(TWO);
+ }
+ }
+
+ // Start at previous even number
+ if (result.testBit(0))
+ result = result.subtract(ONE);
+
+ // Looking for the next large prime
+ int searchLen = getPrimeSearchLen(result.bitLength());
+
+ while (true) {
+ BitSieve searchSieve = new BitSieve(result, searchLen);
+ BigInteger candidate = searchSieve.retrieve(result,
+ DEFAULT_PRIME_CERTAINTY, null);
+ if (candidate != null)
+ return candidate;
+ result = result.add(BigInteger.valueOf(2 * searchLen));
+ }
+ }
+
+ private static int getPrimeSearchLen(int bitLength) {
+ if (bitLength > PRIME_SEARCH_BIT_LENGTH_LIMIT + 1) {
+ throw new ArithmeticException("Prime search implementation restriction on bitLength");
+ }
+ return bitLength / 20 * 64;
+ }
+
+ /**
+ * Returns {@code true} if this BigInteger is probably prime,
+ * {@code false} if it's definitely composite.
+ *
+ * This method assumes bitLength > 2.
+ *
+ * @param certainty a measure of the uncertainty that the caller is
+ * willing to tolerate: if the call returns {@code true}
+ * the probability that this BigInteger is prime exceeds
+ * {@code (1 - 1/2<sup>certainty</sup>)}. The execution time of
+ * this method is proportional to the value of this parameter.
+ * @return {@code true} if this BigInteger is probably prime,
+ * {@code false} if it's definitely composite.
+ */
+ boolean primeToCertainty(int certainty, @NonNull Random random) {
+ int rounds = 0;
+ int n = (Math.min(certainty, Integer.MAX_VALUE-1)+1)/2;
+
+ // The relationship between the certainty and the number of rounds
+ // we perform is given in the draft standard ANSI X9.80, "PRIME
+ // NUMBER GENERATION, PRIMALITY TESTING, AND PRIMALITY CERTIFICATES".
+ int sizeInBits = this.bitLength();
+ if (sizeInBits < 100) {
+ rounds = 50;
+ rounds = n < rounds ? n : rounds;
+ return passesMillerRabin(rounds, random);
+ }
+
+ if (sizeInBits < 256) {
+ rounds = 27;
+ } else if (sizeInBits < 512) {
+ rounds = 15;
+ } else if (sizeInBits < 768) {
+ rounds = 8;
+ } else if (sizeInBits < 1024) {
+ rounds = 4;
+ } else {
+ rounds = 2;
+ }
+ rounds = n < rounds ? n : rounds;
+
+ return passesMillerRabin(rounds, random) && passesLucasLehmer();
+ }
+
+ /**
+ * Returns true iff this BigInteger is a Lucas-Lehmer probable prime.
+ *
+ * The following assumptions are made:
+ * This BigInteger is a positive, odd number.
+ */
+ private boolean passesLucasLehmer() {
+ BigInteger thisPlusOne = this.add(ONE);
+
+ // Step 1
+ int d = 5;
+ while (jacobiSymbol(d, this) != -1) {
+ // 5, -7, 9, -11, ...
+ d = (d < 0) ? Math.abs(d)+2 : -(d+2);
+ }
+
+ // Step 2
+ BigInteger u = lucasLehmerSequence(d, thisPlusOne, this);
+
+ // Step 3
+ return u.mod(this).equals(ZERO);
+ }
+
+ /**
+ * Computes Jacobi(p,n).
+ * Assumes n positive, odd, n>=3.
+ */
+ private static int jacobiSymbol(int p, @NonNull BigInteger n) {
+ if (p == 0)
+ return 0;
+
+ // Algorithm and comments adapted from Colin Plumb's C library.
+ int j = 1;
+ int u = n.mag[n.mag.length-1];
+
+ // Make p positive
+ if (p < 0) {
+ p = -p;
+ int n8 = u & 7;
+ if ((n8 == 3) || (n8 == 7))
+ j = -j; // 3 (011) or 7 (111) mod 8
+ }
+
+ // Get rid of factors of 2 in p
+ while ((p & 3) == 0)
+ p >>= 2;
+ if ((p & 1) == 0) {
+ p >>= 1;
+ if (((u ^ (u>>1)) & 2) != 0)
+ j = -j; // 3 (011) or 5 (101) mod 8
+ }
+ if (p == 1)
+ return j;
+ // Then, apply quadratic reciprocity
+ if ((p & u & 2) != 0) // p = u = 3 (mod 4)?
+ j = -j;
+ // And reduce u mod p
+ u = n.mod(BigInteger.valueOf(p)).intValue();
+
+ // Now compute Jacobi(u,p), u < p
+ while (u != 0) {
+ while ((u & 3) == 0)
+ u >>= 2;
+ if ((u & 1) == 0) {
+ u >>= 1;
+ if (((p ^ (p>>1)) & 2) != 0)
+ j = -j; // 3 (011) or 5 (101) mod 8
+ }
+ if (u == 1)
+ return j;
+ // Now both u and p are odd, so use quadratic reciprocity
+ assert (u < p);
+ int t = u; u = p; p = t;
+ if ((u & p & 2) != 0) // u = p = 3 (mod 4)?
+ j = -j;
+ // Now u >= p, so it can be reduced
+ u %= p;
+ }
+ return 0;
+ }
+
+ @NonNull private static BigInteger lucasLehmerSequence(int z, @NonNull BigInteger k, @NonNull BigInteger n) {
+ BigInteger d = BigInteger.valueOf(z);
+ BigInteger u = ONE; BigInteger u2;
+ BigInteger v = ONE; BigInteger v2;
+
+ for (int i=k.bitLength()-2; i >= 0; i--) {
+ u2 = u.multiply(v).mod(n);
+
+ v2 = v.square().add(d.multiply(u.square())).mod(n);
+ if (v2.testBit(0))
+ v2 = v2.subtract(n);
+
+ v2 = v2.shiftRight(1);
+
+ u = u2; v = v2;
+ if (k.testBit(i)) {
+ u2 = u.add(v).mod(n);
+ if (u2.testBit(0))
+ u2 = u2.subtract(n);
+
+ u2 = u2.shiftRight(1);
+ v2 = v.add(d.multiply(u)).mod(n);
+ if (v2.testBit(0))
+ v2 = v2.subtract(n);
+ v2 = v2.shiftRight(1);
+
+ u = u2; v = v2;
+ }
+ }
+ return u;
+ }
+
+ /**
+ * Returns true iff this BigInteger passes the specified number of
+ * Miller-Rabin tests. This test is taken from the DSA spec (NIST FIPS
+ * 186-2).
+ *
+ * The following assumptions are made:
+ * This BigInteger is a positive, odd number greater than 2.
+ * iterations<=50.
+ */
+ private boolean passesMillerRabin(int iterations, @NonNull Random rnd) {
+ // Find a and m such that m is odd and this == 1 + 2**a * m
+ BigInteger thisMinusOne = this.subtract(ONE);
+ BigInteger m = thisMinusOne;
+ int a = m.getLowestSetBit();
+ m = m.shiftRight(a);
+
+ // Do the tests
+ if (rnd == null) {
+ rnd = ThreadLocalRandom.current();
+ }
+ for (int i=0; i < iterations; i++) {
+ // Generate a uniform random on (1, this)
+ BigInteger b;
+ do {
+ b = new BigInteger(this.bitLength(), rnd);
+ } while (b.compareTo(ONE) <= 0 || b.compareTo(this) >= 0);
+
+ int j = 0;
+ BigInteger z = b.modPow(m, this);
+ while (!((j == 0 && z.equals(ONE)) || z.equals(thisMinusOne))) {
+ if (j > 0 && z.equals(ONE) || ++j == a)
+ return false;
+ z = z.modPow(TWO, this);
+ }
+ }
+ return true;
+ }
+
+ /**
+ * This internal constructor differs from its public cousin
+ * with the arguments reversed in two ways: it assumes that its
+ * arguments are correct, and it doesn't copy the magnitude array.
+ */
+ BigInteger(int[] magnitude, int signum) {
+ this.signum = (magnitude.length == 0 ? 0 : signum);
+ this.mag = magnitude;
+ if (mag.length >= MAX_MAG_LENGTH) {
+ checkRange();
+ }
+ }
+
+ /**
+ * This private constructor is for internal use and assumes that its
+ * arguments are correct.
+ */
+ private BigInteger(byte[] magnitude, int signum) {
+ this.signum = (magnitude.length == 0 ? 0 : signum);
+ this.mag = stripLeadingZeroBytes(magnitude);
+ if (mag.length >= MAX_MAG_LENGTH) {
+ checkRange();
+ }
+ }
+
+ /**
+ * Throws an {@code ArithmeticException} if the {@code BigInteger} would be
+ * out of the supported range.
+ *
+ * @throws ArithmeticException if {@code this} exceeds the supported range.
+ */
+ private void checkRange() {
+ if (mag.length > MAX_MAG_LENGTH || mag.length == MAX_MAG_LENGTH && mag[0] < 0) {
+ reportOverflow();
+ }
+ }
+
+ private static void reportOverflow() {
+ throw new ArithmeticException("BigInteger would overflow supported range");
+ }
+
+ //Static Factory Methods
+
+ /**
+ * Returns a BigInteger whose value is equal to that of the
+ * specified {@code long}. This "static factory method" is
+ * provided in preference to a ({@code long}) constructor
+ * because it allows for reuse of frequently used BigIntegers.
+ *
+ * @param val value of the BigInteger to return.
+ * @return a BigInteger with the specified value.
+ */
+ @NonNull public static BigInteger valueOf(long val) {
+ // If -MAX_CONSTANT < val < MAX_CONSTANT, return stashed constant
+ if (val == 0)
+ return ZERO;
+ if (val > 0 && val <= MAX_CONSTANT)
+ return posConst[(int) val];
+ else if (val < 0 && val >= -MAX_CONSTANT)
+ return negConst[(int) -val];
+
+ return new BigInteger(val);
+ }
+
+ /**
+ * Constructs a BigInteger with the specified value, which may not be zero.
+ */
+ @NonNull private BigInteger(long val) {
+ if (val < 0) {
+ val = -val;
+ signum = -1;
+ } else {
+ signum = 1;
+ }
+
+ int highWord = (int)(val >>> 32);
+ if (highWord == 0) {
+ mag = new int[1];
+ mag[0] = (int)val;
+ } else {
+ mag = new int[2];
+ mag[0] = highWord;
+ mag[1] = (int)val;
+ }
+ }
+
+ /**
+ * Returns a BigInteger with the given two's complement representation.
+ * Assumes that the input array will not be modified (the returned
+ * BigInteger will reference the input array if feasible).
+ */
+ @NonNull private static BigInteger valueOf(int val[]) {
+ return (val[0] > 0 ? new BigInteger(val, 1) : new BigInteger(val));
+ }
+
+ // Constants
+
+ /**
+ * Initialize static constant array when class is loaded.
+ */
+ private final static int MAX_CONSTANT = 16;
+ private static BigInteger posConst[] = new BigInteger[MAX_CONSTANT+1];
+ private static BigInteger negConst[] = new BigInteger[MAX_CONSTANT+1];
+
+ /**
+ * The cache of powers of each radix. This allows us to not have to
+ * recalculate powers of radix^(2^n) more than once. This speeds
+ * Schoenhage recursive base conversion significantly.
+ */
+ private static volatile BigInteger[][] powerCache;
+
+ /** The cache of logarithms of radices for base conversion. */
+ private static final double[] logCache;
+
+ /** The natural log of 2. This is used in computing cache indices. */
+ private static final double LOG_TWO = Math.log(2.0);
+
+ static {
+ assert 0 < KARATSUBA_THRESHOLD
+ && KARATSUBA_THRESHOLD < TOOM_COOK_THRESHOLD
+ && TOOM_COOK_THRESHOLD < Integer.MAX_VALUE
+ && 0 < KARATSUBA_SQUARE_THRESHOLD
+ && KARATSUBA_SQUARE_THRESHOLD < TOOM_COOK_SQUARE_THRESHOLD
+ && TOOM_COOK_SQUARE_THRESHOLD < Integer.MAX_VALUE :
+ "Algorithm thresholds are inconsistent";
+
+ for (int i = 1; i <= MAX_CONSTANT; i++) {
+ int[] magnitude = new int[1];
+ magnitude[0] = i;
+ posConst[i] = new BigInteger(magnitude, 1);
+ negConst[i] = new BigInteger(magnitude, -1);
+ }
+
+ /*
+ * Initialize the cache of radix^(2^x) values used for base conversion
+ * with just the very first value. Additional values will be created
+ * on demand.
+ */
+ powerCache = new BigInteger[Character.MAX_RADIX+1][];
+ logCache = new double[Character.MAX_RADIX+1];
+
+ for (int i=Character.MIN_RADIX; i <= Character.MAX_RADIX; i++) {
+ powerCache[i] = new BigInteger[] { BigInteger.valueOf(i) };
+ logCache[i] = Math.log(i);
+ }
+ }
+
+ /**
+ * The BigInteger constant zero.
+ *
+ * @since 1.2
+ */
+ @NonNull public static final BigInteger ZERO = new BigInteger(new int[0], 0);
+
+ /**
+ * The BigInteger constant one.
+ *
+ * @since 1.2
+ */
+ @NonNull public static final BigInteger ONE = valueOf(1);
+
+ /**
+ * The BigInteger constant two. (Not exported.)
+ */
+ @NonNull private static final BigInteger TWO = valueOf(2);
+
+ /**
+ * The BigInteger constant -1. (Not exported.)
+ */
+ @NonNull private static final BigInteger NEGATIVE_ONE = valueOf(-1);
+
+ /**
+ * The BigInteger constant ten.
+ *
+ * @since 1.5
+ */
+ @NonNull public static final BigInteger TEN = valueOf(10);
+
+ // Arithmetic Operations
+
+ /**
+ * Returns a BigInteger whose value is {@code (this + val)}.
+ *
+ * @param val value to be added to this BigInteger.
+ * @return {@code this + val}
+ */
+ @NonNull public BigInteger add(@NonNull BigInteger val) {
+ if (val.signum == 0)
+ return this;
+ if (signum == 0)
+ return val;
+ if (val.signum == signum)
+ return new BigInteger(add(mag, val.mag), signum);
+
+ int cmp = compareMagnitude(val);
+ if (cmp == 0)
+ return ZERO;
+ int[] resultMag = (cmp > 0 ? subtract(mag, val.mag)
+ : subtract(val.mag, mag));
+ resultMag = trustedStripLeadingZeroInts(resultMag);
+
+ return new BigInteger(resultMag, cmp == signum ? 1 : -1);
+ }
+
+ /**
+ * Package private methods used by BigDecimal code to add a BigInteger
+ * with a long. Assumes val is not equal to INFLATED.
+ */
+ @NonNull BigInteger add(long val) {
+ if (val == 0)
+ return this;
+ if (signum == 0)
+ return valueOf(val);
+ if (Long.signum(val) == signum)
+ return new BigInteger(add(mag, Math.abs(val)), signum);
+ int cmp = compareMagnitude(val);
+ if (cmp == 0)
+ return ZERO;
+ int[] resultMag = (cmp > 0 ? subtract(mag, Math.abs(val)) : subtract(Math.abs(val), mag));
+ resultMag = trustedStripLeadingZeroInts(resultMag);
+ return new BigInteger(resultMag, cmp == signum ? 1 : -1);
+ }
+
+ /**
+ * Adds the contents of the int array x and long value val. This
+ * method allocates a new int array to hold the answer and returns
+ * a reference to that array. Assumes x.length &gt; 0 and val is
+ * non-negative
+ */
+ private static int[] add(int[] x, long val) {
+ int[] y;
+ long sum = 0;
+ int xIndex = x.length;
+ int[] result;
+ int highWord = (int)(val >>> 32);
+ if (highWord == 0) {
+ result = new int[xIndex];
+ sum = (x[--xIndex] & LONG_MASK) + val;
+ result[xIndex] = (int)sum;
+ } else {
+ if (xIndex == 1) {
+ result = new int[2];
+ sum = val + (x[0] & LONG_MASK);
+ result[1] = (int)sum;
+ result[0] = (int)(sum >>> 32);
+ return result;
+ } else {
+ result = new int[xIndex];
+ sum = (x[--xIndex] & LONG_MASK) + (val & LONG_MASK);
+ result[xIndex] = (int)sum;
+ sum = (x[--xIndex] & LONG_MASK) + (highWord & LONG_MASK) + (sum >>> 32);
+ result[xIndex] = (int)sum;
+ }
+ }
+ // Copy remainder of longer number while carry propagation is required
+ boolean carry = (sum >>> 32 != 0);
+ while (xIndex > 0 && carry)
+ carry = ((result[--xIndex] = x[xIndex] + 1) == 0);
+ // Copy remainder of longer number
+ while (xIndex > 0)
+ result[--xIndex] = x[xIndex];
+ // Grow result if necessary
+ if (carry) {
+ int bigger[] = new int[result.length + 1];
+ System.arraycopy(result, 0, bigger, 1, result.length);
+ bigger[0] = 0x01;
+ return bigger;
+ }
+ return result;
+ }
+
+ /**
+ * Adds the contents of the int arrays x and y. This method allocates
+ * a new int array to hold the answer and returns a reference to that
+ * array.
+ */
+ private static int[] add(int[] x, int[] y) {
+ // If x is shorter, swap the two arrays
+ if (x.length < y.length) {
+ int[] tmp = x;
+ x = y;
+ y = tmp;
+ }
+
+ int xIndex = x.length;
+ int yIndex = y.length;
+ int result[] = new int[xIndex];
+ long sum = 0;
+ if (yIndex == 1) {
+ sum = (x[--xIndex] & LONG_MASK) + (y[0] & LONG_MASK) ;
+ result[xIndex] = (int)sum;
+ } else {
+ // Add common parts of both numbers
+ while (yIndex > 0) {
+ sum = (x[--xIndex] & LONG_MASK) +
+ (y[--yIndex] & LONG_MASK) + (sum >>> 32);
+ result[xIndex] = (int)sum;
+ }
+ }
+ // Copy remainder of longer number while carry propagation is required
+ boolean carry = (sum >>> 32 != 0);
+ while (xIndex > 0 && carry)
+ carry = ((result[--xIndex] = x[xIndex] + 1) == 0);
+
+ // Copy remainder of longer number
+ while (xIndex > 0)
+ result[--xIndex] = x[xIndex];
+
+ // Grow result if necessary
+ if (carry) {
+ int bigger[] = new int[result.length + 1];
+ System.arraycopy(result, 0, bigger, 1, result.length);
+ bigger[0] = 0x01;
+ return bigger;
+ }
+ return result;
+ }
+
+ private static int[] subtract(long val, int[] little) {
+ int highWord = (int)(val >>> 32);
+ if (highWord == 0) {
+ int result[] = new int[1];
+ result[0] = (int)(val - (little[0] & LONG_MASK));
+ return result;
+ } else {
+ int result[] = new int[2];
+ if (little.length == 1) {
+ long difference = ((int)val & LONG_MASK) - (little[0] & LONG_MASK);
+ result[1] = (int)difference;
+ // Subtract remainder of longer number while borrow propagates
+ boolean borrow = (difference >> 32 != 0);
+ if (borrow) {
+ result[0] = highWord - 1;
+ } else { // Copy remainder of longer number
+ result[0] = highWord;
+ }
+ return result;
+ } else { // little.length == 2
+ long difference = ((int)val & LONG_MASK) - (little[1] & LONG_MASK);
+ result[1] = (int)difference;
+ difference = (highWord & LONG_MASK) - (little[0] & LONG_MASK) + (difference >> 32);
+ result[0] = (int)difference;
+ return result;
+ }
+ }
+ }
+
+ /**
+ * Subtracts the contents of the second argument (val) from the
+ * first (big). The first int array (big) must represent a larger number
+ * than the second. This method allocates the space necessary to hold the
+ * answer.
+ * assumes val &gt;= 0
+ */
+ private static int[] subtract(int[] big, long val) {
+ int highWord = (int)(val >>> 32);
+ int bigIndex = big.length;
+ int result[] = new int[bigIndex];
+ long difference = 0;
+
+ if (highWord == 0) {
+ difference = (big[--bigIndex] & LONG_MASK) - val;
+ result[bigIndex] = (int)difference;
+ } else {
+ difference = (big[--bigIndex] & LONG_MASK) - (val & LONG_MASK);
+ result[bigIndex] = (int)difference;
+ difference = (big[--bigIndex] & LONG_MASK) - (highWord & LONG_MASK) + (difference >> 32);
+ result[bigIndex] = (int)difference;
+ }
+
+ // Subtract remainder of longer number while borrow propagates
+ boolean borrow = (difference >> 32 != 0);
+ while (bigIndex > 0 && borrow)
+ borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1);
+
+ // Copy remainder of longer number
+ while (bigIndex > 0)
+ result[--bigIndex] = big[bigIndex];
+
+ return result;
+ }
+
+ /**
+ * Returns a BigInteger whose value is {@code (this - val)}.
+ *
+ * @param val value to be subtracted from this BigInteger.
+ * @return {@code this - val}
+ */
+ @NonNull public BigInteger subtract(@NonNull BigInteger val) {
+ if (val.signum == 0)
+ return this;
+ if (signum == 0)
+ return val.negate();
+ if (val.signum != signum)
+ return new BigInteger(add(mag, val.mag), signum);
+
+ int cmp = compareMagnitude(val);
+ if (cmp == 0)
+ return ZERO;
+ int[] resultMag = (cmp > 0 ? subtract(mag, val.mag)
+ : subtract(val.mag, mag));
+ resultMag = trustedStripLeadingZeroInts(resultMag);
+ return new BigInteger(resultMag, cmp == signum ? 1 : -1);
+ }
+
+ /**
+ * Subtracts the contents of the second int arrays (little) from the
+ * first (big). The first int array (big) must represent a larger number
+ * than the second. This method allocates the space necessary to hold the
+ * answer.
+ */
+ private static int[] subtract(int[] big, int[] little) {
+ int bigIndex = big.length;
+ int result[] = new int[bigIndex];
+ int littleIndex = little.length;
+ long difference = 0;
+
+ // Subtract common parts of both numbers
+ while (littleIndex > 0) {
+ difference = (big[--bigIndex] & LONG_MASK) -
+ (little[--littleIndex] & LONG_MASK) +
+ (difference >> 32);
+ result[bigIndex] = (int)difference;
+ }
+
+ // Subtract remainder of longer number while borrow propagates
+ boolean borrow = (difference >> 32 != 0);
+ while (bigIndex > 0 && borrow)
+ borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1);
+
+ // Copy remainder of longer number
+ while (bigIndex > 0)
+ result[--bigIndex] = big[bigIndex];
+
+ return result;
+ }
+
+ /**
+ * Returns a BigInteger whose value is {@code (this * val)}.
+ *
+ * @implNote An implementation may offer better algorithmic
+ * performance when {@code val == this}.
+ *
+ * @param val value to be multiplied by this BigInteger.
+ * @return {@code this * val}
+ */
+ @NonNull public BigInteger multiply(@NonNull BigInteger val) {
+ return multiply(val, false);
+ }
+
+ /**
+ * Returns a BigInteger whose value is {@code (this * val)}. If
+ * the invocation is recursive certain overflow checks are skipped.
+ *
+ * @param val value to be multiplied by this BigInteger.
+ * @param isRecursion whether this is a recursive invocation
+ * @return {@code this * val}
+ */
+ @NonNull private BigInteger multiply(@NonNull BigInteger val, boolean isRecursion) {
+ if (val.signum == 0 || signum == 0)
+ return ZERO;
+
+ int xlen = mag.length;
+
+ // BEGIN Android-changed: Fall back to the boringssl implementation for
+ // large arguments.
+ int ylen = val.mag.length;
+
+ final int BORINGSSL_MUL_THRESHOLD = 50;
+
+ int resultSign = signum == val.signum ? 1 : -1;
+ if ((xlen < BORINGSSL_MUL_THRESHOLD) || (ylen < BORINGSSL_MUL_THRESHOLD)) {
+ if (val == this && xlen > MULTIPLY_SQUARE_THRESHOLD) {
+ // Helps less than boringssl fallback; prefer that.
+ return square();
+ }
+
+ if (val.mag.length == 1) {
+ return multiplyByInt(mag,val.mag[0], resultSign);
+ }
+ if (mag.length == 1) {
+ return multiplyByInt(val.mag,mag[0], resultSign);
+ }
+ int[] result = multiplyToLen(mag, xlen,
+ val.mag, ylen, null);
+ result = trustedStripLeadingZeroInts(result);
+ return new BigInteger(result, resultSign);
+ } else {
+ long xBN = 0, yBN = 0, resultBN = 0;
+ try {
+ xBN = bigEndInts2NewBN(mag, /* neg= */false);
+ yBN = bigEndInts2NewBN(val.mag, /* neg= */false);
+ resultBN = NativeBN.BN_new();
+ NativeBN.BN_mul(resultBN, xBN, yBN);
+ return new BigInteger(resultSign, bn2BigEndInts(resultBN));
+ } finally {
+ NativeBN.BN_free(xBN);
+ NativeBN.BN_free(yBN);
+ NativeBN.BN_free(resultBN);
+ }
+
+ /*
+ if ((xlen < TOOM_COOK_THRESHOLD) && (ylen < TOOM_COOK_THRESHOLD)) {
+ return multiplyKaratsuba(this, val);
+ } else {
+ //
+ // In "Hacker's Delight" section 2-13, p.33, it is explained
+ // that if x and y are unsigned 32-bit quantities and m and n
+ // are their respective numbers of leading zeros within 32 bits,
+ // then the number of leading zeros within their product as a
+ // 64-bit unsigned quantity is either m + n or m + n + 1. If
+ // their product is not to overflow, it cannot exceed 32 bits,
+ // and so the number of leading zeros of the product within 64
+ // bits must be at least 32, i.e., the leftmost set bit is at
+ // zero-relative position 31 or less.
+ //
+ // From the above there are three cases:
+ //
+ // m + n leftmost set bit condition
+ // ----- ---------------- ---------
+ // >= 32 x <= 64 - 32 = 32 no overflow
+ // == 31 x >= 64 - 32 = 32 possible overflow
+ // <= 30 x >= 64 - 31 = 33 definite overflow
+ //
+ // The "possible overflow" condition cannot be detected by
+ // examning data lengths alone and requires further calculation.
+ //
+ // By analogy, if 'this' and 'val' have m and n as their
+ // respective numbers of leading zeros within 32*MAX_MAG_LENGTH
+ // bits, then:
+ //
+ // m + n >= 32*MAX_MAG_LENGTH no overflow
+ // m + n == 32*MAX_MAG_LENGTH - 1 possible overflow
+ // m + n <= 32*MAX_MAG_LENGTH - 2 definite overflow
+ //
+ // Note however that if the number of ints in the result
+ // were to be MAX_MAG_LENGTH and mag[0] < 0, then there would
+ // be overflow. As a result the leftmost bit (of mag[0]) cannot
+ // be used and the constraints must be adjusted by one bit to:
+ //
+ // m + n > 32*MAX_MAG_LENGTH no overflow
+ // m + n == 32*MAX_MAG_LENGTH possible overflow
+ // m + n < 32*MAX_MAG_LENGTH definite overflow
+ //
+ // The foregoing leading zero-based discussion is for clarity
+ // only. The actual calculations use the estimated bit length
+ // of the product as this is more natural to the internal
+ // array representation of the magnitude which has no leading
+ // zero elements.
+ //
+ if (!isRecursion) {
+ // The bitLength() instance method is not used here as we
+ // are only considering the magnitudes as non-negative. The
+ // Toom-Cook multiplication algorithm determines the sign
+ // at its end from the two signum values.
+ if (bitLength(mag, mag.length) +
+ bitLength(val.mag, val.mag.length) >
+ 32L*MAX_MAG_LENGTH) {
+ reportOverflow();
+ }
+ }
+
+ return multiplyToomCook3(this, val);
+ }
+ */
+ }
+ }
+
+ @NonNull private static BigInteger multiplyByInt(int[] x, int y, int sign) {
+ if (Integer.bitCount(y) == 1) {
+ return new BigInteger(shiftLeft(x,Integer.numberOfTrailingZeros(y)), sign);
+ }
+ int xlen = x.length;
+ int[] rmag = new int[xlen + 1];
+ long carry = 0;
+ long yl = y & LONG_MASK;
+ int rstart = rmag.length - 1;
+ for (int i = xlen - 1; i >= 0; i--) {
+ long product = (x[i] & LONG_MASK) * yl + carry;
+ rmag[rstart--] = (int)product;
+ carry = product >>> 32;
+ }
+ if (carry == 0L) {
+ rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length);
+ } else {
+ rmag[rstart] = (int)carry;
+ }
+ return new BigInteger(rmag, sign);
+ }
+
+ /**
+ * Package private methods used by BigDecimal code to multiply a BigInteger
+ * with a long. Assumes v is not equal to INFLATED.
+ */
+ @NonNull BigInteger multiply(long v) {
+ if (v == 0 || signum == 0)
+ return ZERO;
+ if (v == BigDecimal.INFLATED)
+ return multiply(BigInteger.valueOf(v));
+ int rsign = (v > 0 ? signum : -signum);
+ if (v < 0)
+ v = -v;
+ long dh = v >>> 32; // higher order bits
+ long dl = v & LONG_MASK; // lower order bits
+
+ int xlen = mag.length;
+ int[] value = mag;
+ int[] rmag = (dh == 0L) ? (new int[xlen + 1]) : (new int[xlen + 2]);
+ long carry = 0;
+ int rstart = rmag.length - 1;
+ for (int i = xlen - 1; i >= 0; i--) {
+ long product = (value[i] & LONG_MASK) * dl + carry;
+ rmag[rstart--] = (int)product;
+ carry = product >>> 32;
+ }
+ rmag[rstart] = (int)carry;
+ if (dh != 0L) {
+ carry = 0;
+ rstart = rmag.length - 2;
+ for (int i = xlen - 1; i >= 0; i--) {
+ long product = (value[i] & LONG_MASK) * dh +
+ (rmag[rstart] & LONG_MASK) + carry;
+ rmag[rstart--] = (int)product;
+ carry = product >>> 32;
+ }
+ rmag[0] = (int)carry;
+ }
+ if (carry == 0L)
+ rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length);
+ return new BigInteger(rmag, rsign);
+ }
+
+ /**
+ * Multiplies int arrays x and y to the specified lengths and places
+ * the result into z. There will be no leading zeros in the resultant array.
+ */
+ private static int[] multiplyToLen(int[] x, int xlen, int[] y, int ylen, int[] z) {
+ int xstart = xlen - 1;
+ int ystart = ylen - 1;
+
+ if (z == null || z.length < (xlen+ ylen))
+ z = new int[xlen+ylen];
+
+ long carry = 0;
+ for (int j=ystart, k=ystart+1+xstart; j >= 0; j--, k--) {
+ long product = (y[j] & LONG_MASK) *
+ (x[xstart] & LONG_MASK) + carry;
+ z[k] = (int)product;
+ carry = product >>> 32;
+ }
+ z[xstart] = (int)carry;
+
+ for (int i = xstart-1; i >= 0; i--) {
+ carry = 0;
+ for (int j=ystart, k=ystart+1+i; j >= 0; j--, k--) {
+ long product = (y[j] & LONG_MASK) *
+ (x[i] & LONG_MASK) +
+ (z[k] & LONG_MASK) + carry;
+ z[k] = (int)product;
+ carry = product >>> 32;
+ }
+ z[i] = (int)carry;
+ }
+ return z;
+ }
+
+ /**
+ * Multiplies two BigIntegers using the Karatsuba multiplication
+ * algorithm. This is a recursive divide-and-conquer algorithm which is
+ * more efficient for large numbers than what is commonly called the
+ * "grade-school" algorithm used in multiplyToLen. If the numbers to be
+ * multiplied have length n, the "grade-school" algorithm has an
+ * asymptotic complexity of O(n^2). In contrast, the Karatsuba algorithm
+ * has complexity of O(n^(log2(3))), or O(n^1.585). It achieves this
+ * increased performance by doing 3 multiplies instead of 4 when
+ * evaluating the product. As it has some overhead, should be used when
+ * both numbers are larger than a certain threshold (found
+ * experimentally).
+ *
+ * See: http://en.wikipedia.org/wiki/Karatsuba_algorithm
+ */
+ @NonNull private static BigInteger multiplyKaratsuba(@NonNull BigInteger x, @NonNull BigInteger y) {
+ int xlen = x.mag.length;
+ int ylen = y.mag.length;
+
+ // The number of ints in each half of the number.
+ int half = (Math.max(xlen, ylen)+1) / 2;
+
+ // xl and yl are the lower halves of x and y respectively,
+ // xh and yh are the upper halves.
+ BigInteger xl = x.getLower(half);
+ BigInteger xh = x.getUpper(half);
+ BigInteger yl = y.getLower(half);
+ BigInteger yh = y.getUpper(half);
+
+ BigInteger p1 = xh.multiply(yh); // p1 = xh*yh
+ BigInteger p2 = xl.multiply(yl); // p2 = xl*yl
+
+ // p3=(xh+xl)*(yh+yl)
+ BigInteger p3 = xh.add(xl).multiply(yh.add(yl));
+
+ // result = p1 * 2^(32*2*half) + (p3 - p1 - p2) * 2^(32*half) + p2
+ BigInteger result = p1.shiftLeft(32*half).add(p3.subtract(p1).subtract(p2)).shiftLeft(32*half).add(p2);
+
+ if (x.signum != y.signum) {
+ return result.negate();
+ } else {
+ return result;
+ }
+ }
+
+ /**
+ * Multiplies two BigIntegers using a 3-way Toom-Cook multiplication
+ * algorithm. This is a recursive divide-and-conquer algorithm which is
+ * more efficient for large numbers than what is commonly called the
+ * "grade-school" algorithm used in multiplyToLen. If the numbers to be
+ * multiplied have length n, the "grade-school" algorithm has an
+ * asymptotic complexity of O(n^2). In contrast, 3-way Toom-Cook has a
+ * complexity of about O(n^1.465). It achieves this increased asymptotic
+ * performance by breaking each number into three parts and by doing 5
+ * multiplies instead of 9 when evaluating the product. Due to overhead
+ * (additions, shifts, and one division) in the Toom-Cook algorithm, it
+ * should only be used when both numbers are larger than a certain
+ * threshold (found experimentally). This threshold is generally larger
+ * than that for Karatsuba multiplication, so this algorithm is generally
+ * only used when numbers become significantly larger.
+ *
+ * The algorithm used is the "optimal" 3-way Toom-Cook algorithm outlined
+ * by Marco Bodrato.
+ *
+ * See: http://bodrato.it/toom-cook/
+ * http://bodrato.it/papers/#WAIFI2007
+ *
+ * "Towards Optimal Toom-Cook Multiplication for Univariate and
+ * Multivariate Polynomials in Characteristic 2 and 0." by Marco BODRATO;
+ * In C.Carlet and B.Sunar, Eds., "WAIFI'07 proceedings", p. 116-133,
+ * LNCS #4547. Springer, Madrid, Spain, June 21-22, 2007.
+ *
+ */
+ @NonNull private static BigInteger multiplyToomCook3(@NonNull BigInteger a, @NonNull BigInteger b) {
+ int alen = a.mag.length;
+ int blen = b.mag.length;
+
+ int largest = Math.max(alen, blen);
+
+ // k is the size (in ints) of the lower-order slices.
+ int k = (largest+2)/3; // Equal to ceil(largest/3)
+
+ // r is the size (in ints) of the highest-order slice.
+ int r = largest - 2*k;
+
+ // Obtain slices of the numbers. a2 and b2 are the most significant
+ // bits of the numbers a and b, and a0 and b0 the least significant.
+ BigInteger a0, a1, a2, b0, b1, b2;
+ a2 = a.getToomSlice(k, r, 0, largest);
+ a1 = a.getToomSlice(k, r, 1, largest);
+ a0 = a.getToomSlice(k, r, 2, largest);
+ b2 = b.getToomSlice(k, r, 0, largest);
+ b1 = b.getToomSlice(k, r, 1, largest);
+ b0 = b.getToomSlice(k, r, 2, largest);
+
+ BigInteger v0, v1, v2, vm1, vinf, t1, t2, tm1, da1, db1;
+
+ v0 = a0.multiply(b0, true);
+ da1 = a2.add(a0);
+ db1 = b2.add(b0);
+ vm1 = da1.subtract(a1).multiply(db1.subtract(b1), true);
+ da1 = da1.add(a1);
+ db1 = db1.add(b1);
+ v1 = da1.multiply(db1, true);
+ v2 = da1.add(a2).shiftLeft(1).subtract(a0).multiply(
+ db1.add(b2).shiftLeft(1).subtract(b0), true);
+ vinf = a2.multiply(b2, true);
+
+ // The algorithm requires two divisions by 2 and one by 3.
+ // All divisions are known to be exact, that is, they do not produce
+ // remainders, and all results are positive. The divisions by 2 are
+ // implemented as right shifts which are relatively efficient, leaving
+ // only an exact division by 3, which is done by a specialized
+ // linear-time algorithm.
+ t2 = v2.subtract(vm1).exactDivideBy3();
+ tm1 = v1.subtract(vm1).shiftRight(1);
+ t1 = v1.subtract(v0);
+ t2 = t2.subtract(t1).shiftRight(1);
+ t1 = t1.subtract(tm1).subtract(vinf);
+ t2 = t2.subtract(vinf.shiftLeft(1));
+ tm1 = tm1.subtract(t2);
+
+ // Number of bits to shift left.
+ int ss = k*32;
+
+ BigInteger result = vinf.shiftLeft(ss).add(t2).shiftLeft(ss).add(t1).shiftLeft(ss).add(tm1).shiftLeft(ss).add(v0);
+
+ if (a.signum != b.signum) {
+ return result.negate();
+ } else {
+ return result;
+ }
+ }
+
+
+ /**
+ * Returns a slice of a BigInteger for use in Toom-Cook multiplication.
+ *
+ * @param lowerSize The size of the lower-order bit slices.
+ * @param upperSize The size of the higher-order bit slices.
+ * @param slice The index of which slice is requested, which must be a
+ * number from 0 to size-1. Slice 0 is the highest-order bits, and slice
+ * size-1 are the lowest-order bits. Slice 0 may be of different size than
+ * the other slices.
+ * @param fullsize The size of the larger integer array, used to align
+ * slices to the appropriate position when multiplying different-sized
+ * numbers.
+ */
+ @NonNull private BigInteger getToomSlice(int lowerSize, int upperSize, int slice,
+ int fullsize) {
+ int start, end, sliceSize, len, offset;
+
+ len = mag.length;
+ offset = fullsize - len;
+
+ if (slice == 0) {
+ start = 0 - offset;
+ end = upperSize - 1 - offset;
+ } else {
+ start = upperSize + (slice-1)*lowerSize - offset;
+ end = start + lowerSize - 1;
+ }
+
+ if (start < 0) {
+ start = 0;
+ }
+ if (end < 0) {
+ return ZERO;
+ }
+
+ sliceSize = (end-start) + 1;
+
+ if (sliceSize <= 0) {
+ return ZERO;
+ }
+
+ // While performing Toom-Cook, all slices are positive and
+ // the sign is adjusted when the final number is composed.
+ if (start == 0 && sliceSize >= len) {
+ return this.abs();
+ }
+
+ int intSlice[] = new int[sliceSize];
+ System.arraycopy(mag, start, intSlice, 0, sliceSize);
+
+ return new BigInteger(trustedStripLeadingZeroInts(intSlice), 1);
+ }
+
+ /**
+ * Does an exact division (that is, the remainder is known to be zero)
+ * of the specified number by 3. This is used in Toom-Cook
+ * multiplication. This is an efficient algorithm that runs in linear
+ * time. If the argument is not exactly divisible by 3, results are
+ * undefined. Note that this is expected to be called with positive
+ * arguments only.
+ */
+ @NonNull private BigInteger exactDivideBy3() {
+ int len = mag.length;
+ int[] result = new int[len];
+ long x, w, q, borrow;
+ borrow = 0L;
+ for (int i=len-1; i >= 0; i--) {
+ x = (mag[i] & LONG_MASK);
+ w = x - borrow;
+ if (borrow > x) { // Did we make the number go negative?
+ borrow = 1L;
+ } else {
+ borrow = 0L;
+ }
+
+ // 0xAAAAAAAB is the modular inverse of 3 (mod 2^32). Thus,
+ // the effect of this is to divide by 3 (mod 2^32).
+ // This is much faster than division on most architectures.
+ q = (w * 0xAAAAAAABL) & LONG_MASK;
+ result[i] = (int) q;
+
+ // Now check the borrow. The second check can of course be
+ // eliminated if the first fails.
+ if (q >= 0x55555556L) {
+ borrow++;
+ if (q >= 0xAAAAAAABL)
+ borrow++;
+ }
+ }
+ result = trustedStripLeadingZeroInts(result);
+ return new BigInteger(result, signum);
+ }
+
+ /**
+ * Returns a new BigInteger representing n lower ints of the number.
+ * This is used by Karatsuba multiplication and Karatsuba squaring.
+ */
+ @NonNull private BigInteger getLower(int n) {
+ int len = mag.length;
+
+ if (len <= n) {
+ return abs();
+ }
+
+ int lowerInts[] = new int[n];
+ System.arraycopy(mag, len-n, lowerInts, 0, n);
+
+ return new BigInteger(trustedStripLeadingZeroInts(lowerInts), 1);
+ }
+
+ /**
+ * Returns a new BigInteger representing mag.length-n upper
+ * ints of the number. This is used by Karatsuba multiplication and
+ * Karatsuba squaring.
+ */
+ @NonNull private BigInteger getUpper(int n) {
+ int len = mag.length;
+
+ if (len <= n) {
+ return ZERO;
+ }
+
+ int upperLen = len - n;
+ int upperInts[] = new int[upperLen];
+ System.arraycopy(mag, 0, upperInts, 0, upperLen);
+
+ return new BigInteger(trustedStripLeadingZeroInts(upperInts), 1);
+ }
+
+ // Squaring
+
+ /**
+ * Returns a BigInteger whose value is {@code (this<sup>2</sup>)}.
+ *
+ * @return {@code this<sup>2</sup>}
+ */
+ @NonNull private BigInteger square() {
+ return square(false);
+ }
+
+ /**
+ * Returns a BigInteger whose value is {@code (this<sup>2</sup>)}. If
+ * the invocation is recursive certain overflow checks are skipped.
+ *
+ * @param isRecursion whether this is a recursive invocation
+ * @return {@code this<sup>2</sup>}
+ */
+ @NonNull private BigInteger square(boolean isRecursion) {
+ if (signum == 0) {
+ return ZERO;
+ }
+ int len = mag.length;
+
+ if (len < KARATSUBA_SQUARE_THRESHOLD) {
+ int[] z = squareToLen(mag, len, null);
+ return new BigInteger(trustedStripLeadingZeroInts(z), 1);
+ } else {
+ if (len < TOOM_COOK_SQUARE_THRESHOLD) {
+ return squareKaratsuba();
+ } else {
+ //
+ // For a discussion of overflow detection see multiply()
+ //
+ if (!isRecursion) {
+ if (bitLength(mag, mag.length) > 16L*MAX_MAG_LENGTH) {
+ reportOverflow();
+ }
+ }
+
+ return squareToomCook3();
+ }
+ }
+ }
+
+ /**
+ * Squares the contents of the int array x. The result is placed into the
+ * int array z. The contents of x are not changed.
+ */
+ private static final int[] squareToLen(int[] x, int len, int[] z) {
+ int zlen = len << 1;
+ if (z == null || z.length < zlen)
+ z = new int[zlen];
+
+ // Execute checks before calling intrinsified method.
+ implSquareToLenChecks(x, len, z, zlen);
+ return implSquareToLen(x, len, z, zlen);
+ }
+
+ /**
+ * Parameters validation.
+ */
+ private static void implSquareToLenChecks(int[] x, int len, int[] z, int zlen) throws RuntimeException {
+ if (len < 1) {
+ throw new IllegalArgumentException("invalid input length: " + len);
+ }
+ if (len > x.length) {
+ throw new IllegalArgumentException("input length out of bound: " +
+ len + " > " + x.length);
+ }
+ if (len * 2 > z.length) {
+ throw new IllegalArgumentException("input length out of bound: " +
+ (len * 2) + " > " + z.length);
+ }
+ if (zlen < 1) {
+ throw new IllegalArgumentException("invalid input length: " + zlen);
+ }
+ if (zlen > z.length) {
+ throw new IllegalArgumentException("input length out of bound: " +
+ len + " > " + z.length);
+ }
+ }
+
+ /**
+ * Java Runtime may use intrinsic for this method.
+ */
+ private static final int[] implSquareToLen(int[] x, int len, int[] z, int zlen) {
+ /*
+ * The algorithm used here is adapted from Colin Plumb's C library.
+ * Technique: Consider the partial products in the multiplication
+ * of "abcde" by itself:
+ *
+ * a b c d e
+ * * a b c d e
+ * ==================
+ * ae be ce de ee
+ * ad bd cd dd de
+ * ac bc cc cd ce
+ * ab bb bc bd be
+ * aa ab ac ad ae
+ *
+ * Note that everything above the main diagonal:
+ * ae be ce de = (abcd) * e
+ * ad bd cd = (abc) * d
+ * ac bc = (ab) * c
+ * ab = (a) * b
+ *
+ * is a copy of everything below the main diagonal:
+ * de
+ * cd ce
+ * bc bd be
+ * ab ac ad ae
+ *
+ * Thus, the sum is 2 * (off the diagonal) + diagonal.
+ *
+ * This is accumulated beginning with the diagonal (which
+ * consist of the squares of the digits of the input), which is then
+ * divided by two, the off-diagonal added, and multiplied by two
+ * again. The low bit is simply a copy of the low bit of the
+ * input, so it doesn't need special care.
+ */
+
+ // Store the squares, right shifted one bit (i.e., divided by 2)
+ int lastProductLowWord = 0;
+ for (int j=0, i=0; j < len; j++) {
+ long piece = (x[j] & LONG_MASK);
+ long product = piece * piece;
+ z[i++] = (lastProductLowWord << 31) | (int)(product >>> 33);
+ z[i++] = (int)(product >>> 1);
+ lastProductLowWord = (int)product;
+ }
+
+ // Add in off-diagonal sums
+ for (int i=len, offset=1; i > 0; i--, offset+=2) {
+ int t = x[i-1];
+ t = mulAdd(z, x, offset, i-1, t);
+ addOne(z, offset-1, i, t);
+ }
+
+ // Shift back up and set low bit
+ primitiveLeftShift(z, zlen, 1);
+ z[zlen-1] |= x[len-1] & 1;
+
+ return z;
+ }
+
+ /**
+ * Squares a BigInteger using the Karatsuba squaring algorithm. It should
+ * be used when both numbers are larger than a certain threshold (found
+ * experimentally). It is a recursive divide-and-conquer algorithm that
+ * has better asymptotic performance than the algorithm used in
+ * squareToLen.
+ */
+ @NonNull private BigInteger squareKaratsuba() {
+ int half = (mag.length+1) / 2;
+
+ BigInteger xl = getLower(half);
+ BigInteger xh = getUpper(half);
+
+ BigInteger xhs = xh.square(); // xhs = xh^2
+ BigInteger xls = xl.square(); // xls = xl^2
+
+ // xh^2 << 64 + (((xl+xh)^2 - (xh^2 + xl^2)) << 32) + xl^2
+ return xhs.shiftLeft(half*32).add(xl.add(xh).square().subtract(xhs.add(xls))).shiftLeft(half*32).add(xls);
+ }
+
+ /**
+ * Squares a BigInteger using the 3-way Toom-Cook squaring algorithm. It
+ * should be used when both numbers are larger than a certain threshold
+ * (found experimentally). It is a recursive divide-and-conquer algorithm
+ * that has better asymptotic performance than the algorithm used in
+ * squareToLen or squareKaratsuba.
+ */
+ @NonNull private BigInteger squareToomCook3() {
+ int len = mag.length;
+
+ // k is the size (in ints) of the lower-order slices.
+ int k = (len+2)/3; // Equal to ceil(largest/3)
+
+ // r is the size (in ints) of the highest-order slice.
+ int r = len - 2*k;
+
+ // Obtain slices of the numbers. a2 is the most significant
+ // bits of the number, and a0 the least significant.
+ BigInteger a0, a1, a2;
+ a2 = getToomSlice(k, r, 0, len);
+ a1 = getToomSlice(k, r, 1, len);
+ a0 = getToomSlice(k, r, 2, len);
+ BigInteger v0, v1, v2, vm1, vinf, t1, t2, tm1, da1;
+
+ v0 = a0.square(true);
+ da1 = a2.add(a0);
+ vm1 = da1.subtract(a1).square(true);
+ da1 = da1.add(a1);
+ v1 = da1.square(true);
+ vinf = a2.square(true);
+ v2 = da1.add(a2).shiftLeft(1).subtract(a0).square(true);
+
+ // The algorithm requires two divisions by 2 and one by 3.
+ // All divisions are known to be exact, that is, they do not produce
+ // remainders, and all results are positive. The divisions by 2 are
+ // implemented as right shifts which are relatively efficient, leaving
+ // only a division by 3.
+ // The division by 3 is done by an optimized algorithm for this case.
+ t2 = v2.subtract(vm1).exactDivideBy3();
+ tm1 = v1.subtract(vm1).shiftRight(1);
+ t1 = v1.subtract(v0);
+ t2 = t2.subtract(t1).shiftRight(1);
+ t1 = t1.subtract(tm1).subtract(vinf);
+ t2 = t2.subtract(vinf.shiftLeft(1));
+ tm1 = tm1.subtract(t2);
+
+ // Number of bits to shift left.
+ int ss = k*32;
+
+ return vinf.shiftLeft(ss).add(t2).shiftLeft(ss).add(t1).shiftLeft(ss).add(tm1).shiftLeft(ss).add(v0);
+ }
+
+ // Division
+
+
+ // BEGIN Android-modified: Fall back to boringssl for large problems.
+ private static final int BORINGSSL_DIV_THRESHOLD = 40;
+ private static final int BORINGSSL_DIV_OFFSET = 20;
+
+ /**
+ * Returns a BigInteger whose value is {@code (this / val)}.
+ *
+ * @param val value by which this BigInteger is to be divided.
+ * @return {@code this / val}
+ * @throws ArithmeticException if {@code val} is zero.
+ */
+ @NonNull public BigInteger divide(@NonNull BigInteger val) {
+ // if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD ||
+ // mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) {
+ if (mag.length < BORINGSSL_DIV_THRESHOLD ||
+ mag.length - val.mag.length < BORINGSSL_DIV_OFFSET) {
+ return divideKnuth(val);
+ } else {
+ return divideAndRemainder(val)[0];
+ // return divideBurnikelZiegler(val);
+ }
+ }
+ // END Android-modified: Fall back to boringssl for large problems.
+
+
+ /**
+ * Returns a BigInteger whose value is {@code (this / val)} using an O(n^2) algorithm from Knuth.
+ *
+ * @param val value by which this BigInteger is to be divided.
+ * @return {@code this / val}
+ * @throws ArithmeticException if {@code val} is zero.
+ * @see MutableBigInteger#divideKnuth(MutableBigInteger, MutableBigInteger, boolean)
+ */
+ @NonNull private BigInteger divideKnuth(@NonNull BigInteger val) {
+ MutableBigInteger q = new MutableBigInteger(),
+ a = new MutableBigInteger(this.mag),
+ b = new MutableBigInteger(val.mag);
+
+ a.divideKnuth(b, q, false);
+ return q.toBigInteger(this.signum * val.signum);
+ }
+
+ /**
+ * Returns an array of two BigIntegers containing {@code (this / val)}
+ * followed by {@code (this % val)}.
+ *
+ * @param val value by which this BigInteger is to be divided, and the
+ * remainder computed.
+ * @return an array of two BigIntegers: the quotient {@code (this / val)}
+ * is the initial element, and the remainder {@code (this % val)}
+ * is the final element.
+ * @throws ArithmeticException if {@code val} is zero.
+ */
+ @NonNull public BigInteger[] divideAndRemainder(@NonNull BigInteger val) {
+ // BEGIN Android-modified: Fall back to boringssl for large problems.
+
+ // if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD ||
+ // mag.length - val.mag < BURNIKEL_ZIEGLER_OFFSET) {
+ if (val.mag.length < BORINGSSL_DIV_THRESHOLD ||
+ mag.length < BORINGSSL_DIV_OFFSET ||
+ mag.length - val.mag.length < BORINGSSL_DIV_OFFSET) {
+ return divideAndRemainderKnuth(val);
+ } else {
+ int quotSign = signum == val.signum ? 1 : -1; // 0 divided doesn't get here.
+ long xBN = 0, yBN = 0, quotBN = 0, remBN = 0;
+ try {
+ xBN = bigEndInts2NewBN(mag, /* neg= */false);
+ yBN = bigEndInts2NewBN(val.mag, /* neg= */false);
+ quotBN = NativeBN.BN_new();
+ remBN = NativeBN.BN_new();
+ NativeBN.BN_div(quotBN, remBN, xBN, yBN);
+ BigInteger quotient = new BigInteger(quotSign, bn2BigEndInts(quotBN));
+ // The sign of a zero quotient is fixed by the constructor.
+ BigInteger remainder = new BigInteger(signum, bn2BigEndInts(remBN));
+ BigInteger[] result = {quotient, remainder};
+ return result;
+ } finally {
+ NativeBN.BN_free(xBN);
+ NativeBN.BN_free(yBN);
+ NativeBN.BN_free(quotBN);
+ NativeBN.BN_free(remBN);
+ }
+ // return divideAndRemainderBurnikelZiegler(val);
+ }
+ // END Android-modified: Fall back to boringssl for large problems.
+ }
+
+ /** Long division */
+ @NonNull private BigInteger[] divideAndRemainderKnuth(@NonNull BigInteger val) {
+ BigInteger[] result = new BigInteger[2];
+ MutableBigInteger q = new MutableBigInteger(),
+ a = new MutableBigInteger(this.mag),
+ b = new MutableBigInteger(val.mag);
+ MutableBigInteger r = a.divideKnuth(b, q);
+ result[0] = q.toBigInteger(this.signum == val.signum ? 1 : -1);
+ result[1] = r.toBigInteger(this.signum);
+ return result;
+ }
+
+ /**
+ * Returns a BigInteger whose value is {@code (this % val)}.
+ *
+ * @param val value by which this BigInteger is to be divided, and the
+ * remainder computed.
+ * @return {@code this % val}
+ * @throws ArithmeticException if {@code val} is zero.
+ */
+ @NonNull public BigInteger remainder(@NonNull BigInteger val) {
+ // BEGIN Android-modified: Fall back to boringssl for large problems.
+ // if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD ||
+ // mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) {
+ if (val.mag.length < BORINGSSL_DIV_THRESHOLD ||
+ mag.length < BORINGSSL_DIV_THRESHOLD) {
+ return remainderKnuth(val);
+ } else {
+ return divideAndRemainder(val)[1];
+ // return remainderBurnikelZiegler(val);
+ }
+ // END Android-modified: Fall back to boringssl for large problems.
+ }
+
+ /** Long division */
+ @NonNull private BigInteger remainderKnuth(@NonNull BigInteger val) {
+ MutableBigInteger q = new MutableBigInteger(),
+ a = new MutableBigInteger(this.mag),
+ b = new MutableBigInteger(val.mag);
+
+ return a.divideKnuth(b, q).toBigInteger(this.signum);
+ }
+
+ /**
+ * Calculates {@code this / val} using the Burnikel-Ziegler algorithm.
+ * @param val the divisor
+ * @return {@code this / val}
+ */
+ @NonNull private BigInteger divideBurnikelZiegler(@NonNull BigInteger val) {
+ return divideAndRemainderBurnikelZiegler(val)[0];
+ }
+
+ /**
+ * Calculates {@code this % val} using the Burnikel-Ziegler algorithm.
+ * @param val the divisor
+ * @return {@code this % val}
+ */
+ @NonNull private BigInteger remainderBurnikelZiegler(@NonNull BigInteger val) {
+ return divideAndRemainderBurnikelZiegler(val)[1];
+ }
+
+ /**
+ * Computes {@code this / val} and {@code this % val} using the
+ * Burnikel-Ziegler algorithm.
+ * @param val the divisor
+ * @return an array containing the quotient and remainder
+ */
+ @NonNull private BigInteger[] divideAndRemainderBurnikelZiegler(@NonNull BigInteger val) {
+ MutableBigInteger q = new MutableBigInteger();
+ MutableBigInteger r = new MutableBigInteger(this).divideAndRemainderBurnikelZiegler(new MutableBigInteger(val), q);
+ BigInteger qBigInt = q.isZero() ? ZERO : q.toBigInteger(signum*val.signum);
+ BigInteger rBigInt = r.isZero() ? ZERO : r.toBigInteger(signum);
+ return new BigInteger[] {qBigInt, rBigInt};
+ }
+
+ /**
+ * Returns a BigInteger whose value is <tt>(this<sup>exponent</sup>)</tt>.
+ * Note that {@code exponent} is an integer rather than a BigInteger.
+ *
+ * @param exponent exponent to which this BigInteger is to be raised.
+ * @return <tt>this<sup>exponent</sup></tt>
+ * @throws ArithmeticException {@code exponent} is negative. (This would
+ * cause the operation to yield a non-integer value.)
+ */
+ @NonNull public BigInteger pow(int exponent) {
+ if (exponent < 0) {
+ throw new ArithmeticException("Negative exponent");
+ }
+ if (signum == 0) {
+ return (exponent == 0 ? ONE : this);
+ }
+
+ BigInteger partToSquare = this.abs();
+
+ // Factor out powers of two from the base, as the exponentiation of
+ // these can be done by left shifts only.
+ // The remaining part can then be exponentiated faster. The
+ // powers of two will be multiplied back at the end.
+ int powersOfTwo = partToSquare.getLowestSetBit();
+ long bitsToShiftLong = (long)powersOfTwo * exponent;
+ if (bitsToShiftLong > Integer.MAX_VALUE) {
+ reportOverflow();
+ }
+ int bitsToShift = (int)bitsToShiftLong;
+
+ int remainingBits;
+
+ // Factor the powers of two out quickly by shifting right, if needed.
+ if (powersOfTwo > 0) {
+ partToSquare = partToSquare.shiftRight(powersOfTwo);
+ remainingBits = partToSquare.bitLength();
+ if (remainingBits == 1) { // Nothing left but +/- 1?
+ if (signum < 0 && (exponent&1) == 1) {
+ return NEGATIVE_ONE.shiftLeft(bitsToShift);
+ } else {
+ return ONE.shiftLeft(bitsToShift);
+ }
+ }
+ } else {
+ remainingBits = partToSquare.bitLength();
+ if (remainingBits == 1) { // Nothing left but +/- 1?
+ if (signum < 0 && (exponent&1) == 1) {
+ return NEGATIVE_ONE;
+ } else {
+ return ONE;
+ }
+ }
+ }
+
+ // This is a quick way to approximate the size of the result,
+ // similar to doing log2[n] * exponent. This will give an upper bound
+ // of how big the result can be, and which algorithm to use.
+ long scaleFactor = (long)remainingBits * exponent;
+
+ // Use slightly different algorithms for small and large operands.
+ // See if the result will safely fit into a long. (Largest 2^63-1)
+ if (partToSquare.mag.length == 1 && scaleFactor <= 62) {
+ // Small number algorithm. Everything fits into a long.
+ int newSign = (signum <0 && (exponent&1) == 1 ? -1 : 1);
+ long result = 1;
+ long baseToPow2 = partToSquare.mag[0] & LONG_MASK;
+
+ int workingExponent = exponent;
+
+ // Perform exponentiation using repeated squaring trick
+ while (workingExponent != 0) {
+ if ((workingExponent & 1) == 1) {
+ result = result * baseToPow2;
+ }
+
+ if ((workingExponent >>>= 1) != 0) {
+ baseToPow2 = baseToPow2 * baseToPow2;
+ }
+ }
+
+ // Multiply back the powers of two (quickly, by shifting left)
+ if (powersOfTwo > 0) {
+ if (bitsToShift + scaleFactor <= 62) { // Fits in long?
+ return valueOf((result << bitsToShift) * newSign);
+ } else {
+ return valueOf(result*newSign).shiftLeft(bitsToShift);
+ }
+ } else {
+ return valueOf(result*newSign);
+ }
+ } else {
+ if ((long)bitLength() * exponent / Integer.SIZE > MAX_MAG_LENGTH) {
+ reportOverflow();
+ }
+
+ // Large number algorithm. This is basically identical to
+ // the algorithm above, but calls multiply() and square()
+ // which may use more efficient algorithms for large numbers.
+ BigInteger answer = ONE;
+
+ int workingExponent = exponent;
+ // Perform exponentiation using repeated squaring trick
+ while (workingExponent != 0) {
+ if ((workingExponent & 1) == 1) {
+ answer = answer.multiply(partToSquare);
+ }
+
+ if ((workingExponent >>>= 1) != 0) {
+ partToSquare = partToSquare.square();
+ }
+ }
+ // Multiply back the (exponentiated) powers of two (quickly,
+ // by shifting left)
+ if (powersOfTwo > 0) {
+ answer = answer.shiftLeft(bitsToShift);
+ }
+
+ if (signum < 0 && (exponent&1) == 1) {
+ return answer.negate();
+ } else {
+ return answer;
+ }
+ }
+ }
+
+ /**
+ * Returns a BigInteger whose value is the greatest common divisor of
+ * {@code abs(this)} and {@code abs(val)}. Returns 0 if
+ * {@code this == 0 && val == 0}.
+ *
+ * @param val value with which the GCD is to be computed.
+ * @return {@code GCD(abs(this), abs(val))}
+ */
+ @NonNull public BigInteger gcd(@NonNull BigInteger val) {
+ if (val.signum == 0)
+ return this.abs();
+ else if (this.signum == 0)
+ return val.abs();
+
+ MutableBigInteger a = new MutableBigInteger(this);
+ MutableBigInteger b = new MutableBigInteger(val);
+
+ MutableBigInteger result = a.hybridGCD(b);
+
+ return result.toBigInteger(1);
+ }
+
+ /**
+ * Package private method to return bit length for an integer.
+ */
+ static int bitLengthForInt(int n) {
+ return 32 - Integer.numberOfLeadingZeros(n);
+ }
+
+ /**
+ * Left shift int array a up to len by n bits. Returns the array that
+ * results from the shift since space may have to be reallocated.
+ */
+ private static int[] leftShift(int[] a, int len, int n) {
+ int nInts = n >>> 5;
+ int nBits = n&0x1F;
+ int bitsInHighWord = bitLengthForInt(a[0]);
+
+ // If shift can be done without recopy, do so
+ if (n <= (32-bitsInHighWord)) {
+ primitiveLeftShift(a, len, nBits);
+ return a;
+ } else { // Array must be resized
+ if (nBits <= (32-bitsInHighWord)) {
+ int result[] = new int[nInts+len];
+ System.arraycopy(a, 0, result, 0, len);
+ primitiveLeftShift(result, result.length, nBits);
+ return result;
+ } else {
+ int result[] = new int[nInts+len+1];
+ System.arraycopy(a, 0, result, 0, len);
+ primitiveRightShift(result, result.length, 32 - nBits);
+ return result;
+ }
+ }
+ }
+
+ // shifts a up to len right n bits assumes no leading zeros, 0<n<32
+ static void primitiveRightShift(int[] a, int len, int n) {
+ int n2 = 32 - n;
+ for (int i=len-1, c=a[i]; i > 0; i--) {
+ int b = c;
+ c = a[i-1];
+ a[i] = (c << n2) | (b >>> n);
+ }
+ a[0] >>>= n;
+ }
+
+ // shifts a up to len left n bits assumes no leading zeros, 0<=n<32
+ static void primitiveLeftShift(int[] a, int len, int n) {
+ if (len == 0 || n == 0)
+ return;
+
+ int n2 = 32 - n;
+ for (int i=0, c=a[i], m=i+len-1; i < m; i++) {
+ int b = c;
+ c = a[i+1];
+ a[i] = (b << n) | (c >>> n2);
+ }
+ a[len-1] <<= n;
+ }
+
+ /**
+ * Calculate bitlength of contents of the first len elements an int array,
+ * assuming there are no leading zero ints.
+ */
+ private static int bitLength(int[] val, int len) {
+ if (len == 0)
+ return 0;
+ return ((len - 1) << 5) + bitLengthForInt(val[0]);
+ }
+
+ /**
+ * Returns a BigInteger whose value is the absolute value of this
+ * BigInteger.
+ *
+ * @return {@code abs(this)}
+ */
+ @NonNull public BigInteger abs() {
+ return (signum >= 0 ? this : this.negate());
+ }
+
+ /**
+ * Returns a BigInteger whose value is {@code (-this)}.
+ *
+ * @return {@code -this}
+ */
+ @NonNull public BigInteger negate() {
+ return new BigInteger(this.mag, -this.signum);
+ }
+
+ /**
+ * Returns the signum function of this BigInteger.
+ *
+ * @return -1, 0 or 1 as the value of this BigInteger is negative, zero or
+ * positive.
+ */
+ public int signum() {
+ return this.signum;
+ }
+
+ // Modular Arithmetic Operations
+
+ /**
+ * Returns a BigInteger whose value is {@code (this mod m}). This method
+ * differs from {@code remainder} in that it always returns a
+ * <i>non-negative</i> BigInteger.
+ *
+ * @param m the modulus.
+ * @return {@code this mod m}
+ * @throws ArithmeticException {@code m} &le; 0
+ * @see #remainder
+ */
+ @NonNull public BigInteger mod(@NonNull BigInteger m) {
+ if (m.signum <= 0)
+ throw new ArithmeticException("BigInteger: modulus not positive");
+
+ BigInteger result = this.remainder(m);
+ return (result.signum >= 0 ? result : result.add(m));
+ }
+
+ // BEGIN Android-added: Support fallback to boringssl where it makes sense.
+ // The conversion itself takes linear time, so this only makes sense for largish superlinear
+ // operations.
+
+ private static int[] reverse(int[] arg) {
+ int len = arg.length;
+ int[] result = new int[len];
+ for (int i = 0; i < len; ++i) {
+ result[i] = arg[len - i - 1];
+ }
+ return result;
+ }
+
+ private static long /* BN */ bigEndInts2NewBN(int[] beArray, boolean neg) {
+ // The input is an array of ints arranged in big-endian order, i.e. most significant int
+ // first. BN deals with big-endian or little-endian byte arrays, so we need to reverse order.
+ int[] leArray = reverse(beArray);
+ long resultBN = NativeBN.BN_new();
+ NativeBN.litEndInts2bn(leArray, leArray.length, neg, resultBN);
+ return resultBN;
+ }
+
+ private int[] bn2BigEndInts(long bn) {
+ return reverse(NativeBN.bn2litEndInts(bn));
+ }
+
+ // END Android-added: Support fallback to boringssl.
+
+
+ /**
+ * Returns a BigInteger whose value is
+ * <tt>(this<sup>exponent</sup> mod m)</tt>. (Unlike {@code pow}, this
+ * method permits negative exponents.)
+ *
+ * @param exponent the exponent.
+ * @param m the modulus.
+ * @return <tt>this<sup>exponent</sup> mod m</tt>
+ * @throws ArithmeticException {@code m} &le; 0 or the exponent is
+ * negative and this BigInteger is not <i>relatively
+ * prime</i> to {@code m}.
+ * @see #modInverse
+ */
+ @NonNull public BigInteger modPow(@NonNull BigInteger exponent, @NonNull BigInteger m) {
+ if (m.signum <= 0)
+ throw new ArithmeticException("BigInteger: modulus not positive");
+
+ // Trivial cases
+ if (exponent.signum == 0)
+ return (m.equals(ONE) ? ZERO : ONE);
+
+ if (this.equals(ONE))
+ return (m.equals(ONE) ? ZERO : ONE);
+
+ if (this.equals(ZERO) && exponent.signum >= 0)
+ return ZERO;
+
+ if (this.equals(negConst[1]) && (!exponent.testBit(0)))
+ return (m.equals(ONE) ? ZERO : ONE);
+
+ boolean invertResult;
+ if ((invertResult = (exponent.signum < 0)))
+ exponent = exponent.negate();
+
+ BigInteger base = (this.signum < 0 || this.compareTo(m) >= 0
+ ? this.mod(m) : this);
+ BigInteger result;
+ // BEGIN Android-added: Fall back to the boringssl implementation, which
+ // is usually faster.
+ final int BORINGSSL_MOD_EXP_THRESHOLD = 3;
+ if (m.mag.length >= BORINGSSL_MOD_EXP_THRESHOLD) {
+ long baseBN = 0, expBN = 0, modBN = 0, resultBN = 0;
+ try {
+ baseBN = bigEndInts2NewBN(base.mag, /* neg= */false);
+ expBN = bigEndInts2NewBN(exponent.mag, /* neg= */false);
+ modBN = bigEndInts2NewBN(m.mag, /* neg= */false);
+ resultBN = NativeBN.BN_new();
+ NativeBN.BN_mod_exp(resultBN, baseBN, expBN, modBN);
+ result = new BigInteger(1, bn2BigEndInts(resultBN));
+ // The sign of a zero result is fixed by the constructor.
+ return (invertResult ? result.modInverse(m) : result);
+ } finally {
+ NativeBN.BN_free(baseBN);
+ NativeBN.BN_free(expBN);
+ NativeBN.BN_free(modBN);
+ NativeBN.BN_free(resultBN);
+ }
+ }
+ // END Android-added: Fall back to the boringssl implementation.
+ if (m.testBit(0)) { // odd modulus
+ result = base.oddModPow(exponent, m);
+ } else {
+ /*
+ * Even modulus. Tear it into an "odd part" (m1) and power of two
+ * (m2), exponentiate mod m1, manually exponentiate mod m2, and
+ * use Chinese Remainder Theorem to combine results.
+ */
+
+ // Tear m apart into odd part (m1) and power of 2 (m2)
+ int p = m.getLowestSetBit(); // Max pow of 2 that divides m
+
+ BigInteger m1 = m.shiftRight(p); // m/2**p
+ BigInteger m2 = ONE.shiftLeft(p); // 2**p
+
+ // Calculate new base from m1
+ BigInteger base2 = (this.signum < 0 || this.compareTo(m1) >= 0
+ ? this.mod(m1) : this);
+
+ // Calculate (base ** exponent) mod m1.
+ BigInteger a1 = (m1.equals(ONE) ? ZERO :
+ base2.oddModPow(exponent, m1));
+
+ // Calculate (this ** exponent) mod m2
+ BigInteger a2 = base.modPow2(exponent, p);
+
+ // Combine results using Chinese Remainder Theorem
+ BigInteger y1 = m2.modInverse(m1);
+ BigInteger y2 = m1.modInverse(m2);
+
+ if (m.mag.length < MAX_MAG_LENGTH / 2) {
+ result = a1.multiply(m2).multiply(y1).add(a2.multiply(m1).multiply(y2)).mod(m);
+ } else {
+ MutableBigInteger t1 = new MutableBigInteger();
+ new MutableBigInteger(a1.multiply(m2)).multiply(new MutableBigInteger(y1), t1);
+ MutableBigInteger t2 = new MutableBigInteger();
+ new MutableBigInteger(a2.multiply(m1)).multiply(new MutableBigInteger(y2), t2);
+ t1.add(t2);
+ MutableBigInteger q = new MutableBigInteger();
+ result = t1.divide(new MutableBigInteger(m), q).toBigInteger();
+ }
+ }
+
+ return (invertResult ? result.modInverse(m) : result);
+ }
+
+ // Montgomery multiplication. These are wrappers for
+ // implMontgomeryXX routines which are expected to be replaced by
+ // virtual machine intrinsics. We don't use the intrinsics for
+ // very large operands: MONTGOMERY_INTRINSIC_THRESHOLD should be
+ // larger than any reasonable crypto key.
+ private static int[] montgomeryMultiply(int[] a, int[] b, int[] n, int len, long inv,
+ int[] product) {
+ implMontgomeryMultiplyChecks(a, b, n, len, product);
+ if (len > MONTGOMERY_INTRINSIC_THRESHOLD) {
+ // Very long argument: do not use an intrinsic
+ product = multiplyToLen(a, len, b, len, product);
+ return montReduce(product, n, len, (int)inv);
+ } else {
+ return implMontgomeryMultiply(a, b, n, len, inv, materialize(product, len));
+ }
+ }
+ private static int[] montgomerySquare(int[] a, int[] n, int len, long inv,
+ int[] product) {
+ implMontgomeryMultiplyChecks(a, a, n, len, product);
+ if (len > MONTGOMERY_INTRINSIC_THRESHOLD) {
+ // Very long argument: do not use an intrinsic
+ product = squareToLen(a, len, product);
+ return montReduce(product, n, len, (int)inv);
+ } else {
+ return implMontgomerySquare(a, n, len, inv, materialize(product, len));
+ }
+ }
+
+ // Range-check everything.
+ private static void implMontgomeryMultiplyChecks
+ (int[] a, int[] b, int[] n, int len, int[] product) throws RuntimeException {
+ if (len % 2 != 0) {
+ throw new IllegalArgumentException("input array length must be even: " + len);
+ }
+
+ if (len < 1) {
+ throw new IllegalArgumentException("invalid input length: " + len);
+ }
+
+ if (len > a.length ||
+ len > b.length ||
+ len > n.length ||
+ (product != null && len > product.length)) {
+ throw new IllegalArgumentException("input array length out of bound: " + len);
+ }
+ }
+
+ // Make sure that the int array z (which is expected to contain
+ // the result of a Montgomery multiplication) is present and
+ // sufficiently large.
+ private static int[] materialize(int[] z, int len) {
+ if (z == null || z.length < len)
+ z = new int[len];
+ return z;
+ }
+
+ // These methods are intended to be be replaced by virtual machine
+ // intrinsics.
+ private static int[] implMontgomeryMultiply(int[] a, int[] b, int[] n, int len,
+ long inv, int[] product) {
+ product = multiplyToLen(a, len, b, len, product);
+ return montReduce(product, n, len, (int)inv);
+ }
+ private static int[] implMontgomerySquare(int[] a, int[] n, int len,
+ long inv, int[] product) {
+ product = squareToLen(a, len, product);
+ return montReduce(product, n, len, (int)inv);
+ }
+
+ static int[] bnExpModThreshTable = {7, 25, 81, 241, 673, 1793,
+ Integer.MAX_VALUE}; // Sentinel
+
+ /**
+ * Returns a BigInteger whose value is x to the power of y mod z.
+ * Assumes: z is odd && x < z.
+ */
+ @NonNull private BigInteger oddModPow(@NonNull BigInteger y, @NonNull BigInteger z) {
+ /*
+ * The algorithm is adapted from Colin Plumb's C library.
+ *
+ * The window algorithm:
+ * The idea is to keep a running product of b1 = n^(high-order bits of exp)
+ * and then keep appending exponent bits to it. The following patterns
+ * apply to a 3-bit window (k = 3):
+ * To append 0: square
+ * To append 1: square, multiply by n^1
+ * To append 10: square, multiply by n^1, square
+ * To append 11: square, square, multiply by n^3
+ * To append 100: square, multiply by n^1, square, square
+ * To append 101: square, square, square, multiply by n^5
+ * To append 110: square, square, multiply by n^3, square
+ * To append 111: square, square, square, multiply by n^7
+ *
+ * Since each pattern involves only one multiply, the longer the pattern
+ * the better, except that a 0 (no multiplies) can be appended directly.
+ * We precompute a table of odd powers of n, up to 2^k, and can then
+ * multiply k bits of exponent at a time. Actually, assuming random
+ * exponents, there is on average one zero bit between needs to
+ * multiply (1/2 of the time there's none, 1/4 of the time there's 1,
+ * 1/8 of the time, there's 2, 1/32 of the time, there's 3, etc.), so
+ * you have to do one multiply per k+1 bits of exponent.
+ *
+ * The loop walks down the exponent, squaring the result buffer as
+ * it goes. There is a wbits+1 bit lookahead buffer, buf, that is
+ * filled with the upcoming exponent bits. (What is read after the
+ * end of the exponent is unimportant, but it is filled with zero here.)
+ * When the most-significant bit of this buffer becomes set, i.e.
+ * (buf & tblmask) != 0, we have to decide what pattern to multiply
+ * by, and when to do it. We decide, remember to do it in future
+ * after a suitable number of squarings have passed (e.g. a pattern
+ * of "100" in the buffer requires that we multiply by n^1 immediately;
+ * a pattern of "110" calls for multiplying by n^3 after one more
+ * squaring), clear the buffer, and continue.
+ *
+ * When we start, there is one more optimization: the result buffer
+ * is implcitly one, so squaring it or multiplying by it can be
+ * optimized away. Further, if we start with a pattern like "100"
+ * in the lookahead window, rather than placing n into the buffer
+ * and then starting to square it, we have already computed n^2
+ * to compute the odd-powers table, so we can place that into
+ * the buffer and save a squaring.
+ *
+ * This means that if you have a k-bit window, to compute n^z,
+ * where z is the high k bits of the exponent, 1/2 of the time
+ * it requires no squarings. 1/4 of the time, it requires 1
+ * squaring, ... 1/2^(k-1) of the time, it requires k-2 squarings.
+ * And the remaining 1/2^(k-1) of the time, the top k bits are a
+ * 1 followed by k-1 0 bits, so it again only requires k-2
+ * squarings, not k-1. The average of these is 1. Add that
+ * to the one squaring we have to do to compute the table,
+ * and you'll see that a k-bit window saves k-2 squarings
+ * as well as reducing the multiplies. (It actually doesn't
+ * hurt in the case k = 1, either.)
+ */
+ // Special case for exponent of one
+ if (y.equals(ONE))
+ return this;
+
+ // Special case for base of zero
+ if (signum == 0)
+ return ZERO;
+
+ int[] base = mag.clone();
+ int[] exp = y.mag;
+ int[] mod = z.mag;
+ int modLen = mod.length;
+
+ // Make modLen even. It is conventional to use a cryptographic
+ // modulus that is 512, 768, 1024, or 2048 bits, so this code
+ // will not normally be executed. However, it is necessary for
+ // the correct functioning of the HotSpot intrinsics.
+ if ((modLen & 1) != 0) {
+ int[] x = new int[modLen + 1];
+ System.arraycopy(mod, 0, x, 1, modLen);
+ mod = x;
+ modLen++;
+ }
+
+ // Select an appropriate window size
+ int wbits = 0;
+ int ebits = bitLength(exp, exp.length);
+ // if exponent is 65537 (0x10001), use minimum window size
+ if ((ebits != 17) || (exp[0] != 65537)) {
+ while (ebits > bnExpModThreshTable[wbits]) {
+ wbits++;
+ }
+ }
+
+ // Calculate appropriate table size
+ int tblmask = 1 << wbits;
+
+ // Allocate table for precomputed odd powers of base in Montgomery form
+ int[][] table = new int[tblmask][];
+ for (int i=0; i < tblmask; i++)
+ table[i] = new int[modLen];
+
+ // Compute the modular inverse of the least significant 64-bit
+ // digit of the modulus
+ long n0 = (mod[modLen-1] & LONG_MASK) + ((mod[modLen-2] & LONG_MASK) << 32);
+ long inv = -MutableBigInteger.inverseMod64(n0);
+
+ // Convert base to Montgomery form
+ int[] a = leftShift(base, base.length, modLen << 5);
+
+ MutableBigInteger q = new MutableBigInteger(),
+ a2 = new MutableBigInteger(a),
+ b2 = new MutableBigInteger(mod);
+ b2.normalize(); // MutableBigInteger.divide() assumes that its
+ // divisor is in normal form.
+
+ MutableBigInteger r= a2.divide(b2, q);
+ table[0] = r.toIntArray();
+
+ // Pad table[0] with leading zeros so its length is at least modLen
+ if (table[0].length < modLen) {
+ int offset = modLen - table[0].length;
+ int[] t2 = new int[modLen];
+ System.arraycopy(table[0], 0, t2, offset, table[0].length);
+ table[0] = t2;
+ }
+
+ // Set b to the square of the base
+ int[] b = montgomerySquare(table[0], mod, modLen, inv, null);
+
+ // Set t to high half of b
+ int[] t = Arrays.copyOf(b, modLen);
+
+ // Fill in the table with odd powers of the base
+ for (int i=1; i < tblmask; i++) {
+ table[i] = montgomeryMultiply(t, table[i-1], mod, modLen, inv, null);
+ }
+
+ // Pre load the window that slides over the exponent
+ int bitpos = 1 << ((ebits-1) & (32-1));
+
+ int buf = 0;
+ int elen = exp.length;
+ int eIndex = 0;
+ for (int i = 0; i <= wbits; i++) {
+ buf = (buf << 1) | (((exp[eIndex] & bitpos) != 0)?1:0);
+ bitpos >>>= 1;
+ if (bitpos == 0) {
+ eIndex++;
+ bitpos = 1 << (32-1);
+ elen--;
+ }
+ }
+
+ int multpos = ebits;
+
+ // The first iteration, which is hoisted out of the main loop
+ ebits--;
+ boolean isone = true;
+
+ multpos = ebits - wbits;
+ while ((buf & 1) == 0) {
+ buf >>>= 1;
+ multpos++;
+ }
+
+ int[] mult = table[buf >>> 1];
+
+ buf = 0;
+ if (multpos == ebits)
+ isone = false;
+
+ // The main loop
+ while (true) {
+ ebits--;
+ // Advance the window
+ buf <<= 1;
+
+ if (elen != 0) {
+ buf |= ((exp[eIndex] & bitpos) != 0) ? 1 : 0;
+ bitpos >>>= 1;
+ if (bitpos == 0) {
+ eIndex++;
+ bitpos = 1 << (32-1);
+ elen--;
+ }
+ }
+
+ // Examine the window for pending multiplies
+ if ((buf & tblmask) != 0) {
+ multpos = ebits - wbits;
+ while ((buf & 1) == 0) {
+ buf >>>= 1;
+ multpos++;
+ }
+ mult = table[buf >>> 1];
+ buf = 0;
+ }
+
+ // Perform multiply
+ if (ebits == multpos) {
+ if (isone) {
+ b = mult.clone();
+ isone = false;
+ } else {
+ t = b;
+ a = montgomeryMultiply(t, mult, mod, modLen, inv, a);
+ t = a; a = b; b = t;
+ }
+ }
+
+ // Check if done
+ if (ebits == 0)
+ break;
+
+ // Square the input
+ if (!isone) {
+ t = b;
+ a = montgomerySquare(t, mod, modLen, inv, a);
+ t = a; a = b; b = t;
+ }
+ }
+
+ // Convert result out of Montgomery form and return
+ int[] t2 = new int[2*modLen];
+ System.arraycopy(b, 0, t2, modLen, modLen);
+
+ b = montReduce(t2, mod, modLen, (int)inv);
+
+ t2 = Arrays.copyOf(b, modLen);
+
+ return new BigInteger(1, t2);
+ }
+
+ /**
+ * Montgomery reduce n, modulo mod. This reduces modulo mod and divides
+ * by 2^(32*mlen). Adapted from Colin Plumb's C library.
+ */
+ private static int[] montReduce(int[] n, int[] mod, int mlen, int inv) {
+ int c=0;
+ int len = mlen;
+ int offset=0;
+
+ do {
+ int nEnd = n[n.length-1-offset];
+ int carry = mulAdd(n, mod, offset, mlen, inv * nEnd);
+ c += addOne(n, offset, mlen, carry);
+ offset++;
+ } while (--len > 0);
+
+ while (c > 0)
+ c += subN(n, mod, mlen);
+
+ while (intArrayCmpToLen(n, mod, mlen) >= 0)
+ subN(n, mod, mlen);
+
+ return n;
+ }
+
+
+ /*
+ * Returns -1, 0 or +1 as big-endian unsigned int array arg1 is less than,
+ * equal to, or greater than arg2 up to length len.
+ */
+ private static int intArrayCmpToLen(int[] arg1, int[] arg2, int len) {
+ for (int i=0; i < len; i++) {
+ long b1 = arg1[i] & LONG_MASK;
+ long b2 = arg2[i] & LONG_MASK;
+ if (b1 < b2)
+ return -1;
+ if (b1 > b2)
+ return 1;
+ }
+ return 0;
+ }
+
+ /**
+ * Subtracts two numbers of same length, returning borrow.
+ */
+ private static int subN(int[] a, int[] b, int len) {
+ long sum = 0;
+
+ while (--len >= 0) {
+ sum = (a[len] & LONG_MASK) -
+ (b[len] & LONG_MASK) + (sum >> 32);
+ a[len] = (int)sum;
+ }
+
+ return (int)(sum >> 32);
+ }
+
+ /**
+ * Multiply an array by one word k and add to result, return the carry
+ */
+ static int mulAdd(int[] out, int[] in, int offset, int len, int k) {
+ implMulAddCheck(out, in, offset, len, k);
+ return implMulAdd(out, in, offset, len, k);
+ }
+
+ /**
+ * Parameters validation.
+ */
+ private static void implMulAddCheck(int[] out, int[] in, int offset, int len, int k) {
+ if (len > in.length) {
+ throw new IllegalArgumentException("input length is out of bound: " + len + " > " + in.length);
+ }
+ if (offset < 0) {
+ throw new IllegalArgumentException("input offset is invalid: " + offset);
+ }
+ if (offset > (out.length - 1)) {
+ throw new IllegalArgumentException("input offset is out of bound: " + offset + " > " + (out.length - 1));
+ }
+ if (len > (out.length - offset)) {
+ throw new IllegalArgumentException("input len is out of bound: " + len + " > " + (out.length - offset));
+ }
+ }
+
+ /**
+ * Java Runtime may use intrinsic for this method.
+ */
+ private static int implMulAdd(int[] out, int[] in, int offset, int len, int k) {
+ long kLong = k & LONG_MASK;
+ long carry = 0;
+
+ offset = out.length-offset - 1;
+ for (int j=len-1; j >= 0; j--) {
+ long product = (in[j] & LONG_MASK) * kLong +
+ (out[offset] & LONG_MASK) + carry;
+ out[offset--] = (int)product;
+ carry = product >>> 32;
+ }
+ return (int)carry;
+ }
+
+ /**
+ * Add one word to the number a mlen words into a. Return the resulting
+ * carry.
+ */
+ static int addOne(int[] a, int offset, int mlen, int carry) {
+ offset = a.length-1-mlen-offset;
+ long t = (a[offset] & LONG_MASK) + (carry & LONG_MASK);
+
+ a[offset] = (int)t;
+ if ((t >>> 32) == 0)
+ return 0;
+ while (--mlen >= 0) {
+ if (--offset < 0) { // Carry out of number
+ return 1;
+ } else {
+ a[offset]++;
+ if (a[offset] != 0)
+ return 0;
+ }
+ }
+ return 1;
+ }
+
+ /**
+ * Returns a BigInteger whose value is (this ** exponent) mod (2**p)
+ */
+ @NonNull private BigInteger modPow2(@NonNull BigInteger exponent, int p) {
+ /*
+ * Perform exponentiation using repeated squaring trick, chopping off
+ * high order bits as indicated by modulus.
+ */
+ BigInteger result = ONE;
+ BigInteger baseToPow2 = this.mod2(p);
+ int expOffset = 0;
+
+ int limit = exponent.bitLength();
+
+ if (this.testBit(0))
+ limit = (p-1) < limit ? (p-1) : limit;
+
+ while (expOffset < limit) {
+ if (exponent.testBit(expOffset))
+ result = result.multiply(baseToPow2).mod2(p);
+ expOffset++;
+ if (expOffset < limit)
+ baseToPow2 = baseToPow2.square().mod2(p);
+ }
+
+ return result;
+ }
+
+ /**
+ * Returns a BigInteger whose value is this mod(2**p).
+ * Assumes that this {@code BigInteger >= 0} and {@code p > 0}.
+ */
+ @NonNull private BigInteger mod2(int p) {
+ if (bitLength() <= p)
+ return this;
+
+ // Copy remaining ints of mag
+ int numInts = (p + 31) >>> 5;
+ int[] mag = new int[numInts];
+ System.arraycopy(this.mag, (this.mag.length - numInts), mag, 0, numInts);
+
+ // Mask out any excess bits
+ int excessBits = (numInts << 5) - p;
+ mag[0] &= (1L << (32-excessBits)) - 1;
+
+ return (mag[0] == 0 ? new BigInteger(1, mag) : new BigInteger(mag, 1));
+ }
+
+ /**
+ * Returns a BigInteger whose value is {@code (this}<sup>-1</sup> {@code mod m)}.
+ *
+ * @param m the modulus.
+ * @return {@code this}<sup>-1</sup> {@code mod m}.
+ * @throws ArithmeticException {@code m} &le; 0, or this BigInteger
+ * has no multiplicative inverse mod m (that is, this BigInteger
+ * is not <i>relatively prime</i> to m).
+ */
+ @NonNull public BigInteger modInverse(@NonNull BigInteger m) {
+ if (m.signum != 1)
+ throw new ArithmeticException("BigInteger: modulus not positive");
+
+ if (m.equals(ONE))
+ return ZERO;
+
+ // Calculate (this mod m)
+ BigInteger modVal = this;
+ if (signum < 0 || (this.compareMagnitude(m) >= 0))
+ modVal = this.mod(m);
+
+ if (modVal.equals(ONE))
+ return ONE;
+
+ MutableBigInteger a = new MutableBigInteger(modVal);
+ MutableBigInteger b = new MutableBigInteger(m);
+
+ MutableBigInteger result = a.mutableModInverse(b);
+ return result.toBigInteger(1);
+ }
+
+ // Shift Operations
+
+ /**
+ * Returns a BigInteger whose value is {@code (this << n)}.
+ * The shift distance, {@code n}, may be negative, in which case
+ * this method performs a right shift.
+ * (Computes <tt>floor(this * 2<sup>n</sup>)</tt>.)
+ *
+ * @param n shift distance, in bits.
+ * @return {@code this << n}
+ * @see #shiftRight
+ */
+ @NonNull public BigInteger shiftLeft(int n) {
+ if (signum == 0)
+ return ZERO;
+ if (n > 0) {
+ return new BigInteger(shiftLeft(mag, n), signum);
+ } else if (n == 0) {
+ return this;
+ } else {
+ // Possible int overflow in (-n) is not a trouble,
+ // because shiftRightImpl considers its argument unsigned
+ return shiftRightImpl(-n);
+ }
+ }
+
+ /**
+ * Returns a magnitude array whose value is {@code (mag << n)}.
+ * The shift distance, {@code n}, is considered unnsigned.
+ * (Computes <tt>this * 2<sup>n</sup></tt>.)
+ *
+ * @param mag magnitude, the most-significant int ({@code mag[0]}) must be non-zero.
+ * @param n unsigned shift distance, in bits.
+ * @return {@code mag << n}
+ */
+ private static int[] shiftLeft(int[] mag, int n) {
+ int nInts = n >>> 5;
+ int nBits = n & 0x1f;
+ int magLen = mag.length;
+ int newMag[] = null;
+
+ if (nBits == 0) {
+ newMag = new int[magLen + nInts];
+ System.arraycopy(mag, 0, newMag, 0, magLen);
+ } else {
+ int i = 0;
+ int nBits2 = 32 - nBits;
+ int highBits = mag[0] >>> nBits2;
+ if (highBits != 0) {
+ newMag = new int[magLen + nInts + 1];
+ newMag[i++] = highBits;
+ } else {
+ newMag = new int[magLen + nInts];
+ }
+ int j=0;
+ while (j < magLen-1)
+ newMag[i++] = mag[j++] << nBits | mag[j] >>> nBits2;
+ newMag[i] = mag[j] << nBits;
+ }
+ return newMag;
+ }
+
+ /**
+ * Returns a BigInteger whose value is {@code (this >> n)}. Sign
+ * extension is performed. The shift distance, {@code n}, may be
+ * negative, in which case this method performs a left shift.
+ * (Computes <tt>floor(this / 2<sup>n</sup>)</tt>.)
+ *
+ * @param n shift distance, in bits.
+ * @return {@code this >> n}
+ * @see #shiftLeft
+ */
+ @NonNull public BigInteger shiftRight(int n) {
+ if (signum == 0)
+ return ZERO;
+ if (n > 0) {
+ return shiftRightImpl(n);
+ } else if (n == 0) {
+ return this;
+ } else {
+ // Possible int overflow in {@code -n} is not a trouble,
+ // because shiftLeft considers its argument unsigned
+ return new BigInteger(shiftLeft(mag, -n), signum);
+ }
+ }
+
+ /**
+ * Returns a BigInteger whose value is {@code (this >> n)}. The shift
+ * distance, {@code n}, is considered unsigned.
+ * (Computes <tt>floor(this * 2<sup>-n</sup>)</tt>.)
+ *
+ * @param n unsigned shift distance, in bits.
+ * @return {@code this >> n}
+ */
+ @NonNull private BigInteger shiftRightImpl(int n) {
+ int nInts = n >>> 5;
+ int nBits = n & 0x1f;
+ int magLen = mag.length;
+ int newMag[] = null;
+
+ // Special case: entire contents shifted off the end
+ if (nInts >= magLen)
+ return (signum >= 0 ? ZERO : negConst[1]);
+
+ if (nBits == 0) {
+ int newMagLen = magLen - nInts;
+ newMag = Arrays.copyOf(mag, newMagLen);
+ } else {
+ int i = 0;
+ int highBits = mag[0] >>> nBits;
+ if (highBits != 0) {
+ newMag = new int[magLen - nInts];
+ newMag[i++] = highBits;
+ } else {
+ newMag = new int[magLen - nInts -1];
+ }
+
+ int nBits2 = 32 - nBits;
+ int j=0;
+ while (j < magLen - nInts - 1)
+ newMag[i++] = (mag[j++] << nBits2) | (mag[j] >>> nBits);
+ }
+
+ if (signum < 0) {
+ // Find out whether any one-bits were shifted off the end.
+ boolean onesLost = false;
+ for (int i=magLen-1, j=magLen-nInts; i >= j && !onesLost; i--)
+ onesLost = (mag[i] != 0);
+ if (!onesLost && nBits != 0)
+ onesLost = (mag[magLen - nInts - 1] << (32 - nBits) != 0);
+
+ if (onesLost)
+ newMag = javaIncrement(newMag);
+ }
+
+ return new BigInteger(newMag, signum);
+ }
+
+ int[] javaIncrement(int[] val) {
+ int lastSum = 0;
+ for (int i=val.length-1; i >= 0 && lastSum == 0; i--)
+ lastSum = (val[i] += 1);
+ if (lastSum == 0) {
+ val = new int[val.length+1];
+ val[0] = 1;
+ }
+ return val;
+ }
+
+ // Bitwise Operations
+
+ /**
+ * Returns a BigInteger whose value is {@code (this & val)}. (This
+ * method returns a negative BigInteger if and only if this and val are
+ * both negative.)
+ *
+ * @param val value to be AND'ed with this BigInteger.
+ * @return {@code this & val}
+ */
+ @NonNull public BigInteger and(@NonNull BigInteger val) {
+ int[] result = new int[Math.max(intLength(), val.intLength())];
+ for (int i=0; i < result.length; i++)
+ result[i] = (getInt(result.length-i-1)
+ & val.getInt(result.length-i-1));
+
+ return valueOf(result);
+ }
+
+ /**
+ * Returns a BigInteger whose value is {@code (this | val)}. (This method
+ * returns a negative BigInteger if and only if either this or val is
+ * negative.)
+ *
+ * @param val value to be OR'ed with this BigInteger.
+ * @return {@code this | val}
+ */
+ @NonNull public BigInteger or(@NonNull BigInteger val) {
+ int[] result = new int[Math.max(intLength(), val.intLength())];
+ for (int i=0; i < result.length; i++)
+ result[i] = (getInt(result.length-i-1)
+ | val.getInt(result.length-i-1));
+
+ return valueOf(result);
+ }
+
+ /**
+ * Returns a BigInteger whose value is {@code (this ^ val)}. (This method
+ * returns a negative BigInteger if and only if exactly one of this and
+ * val are negative.)
+ *
+ * @param val value to be XOR'ed with this BigInteger.
+ * @return {@code this ^ val}
+ */
+ @NonNull public BigInteger xor(@NonNull BigInteger val) {
+ int[] result = new int[Math.max(intLength(), val.intLength())];
+ for (int i=0; i < result.length; i++)
+ result[i] = (getInt(result.length-i-1)
+ ^ val.getInt(result.length-i-1));
+
+ return valueOf(result);
+ }
+
+ /**
+ * Returns a BigInteger whose value is {@code (~this)}. (This method
+ * returns a negative value if and only if this BigInteger is
+ * non-negative.)
+ *
+ * @return {@code ~this}
+ */
+ @NonNull public BigInteger not() {
+ int[] result = new int[intLength()];
+ for (int i=0; i < result.length; i++)
+ result[i] = ~getInt(result.length-i-1);
+
+ return valueOf(result);
+ }
+
+ /**
+ * Returns a BigInteger whose value is {@code (this & ~val)}. This
+ * method, which is equivalent to {@code and(val.not())}, is provided as
+ * a convenience for masking operations. (This method returns a negative
+ * BigInteger if and only if {@code this} is negative and {@code val} is
+ * positive.)
+ *
+ * @param val value to be complemented and AND'ed with this BigInteger.
+ * @return {@code this & ~val}
+ */
+ @NonNull public BigInteger andNot(@NonNull BigInteger val) {
+ int[] result = new int[Math.max(intLength(), val.intLength())];
+ for (int i=0; i < result.length; i++)
+ result[i] = (getInt(result.length-i-1)
+ & ~val.getInt(result.length-i-1));
+
+ return valueOf(result);
+ }
+
+
+ // Single Bit Operations
+
+ /**
+ * Returns {@code true} if and only if the designated bit is set.
+ * (Computes {@code ((this & (1<<n)) != 0)}.)
+ *
+ * @param n index of bit to test.
+ * @return {@code true} if and only if the designated bit is set.
+ * @throws ArithmeticException {@code n} is negative.
+ */
+ public boolean testBit(int n) {
+ if (n < 0)
+ throw new ArithmeticException("Negative bit address");
+
+ return (getInt(n >>> 5) & (1 << (n & 31))) != 0;
+ }
+
+ /**
+ * Returns a BigInteger whose value is equivalent to this BigInteger
+ * with the designated bit set. (Computes {@code (this | (1<<n))}.)
+ *
+ * @param n index of bit to set.
+ * @return {@code this | (1<<n)}
+ * @throws ArithmeticException {@code n} is negative.
+ */
+ @NonNull public BigInteger setBit(int n) {
+ if (n < 0)
+ throw new ArithmeticException("Negative bit address");
+
+ int intNum = n >>> 5;
+ int[] result = new int[Math.max(intLength(), intNum+2)];
+
+ for (int i=0; i < result.length; i++)
+ result[result.length-i-1] = getInt(i);
+
+ result[result.length-intNum-1] |= (1 << (n & 31));
+
+ return valueOf(result);
+ }
+
+ /**
+ * Returns a BigInteger whose value is equivalent to this BigInteger
+ * with the designated bit cleared.
+ * (Computes {@code (this & ~(1<<n))}.)
+ *
+ * @param n index of bit to clear.
+ * @return {@code this & ~(1<<n)}
+ * @throws ArithmeticException {@code n} is negative.
+ */
+ @NonNull public BigInteger clearBit(int n) {
+ if (n < 0)
+ throw new ArithmeticException("Negative bit address");
+
+ int intNum = n >>> 5;
+ int[] result = new int[Math.max(intLength(), ((n + 1) >>> 5) + 1)];
+
+ for (int i=0; i < result.length; i++)
+ result[result.length-i-1] = getInt(i);
+
+ result[result.length-intNum-1] &= ~(1 << (n & 31));
+
+ return valueOf(result);
+ }
+
+ /**
+ * Returns a BigInteger whose value is equivalent to this BigInteger
+ * with the designated bit flipped.
+ * (Computes {@code (this ^ (1<<n))}.)
+ *
+ * @param n index of bit to flip.
+ * @return {@code this ^ (1<<n)}
+ * @throws ArithmeticException {@code n} is negative.
+ */
+ @NonNull public BigInteger flipBit(int n) {
+ if (n < 0)
+ throw new ArithmeticException("Negative bit address");
+
+ int intNum = n >>> 5;
+ int[] result = new int[Math.max(intLength(), intNum+2)];
+
+ for (int i=0; i < result.length; i++)
+ result[result.length-i-1] = getInt(i);
+
+ result[result.length-intNum-1] ^= (1 << (n & 31));
+
+ return valueOf(result);
+ }
+
+ /**
+ * Returns the index of the rightmost (lowest-order) one bit in this
+ * BigInteger (the number of zero bits to the right of the rightmost
+ * one bit). Returns -1 if this BigInteger contains no one bits.
+ * (Computes {@code (this == 0? -1 : log2(this & -this))}.)
+ *
+ * @return index of the rightmost one bit in this BigInteger.
+ */
+ public int getLowestSetBit() {
+ @SuppressWarnings("deprecation") int lsb = lowestSetBit - 2;
+ if (lsb == -2) { // lowestSetBit not initialized yet
+ lsb = 0;
+ if (signum == 0) {
+ lsb -= 1;
+ } else {
+ // Search for lowest order nonzero int
+ int i,b;
+ for (i=0; (b = getInt(i)) == 0; i++)
+ ;
+ lsb += (i << 5) + Integer.numberOfTrailingZeros(b);
+ }
+ lowestSetBit = lsb + 2;
+ }
+ return lsb;
+ }
+
+
+ // Miscellaneous Bit Operations
+
+ /**
+ * Returns the number of bits in the minimal two's-complement
+ * representation of this BigInteger, <i>excluding</i> a sign bit.
+ * For positive BigIntegers, this is equivalent to the number of bits in
+ * the ordinary binary representation. (Computes
+ * {@code (ceil(log2(this < 0 ? -this : this+1)))}.)
+ *
+ * @return number of bits in the minimal two's-complement
+ * representation of this BigInteger, <i>excluding</i> a sign bit.
+ */
+ public int bitLength() {
+ @SuppressWarnings("deprecation") int n = bitLength - 1;
+ if (n == -1) { // bitLength not initialized yet
+ int[] m = mag;
+ int len = m.length;
+ if (len == 0) {
+ n = 0; // offset by one to initialize
+ } else {
+ // Calculate the bit length of the magnitude
+ int magBitLength = ((len - 1) << 5) + bitLengthForInt(mag[0]);
+ if (signum < 0) {
+ // Check if magnitude is a power of two
+ boolean pow2 = (Integer.bitCount(mag[0]) == 1);
+ for (int i=1; i< len && pow2; i++)
+ pow2 = (mag[i] == 0);
+
+ n = (pow2 ? magBitLength - 1 : magBitLength);
+ } else {
+ n = magBitLength;
+ }
+ }
+ bitLength = n + 1;
+ }
+ return n;
+ }
+
+ /**
+ * Returns the number of bits in the two's complement representation
+ * of this BigInteger that differ from its sign bit. This method is
+ * useful when implementing bit-vector style sets atop BigIntegers.
+ *
+ * @return number of bits in the two's complement representation
+ * of this BigInteger that differ from its sign bit.
+ */
+ public int bitCount() {
+ @SuppressWarnings("deprecation") int bc = bitCount - 1;
+ if (bc == -1) { // bitCount not initialized yet
+ bc = 0; // offset by one to initialize
+ // Count the bits in the magnitude
+ for (int i=0; i < mag.length; i++)
+ bc += Integer.bitCount(mag[i]);
+ if (signum < 0) {
+ // Count the trailing zeros in the magnitude
+ int magTrailingZeroCount = 0, j;
+ for (j=mag.length-1; mag[j] == 0; j--)
+ magTrailingZeroCount += 32;
+ magTrailingZeroCount += Integer.numberOfTrailingZeros(mag[j]);
+ bc += magTrailingZeroCount - 1;
+ }
+ bitCount = bc + 1;
+ }
+ return bc;
+ }
+
+ // Primality Testing
+
+ /**
+ * Returns {@code true} if this BigInteger is probably prime,
+ * {@code false} if it's definitely composite. If
+ * {@code certainty} is &le; 0, {@code true} is
+ * returned.
+ *
+ * @param certainty a measure of the uncertainty that the caller is
+ * willing to tolerate: if the call returns {@code true}
+ * the probability that this BigInteger is prime exceeds
+ * (1 - 1/2<sup>{@code certainty}</sup>). The execution time of
+ * this method is proportional to the value of this parameter.
+ * @return {@code true} if this BigInteger is probably prime,
+ * {@code false} if it's definitely composite.
+ */
+ public boolean isProbablePrime(int certainty) {
+ if (certainty <= 0)
+ return true;
+ BigInteger w = this.abs();
+ if (w.equals(TWO))
+ return true;
+ if (!w.testBit(0) || w.equals(ONE))
+ return false;
+
+ return w.primeToCertainty(certainty, null);
+ }
+
+ // Comparison Operations
+
+ /**
+ * Compares this BigInteger with the specified BigInteger. This
+ * method is provided in preference to individual methods for each
+ * of the six boolean comparison operators ({@literal <}, ==,
+ * {@literal >}, {@literal >=}, !=, {@literal <=}). The suggested
+ * idiom for performing these comparisons is: {@code
+ * (x.compareTo(y)} &lt;<i>op</i>&gt; {@code 0)}, where
+ * &lt;<i>op</i>&gt; is one of the six comparison operators.
+ *
+ * @param val BigInteger to which this BigInteger is to be compared.
+ * @return -1, 0 or 1 as this BigInteger is numerically less than, equal
+ * to, or greater than {@code val}.
+ */
+ public int compareTo(@NonNull BigInteger val) {
+ if (signum == val.signum) {
+ switch (signum) {
+ case 1:
+ return compareMagnitude(val);
+ case -1:
+ return val.compareMagnitude(this);
+ default:
+ return 0;
+ }
+ }
+ return signum > val.signum ? 1 : -1;
+ }
+
+ /**
+ * Compares the magnitude array of this BigInteger with the specified
+ * BigInteger's. This is the version of compareTo ignoring sign.
+ *
+ * @param val BigInteger whose magnitude array to be compared.
+ * @return -1, 0 or 1 as this magnitude array is less than, equal to or
+ * greater than the magnitude aray for the specified BigInteger's.
+ */
+ final int compareMagnitude(@NonNull BigInteger val) {
+ int[] m1 = mag;
+ int len1 = m1.length;
+ int[] m2 = val.mag;
+ int len2 = m2.length;
+ if (len1 < len2)
+ return -1;
+ if (len1 > len2)
+ return 1;
+ for (int i = 0; i < len1; i++) {
+ int a = m1[i];
+ int b = m2[i];
+ if (a != b)
+ return ((a & LONG_MASK) < (b & LONG_MASK)) ? -1 : 1;
+ }
+ return 0;
+ }
+
+ /**
+ * Version of compareMagnitude that compares magnitude with long value.
+ * val can't be Long.MIN_VALUE.
+ */
+ final int compareMagnitude(long val) {
+ assert val != Long.MIN_VALUE;
+ int[] m1 = mag;
+ int len = m1.length;
+ if (len > 2) {
+ return 1;
+ }
+ if (val < 0) {
+ val = -val;
+ }
+ int highWord = (int)(val >>> 32);
+ if (highWord == 0) {
+ if (len < 1)
+ return -1;
+ if (len > 1)
+ return 1;
+ int a = m1[0];
+ int b = (int)val;
+ if (a != b) {
+ return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1;
+ }
+ return 0;
+ } else {
+ if (len < 2)
+ return -1;
+ int a = m1[0];
+ int b = highWord;
+ if (a != b) {
+ return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1;
+ }
+ a = m1[1];
+ b = (int)val;
+ if (a != b) {
+ return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1;
+ }
+ return 0;
+ }
+ }
+
+ /**
+ * Compares this BigInteger with the specified Object for equality.
+ *
+ * @param x Object to which this BigInteger is to be compared.
+ * @return {@code true} if and only if the specified Object is a
+ * BigInteger whose value is numerically equal to this BigInteger.
+ */
+ public boolean equals(@NonNull Object x) {
+ // This test is just an optimization, which may or may not help
+ if (x == this)
+ return true;
+
+ if (!(x instanceof BigInteger))
+ return false;
+
+ BigInteger xInt = (BigInteger) x;
+ if (xInt.signum != signum)
+ return false;
+
+ int[] m = mag;
+ int len = m.length;
+ int[] xm = xInt.mag;
+ if (len != xm.length)
+ return false;
+
+ for (int i = 0; i < len; i++)
+ if (xm[i] != m[i])
+ return false;
+
+ return true;
+ }
+
+ /**
+ * Returns the minimum of this BigInteger and {@code val}.
+ *
+ * @param val value with which the minimum is to be computed.
+ * @return the BigInteger whose value is the lesser of this BigInteger and
+ * {@code val}. If they are equal, either may be returned.
+ */
+ @NonNull public BigInteger min(@NonNull BigInteger val) {
+ return (compareTo(val) < 0 ? this : val);
+ }
+
+ /**
+ * Returns the maximum of this BigInteger and {@code val}.
+ *
+ * @param val value with which the maximum is to be computed.
+ * @return the BigInteger whose value is the greater of this and
+ * {@code val}. If they are equal, either may be returned.
+ */
+ @NonNull public BigInteger max(@NonNull BigInteger val) {
+ return (compareTo(val) > 0 ? this : val);
+ }
+
+
+ // Hash Function
+
+ /**
+ * Returns the hash code for this BigInteger.
+ *
+ * @return hash code for this BigInteger.
+ */
+ public int hashCode() {
+ int hashCode = 0;
+
+ for (int i=0; i < mag.length; i++)
+ hashCode = (int)(31*hashCode + (mag[i] & LONG_MASK));
+
+ return hashCode * signum;
+ }
+
+ /**
+ * Returns the String representation of this BigInteger in the
+ * given radix. If the radix is outside the range from {@link
+ * Character#MIN_RADIX} to {@link Character#MAX_RADIX} inclusive,
+ * it will default to 10 (as is the case for
+ * {@code Integer.toString}). The digit-to-character mapping
+ * provided by {@code Character.forDigit} is used, and a minus
+ * sign is prepended if appropriate. (This representation is
+ * compatible with the {@link #BigInteger(String, int) (String,
+ * int)} constructor.)
+ *
+ * @param radix radix of the String representation.
+ * @return String representation of this BigInteger in the given radix.
+ * @see Integer#toString
+ * @see Character#forDigit
+ * @see #BigInteger(java.lang.String, int)
+ */
+ @NonNull public String toString(int radix) {
+ if (signum == 0)
+ return "0";
+ if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
+ radix = 10;
+
+ // If it's small enough, use smallToString.
+ if (mag.length <= SCHOENHAGE_BASE_CONVERSION_THRESHOLD)
+ return smallToString(radix);
+
+ // Otherwise use recursive toString, which requires positive arguments.
+ // The results will be concatenated into this StringBuilder
+ StringBuilder sb = new StringBuilder();
+ if (signum < 0) {
+ toString(this.negate(), sb, radix, 0);
+ sb.insert(0, '-');
+ }
+ else
+ toString(this, sb, radix, 0);
+
+ return sb.toString();
+ }
+
+ /** This method is used to perform toString when arguments are small. */
+ @NonNull private String smallToString(int radix) {
+ if (signum == 0) {
+ return "0";
+ }
+
+ // Compute upper bound on number of digit groups and allocate space
+ int maxNumDigitGroups = (4*mag.length + 6)/7;
+ String digitGroup[] = new String[maxNumDigitGroups];
+
+ // Translate number to string, a digit group at a time
+ BigInteger tmp = this.abs();
+ int numGroups = 0;
+ while (tmp.signum != 0) {
+ BigInteger d = longRadix[radix];
+
+ MutableBigInteger q = new MutableBigInteger(),
+ a = new MutableBigInteger(tmp.mag),
+ b = new MutableBigInteger(d.mag);
+ MutableBigInteger r = a.divide(b, q);
+ BigInteger q2 = q.toBigInteger(tmp.signum * d.signum);
+ BigInteger r2 = r.toBigInteger(tmp.signum * d.signum);
+
+ digitGroup[numGroups++] = Long.toString(r2.longValue(), radix);
+ tmp = q2;
+ }
+
+ // Put sign (if any) and first digit group into result buffer
+ StringBuilder buf = new StringBuilder(numGroups*digitsPerLong[radix]+1);
+ if (signum < 0) {
+ buf.append('-');
+ }
+ buf.append(digitGroup[numGroups-1]);
+
+ // Append remaining digit groups padded with leading zeros
+ for (int i=numGroups-2; i >= 0; i--) {
+ // Prepend (any) leading zeros for this digit group
+ int numLeadingZeros = digitsPerLong[radix]-digitGroup[i].length();
+ if (numLeadingZeros != 0) {
+ buf.append(zeros[numLeadingZeros]);
+ }
+ buf.append(digitGroup[i]);
+ }
+ return buf.toString();
+ }
+
+ /**
+ * Converts the specified BigInteger to a string and appends to
+ * {@code sb}. This implements the recursive Schoenhage algorithm
+ * for base conversions.
+ * <p/>
+ * See Knuth, Donald, _The Art of Computer Programming_, Vol. 2,
+ * Answers to Exercises (4.4) Question 14.
+ *
+ * @param u The number to convert to a string.
+ * @param sb The StringBuilder that will be appended to in place.
+ * @param radix The base to convert to.
+ * @param digits The minimum number of digits to pad to.
+ */
+ private static void toString(@NonNull BigInteger u, StringBuilder sb, int radix,
+ int digits) {
+ /* If we're smaller than a certain threshold, use the smallToString
+ method, padding with leading zeroes when necessary. */
+ if (u.mag.length <= SCHOENHAGE_BASE_CONVERSION_THRESHOLD) {
+ String s = u.smallToString(radix);
+
+ // Pad with internal zeros if necessary.
+ // Don't pad if we're at the beginning of the string.
+ if ((s.length() < digits) && (sb.length() > 0)) {
+ for (int i=s.length(); i < digits; i++) { // May be a faster way to
+ sb.append('0'); // do this?
+ }
+ }
+
+ sb.append(s);
+ return;
+ }
+
+ int b, n;
+ b = u.bitLength();
+
+ // Calculate a value for n in the equation radix^(2^n) = u
+ // and subtract 1 from that value. This is used to find the
+ // cache index that contains the best value to divide u.
+ n = (int) Math.round(Math.log(b * LOG_TWO / logCache[radix]) / LOG_TWO - 1.0);
+ BigInteger v = getRadixConversionCache(radix, n);
+ BigInteger[] results;
+ results = u.divideAndRemainder(v);
+
+ int expectedDigits = 1 << n;
+
+ // Now recursively build the two halves of each number.
+ toString(results[0], sb, radix, digits-expectedDigits);
+ toString(results[1], sb, radix, expectedDigits);
+ }
+
+ /**
+ * Returns the value radix^(2^exponent) from the cache.
+ * If this value doesn't already exist in the cache, it is added.
+ * <p/>
+ * This could be changed to a more complicated caching method using
+ * {@code Future}.
+ */
+ @NonNull private static BigInteger getRadixConversionCache(int radix, int exponent) {
+ BigInteger[] cacheLine = powerCache[radix]; // volatile read
+ if (exponent < cacheLine.length) {
+ return cacheLine[exponent];
+ }
+
+ int oldLength = cacheLine.length;
+ cacheLine = Arrays.copyOf(cacheLine, exponent + 1);
+ for (int i = oldLength; i <= exponent; i++) {
+ cacheLine[i] = cacheLine[i - 1].pow(2);
+ }
+
+ BigInteger[][] pc = powerCache; // volatile read again
+ if (exponent >= pc[radix].length) {
+ pc = pc.clone();
+ pc[radix] = cacheLine;
+ powerCache = pc; // volatile write, publish
+ }
+ return cacheLine[exponent];
+ }
+
+ /* zero[i] is a string of i consecutive zeros. */
+ private static String zeros[] = new String[64];
+ static {
+ zeros[63] =
+ "000000000000000000000000000000000000000000000000000000000000000";
+ for (int i=0; i < 63; i++)
+ zeros[i] = zeros[63].substring(0, i);
+ }
+
+ /**
+ * Returns the decimal String representation of this BigInteger.
+ * The digit-to-character mapping provided by
+ * {@code Character.forDigit} is used, and a minus sign is
+ * prepended if appropriate. (This representation is compatible
+ * with the {@link #BigInteger(String) (String)} constructor, and
+ * allows for String concatenation with Java's + operator.)
+ *
+ * @return decimal String representation of this BigInteger.
+ * @see Character#forDigit
+ * @see #BigInteger(java.lang.String)
+ */
+ @NonNull public String toString() {
+ return toString(10);
+ }
+
+ /**
+ * Returns a byte array containing the two's-complement
+ * representation of this BigInteger. The byte array will be in
+ * <i>big-endian</i> byte-order: the most significant byte is in
+ * the zeroth element. The array will contain the minimum number
+ * of bytes required to represent this BigInteger, including at
+ * least one sign bit, which is {@code (ceil((this.bitLength() +
+ * 1)/8))}. (This representation is compatible with the
+ * {@link #BigInteger(byte[]) (byte[])} constructor.)
+ *
+ * @return a byte array containing the two's-complement representation of
+ * this BigInteger.
+ * @see #BigInteger(byte[])
+ */
+ public byte[] toByteArray() {
+ int byteLen = bitLength()/8 + 1;
+ byte[] byteArray = new byte[byteLen];
+
+ for (int i=byteLen-1, bytesCopied=4, nextInt=0, intIndex=0; i >= 0; i--) {
+ if (bytesCopied == 4) {
+ nextInt = getInt(intIndex++);
+ bytesCopied = 1;
+ } else {
+ nextInt >>>= 8;
+ bytesCopied++;
+ }
+ byteArray[i] = (byte)nextInt;
+ }
+ return byteArray;
+ }
+
+ /**
+ * Converts this BigInteger to an {@code int}. This
+ * conversion is analogous to a
+ * <i>narrowing primitive conversion</i> from {@code long} to
+ * {@code int} as defined in section 5.1.3 of
+ * <cite>The Java&trade; Language Specification</cite>:
+ * if this BigInteger is too big to fit in an
+ * {@code int}, only the low-order 32 bits are returned.
+ * Note that this conversion can lose information about the
+ * overall magnitude of the BigInteger value as well as return a
+ * result with the opposite sign.
+ *
+ * @return this BigInteger converted to an {@code int}.
+ * @see #intValueExact()
+ */
+ public int intValue() {
+ int result = 0;
+ result = getInt(0);
+ return result;
+ }
+
+ /**
+ * Converts this BigInteger to a {@code long}. This
+ * conversion is analogous to a
+ * <i>narrowing primitive conversion</i> from {@code long} to
+ * {@code int} as defined in section 5.1.3 of
+ * <cite>The Java&trade; Language Specification</cite>:
+ * if this BigInteger is too big to fit in a
+ * {@code long}, only the low-order 64 bits are returned.
+ * Note that this conversion can lose information about the
+ * overall magnitude of the BigInteger value as well as return a
+ * result with the opposite sign.
+ *
+ * @return this BigInteger converted to a {@code long}.
+ * @see #longValueExact()
+ */
+ public long longValue() {
+ long result = 0;
+
+ for (int i=1; i >= 0; i--)
+ result = (result << 32) + (getInt(i) & LONG_MASK);
+ return result;
+ }
+
+ /**
+ * Converts this BigInteger to a {@code float}. This
+ * conversion is similar to the
+ * <i>narrowing primitive conversion</i> from {@code double} to
+ * {@code float} as defined in section 5.1.3 of
+ * <cite>The Java&trade; Language Specification</cite>:
+ * if this BigInteger has too great a magnitude
+ * to represent as a {@code float}, it will be converted to
+ * {@link Float#NEGATIVE_INFINITY} or {@link
+ * Float#POSITIVE_INFINITY} as appropriate. Note that even when
+ * the return value is finite, this conversion can lose
+ * information about the precision of the BigInteger value.
+ *
+ * @return this BigInteger converted to a {@code float}.
+ */
+ public float floatValue() {
+ if (signum == 0) {
+ return 0.0f;
+ }
+
+ int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1;
+
+ // exponent == floor(log2(abs(this)))
+ if (exponent < Long.SIZE - 1) {
+ return longValue();
+ } else if (exponent > Float.MAX_EXPONENT) {
+ return signum > 0 ? Float.POSITIVE_INFINITY : Float.NEGATIVE_INFINITY;
+ }
+
+ /*
+ * We need the top SIGNIFICAND_WIDTH bits, including the "implicit"
+ * one bit. To make rounding easier, we pick out the top
+ * SIGNIFICAND_WIDTH + 1 bits, so we have one to help us round up or
+ * down. twiceSignifFloor will contain the top SIGNIFICAND_WIDTH + 1
+ * bits, and signifFloor the top SIGNIFICAND_WIDTH.
+ *
+ * It helps to consider the real number signif = abs(this) *
+ * 2^(SIGNIFICAND_WIDTH - 1 - exponent).
+ */
+ int shift = exponent - FloatConsts.SIGNIFICAND_WIDTH;
+
+ int twiceSignifFloor;
+ // twiceSignifFloor will be == abs().shiftRight(shift).intValue()
+ // We do the shift into an int directly to improve performance.
+
+ int nBits = shift & 0x1f;
+ int nBits2 = 32 - nBits;
+
+ if (nBits == 0) {
+ twiceSignifFloor = mag[0];
+ } else {
+ twiceSignifFloor = mag[0] >>> nBits;
+ if (twiceSignifFloor == 0) {
+ twiceSignifFloor = (mag[0] << nBits2) | (mag[1] >>> nBits);
+ }
+ }
+
+ int signifFloor = twiceSignifFloor >> 1;
+ signifFloor &= FloatConsts.SIGNIF_BIT_MASK; // remove the implied bit
+
+ /*
+ * We round up if either the fractional part of signif is strictly
+ * greater than 0.5 (which is true if the 0.5 bit is set and any lower
+ * bit is set), or if the fractional part of signif is >= 0.5 and
+ * signifFloor is odd (which is true if both the 0.5 bit and the 1 bit
+ * are set). This is equivalent to the desired HALF_EVEN rounding.
+ */
+ boolean increment = (twiceSignifFloor & 1) != 0
+ && ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift);
+ int signifRounded = increment ? signifFloor + 1 : signifFloor;
+ int bits = ((exponent + FloatConsts.EXP_BIAS))
+ << (FloatConsts.SIGNIFICAND_WIDTH - 1);
+ bits += signifRounded;
+ /*
+ * If signifRounded == 2^24, we'd need to set all of the significand
+ * bits to zero and add 1 to the exponent. This is exactly the behavior
+ * we get from just adding signifRounded to bits directly. If the
+ * exponent is Float.MAX_EXPONENT, we round up (correctly) to
+ * Float.POSITIVE_INFINITY.
+ */
+ bits |= signum & FloatConsts.SIGN_BIT_MASK;
+ return Float.intBitsToFloat(bits);
+ }
+
+ /**
+ * Converts this BigInteger to a {@code double}. This
+ * conversion is similar to the
+ * <i>narrowing primitive conversion</i> from {@code double} to
+ * {@code float} as defined in section 5.1.3 of
+ * <cite>The Java&trade; Language Specification</cite>:
+ * if this BigInteger has too great a magnitude
+ * to represent as a {@code double}, it will be converted to
+ * {@link Double#NEGATIVE_INFINITY} or {@link
+ * Double#POSITIVE_INFINITY} as appropriate. Note that even when
+ * the return value is finite, this conversion can lose
+ * information about the precision of the BigInteger value.
+ *
+ * @return this BigInteger converted to a {@code double}.
+ */
+ public double doubleValue() {
+ if (signum == 0) {
+ return 0.0;
+ }
+
+ int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1;
+
+ // exponent == floor(log2(abs(this))Double)
+ if (exponent < Long.SIZE - 1) {
+ return longValue();
+ } else if (exponent > Double.MAX_EXPONENT) {
+ return signum > 0 ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY;
+ }
+
+ /*
+ * We need the top SIGNIFICAND_WIDTH bits, including the "implicit"
+ * one bit. To make rounding easier, we pick out the top
+ * SIGNIFICAND_WIDTH + 1 bits, so we have one to help us round up or
+ * down. twiceSignifFloor will contain the top SIGNIFICAND_WIDTH + 1
+ * bits, and signifFloor the top SIGNIFICAND_WIDTH.
+ *
+ * It helps to consider the real number signif = abs(this) *
+ * 2^(SIGNIFICAND_WIDTH - 1 - exponent).
+ */
+ int shift = exponent - DoubleConsts.SIGNIFICAND_WIDTH;
+
+ long twiceSignifFloor;
+ // twiceSignifFloor will be == abs().shiftRight(shift).longValue()
+ // We do the shift into a long directly to improve performance.
+
+ int nBits = shift & 0x1f;
+ int nBits2 = 32 - nBits;
+
+ int highBits;
+ int lowBits;
+ if (nBits == 0) {
+ highBits = mag[0];
+ lowBits = mag[1];
+ } else {
+ highBits = mag[0] >>> nBits;
+ lowBits = (mag[0] << nBits2) | (mag[1] >>> nBits);
+ if (highBits == 0) {
+ highBits = lowBits;
+ lowBits = (mag[1] << nBits2) | (mag[2] >>> nBits);
+ }
+ }
+
+ twiceSignifFloor = ((highBits & LONG_MASK) << 32)
+ | (lowBits & LONG_MASK);
+
+ long signifFloor = twiceSignifFloor >> 1;
+ signifFloor &= DoubleConsts.SIGNIF_BIT_MASK; // remove the implied bit
+
+ /*
+ * We round up if either the fractional part of signif is strictly
+ * greater than 0.5 (which is true if the 0.5 bit is set and any lower
+ * bit is set), or if the fractional part of signif is >= 0.5 and
+ * signifFloor is odd (which is true if both the 0.5 bit and the 1 bit
+ * are set). This is equivalent to the desired HALF_EVEN rounding.
+ */
+ boolean increment = (twiceSignifFloor & 1) != 0
+ && ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift);
+ long signifRounded = increment ? signifFloor + 1 : signifFloor;
+ long bits = (long) ((exponent + DoubleConsts.EXP_BIAS))
+ << (DoubleConsts.SIGNIFICAND_WIDTH - 1);
+ bits += signifRounded;
+ /*
+ * If signifRounded == 2^53, we'd need to set all of the significand
+ * bits to zero and add 1 to the exponent. This is exactly the behavior
+ * we get from just adding signifRounded to bits directly. If the
+ * exponent is Double.MAX_EXPONENT, we round up (correctly) to
+ * Double.POSITIVE_INFINITY.
+ */
+ bits |= signum & DoubleConsts.SIGN_BIT_MASK;
+ return Double.longBitsToDouble(bits);
+ }
+
+ /**
+ * Returns a copy of the input array stripped of any leading zero bytes.
+ */
+ private static int[] stripLeadingZeroInts(int val[]) {
+ int vlen = val.length;
+ int keep;
+
+ // Find first nonzero byte
+ for (keep = 0; keep < vlen && val[keep] == 0; keep++)
+ ;
+ return java.util.Arrays.copyOfRange(val, keep, vlen);
+ }
+
+ /**
+ * Returns the input array stripped of any leading zero bytes.
+ * Since the source is trusted the copying may be skipped.
+ */
+ private static int[] trustedStripLeadingZeroInts(int val[]) {
+ int vlen = val.length;
+ int keep;
+
+ // Find first nonzero byte
+ for (keep = 0; keep < vlen && val[keep] == 0; keep++)
+ ;
+ return keep == 0 ? val : java.util.Arrays.copyOfRange(val, keep, vlen);
+ }
+
+ /**
+ * Returns a copy of the input array stripped of any leading zero bytes.
+ */
+ private static int[] stripLeadingZeroBytes(byte a[]) {
+ int byteLength = a.length;
+ int keep;
+
+ // Find first nonzero byte
+ for (keep = 0; keep < byteLength && a[keep] == 0; keep++)
+ ;
+
+ // Allocate new array and copy relevant part of input array
+ int intLength = ((byteLength - keep) + 3) >>> 2;
+ int[] result = new int[intLength];
+ int b = byteLength - 1;
+ for (int i = intLength-1; i >= 0; i--) {
+ result[i] = a[b--] & 0xff;
+ int bytesRemaining = b - keep + 1;
+ int bytesToTransfer = Math.min(3, bytesRemaining);
+ for (int j=8; j <= (bytesToTransfer << 3); j += 8)
+ result[i] |= ((a[b--] & 0xff) << j);
+ }
+ return result;
+ }
+
+ /**
+ * Takes an array a representing a negative 2's-complement number and
+ * returns the minimal (no leading zero bytes) unsigned whose value is -a.
+ */
+ private static int[] makePositive(byte a[]) {
+ int keep, k;
+ int byteLength = a.length;
+
+ // Find first non-sign (0xff) byte of input
+ for (keep=0; keep < byteLength && a[keep] == -1; keep++)
+ ;
+
+
+ /* Allocate output array. If all non-sign bytes are 0x00, we must
+ * allocate space for one extra output byte. */
+ for (k=keep; k < byteLength && a[k] == 0; k++)
+ ;
+
+ int extraByte = (k == byteLength) ? 1 : 0;
+ int intLength = ((byteLength - keep + extraByte) + 3) >>> 2;
+ int result[] = new int[intLength];
+
+ /* Copy one's complement of input into output, leaving extra
+ * byte (if it exists) == 0x00 */
+ int b = byteLength - 1;
+ for (int i = intLength-1; i >= 0; i--) {
+ result[i] = a[b--] & 0xff;
+ int numBytesToTransfer = Math.min(3, b-keep+1);
+ if (numBytesToTransfer < 0)
+ numBytesToTransfer = 0;
+ for (int j=8; j <= 8*numBytesToTransfer; j += 8)
+ result[i] |= ((a[b--] & 0xff) << j);
+
+ // Mask indicates which bits must be complemented
+ int mask = -1 >>> (8*(3-numBytesToTransfer));
+ result[i] = ~result[i] & mask;
+ }
+
+ // Add one to one's complement to generate two's complement
+ for (int i=result.length-1; i >= 0; i--) {
+ result[i] = (int)((result[i] & LONG_MASK) + 1);
+ if (result[i] != 0)
+ break;
+ }
+
+ return result;
+ }
+
+ /**
+ * Takes an array a representing a negative 2's-complement number and
+ * returns the minimal (no leading zero ints) unsigned whose value is -a.
+ */
+ private static int[] makePositive(int a[]) {
+ int keep, j;
+
+ // Find first non-sign (0xffffffff) int of input
+ for (keep=0; keep < a.length && a[keep] == -1; keep++)
+ ;
+
+ /* Allocate output array. If all non-sign ints are 0x00, we must
+ * allocate space for one extra output int. */
+ for (j=keep; j < a.length && a[j] == 0; j++)
+ ;
+ int extraInt = (j == a.length ? 1 : 0);
+ int result[] = new int[a.length - keep + extraInt];
+
+ /* Copy one's complement of input into output, leaving extra
+ * int (if it exists) == 0x00 */
+ for (int i = keep; i < a.length; i++)
+ result[i - keep + extraInt] = ~a[i];
+
+ // Add one to one's complement to generate two's complement
+ for (int i=result.length-1; ++result[i] == 0; i--)
+ ;
+
+ return result;
+ }
+
+ /*
+ * The following two arrays are used for fast String conversions. Both
+ * are indexed by radix. The first is the number of digits of the given
+ * radix that can fit in a Java long without "going negative", i.e., the
+ * highest integer n such that radix**n < 2**63. The second is the
+ * "long radix" that tears each number into "long digits", each of which
+ * consists of the number of digits in the corresponding element in
+ * digitsPerLong (longRadix[i] = i**digitPerLong[i]). Both arrays have
+ * nonsense values in their 0 and 1 elements, as radixes 0 and 1 are not
+ * used.
+ */
+ private static int digitsPerLong[] = {0, 0,
+ 62, 39, 31, 27, 24, 22, 20, 19, 18, 18, 17, 17, 16, 16, 15, 15, 15, 14,
+ 14, 14, 14, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12};
+
+ private static BigInteger longRadix[] = {null, null,
+ valueOf(0x4000000000000000L), valueOf(0x383d9170b85ff80bL),
+ valueOf(0x4000000000000000L), valueOf(0x6765c793fa10079dL),
+ valueOf(0x41c21cb8e1000000L), valueOf(0x3642798750226111L),
+ valueOf(0x1000000000000000L), valueOf(0x12bf307ae81ffd59L),
+ valueOf( 0xde0b6b3a7640000L), valueOf(0x4d28cb56c33fa539L),
+ valueOf(0x1eca170c00000000L), valueOf(0x780c7372621bd74dL),
+ valueOf(0x1e39a5057d810000L), valueOf(0x5b27ac993df97701L),
+ valueOf(0x1000000000000000L), valueOf(0x27b95e997e21d9f1L),
+ valueOf(0x5da0e1e53c5c8000L), valueOf( 0xb16a458ef403f19L),
+ valueOf(0x16bcc41e90000000L), valueOf(0x2d04b7fdd9c0ef49L),
+ valueOf(0x5658597bcaa24000L), valueOf( 0x6feb266931a75b7L),
+ valueOf( 0xc29e98000000000L), valueOf(0x14adf4b7320334b9L),
+ valueOf(0x226ed36478bfa000L), valueOf(0x383d9170b85ff80bL),
+ valueOf(0x5a3c23e39c000000L), valueOf( 0x4e900abb53e6b71L),
+ valueOf( 0x7600ec618141000L), valueOf( 0xaee5720ee830681L),
+ valueOf(0x1000000000000000L), valueOf(0x172588ad4f5f0981L),
+ valueOf(0x211e44f7d02c1000L), valueOf(0x2ee56725f06e5c71L),
+ valueOf(0x41c21cb8e1000000L)};
+
+ /*
+ * These two arrays are the integer analogue of above.
+ */
+ private static int digitsPerInt[] = {0, 0, 30, 19, 15, 13, 11,
+ 11, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6,
+ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5};
+
+ private static int intRadix[] = {0, 0,
+ 0x40000000, 0x4546b3db, 0x40000000, 0x48c27395, 0x159fd800,
+ 0x75db9c97, 0x40000000, 0x17179149, 0x3b9aca00, 0xcc6db61,
+ 0x19a10000, 0x309f1021, 0x57f6c100, 0xa2f1b6f, 0x10000000,
+ 0x18754571, 0x247dbc80, 0x3547667b, 0x4c4b4000, 0x6b5a6e1d,
+ 0x6c20a40, 0x8d2d931, 0xb640000, 0xe8d4a51, 0x1269ae40,
+ 0x17179149, 0x1cb91000, 0x23744899, 0x2b73a840, 0x34e63b41,
+ 0x40000000, 0x4cfa3cc1, 0x5c13d840, 0x6d91b519, 0x39aa400
+ };
+
+ /**
+ * These routines provide access to the two's complement representation
+ * of BigIntegers.
+ */
+
+ /**
+ * Returns the length of the two's complement representation in ints,
+ * including space for at least one sign bit.
+ */
+ private int intLength() {
+ return (bitLength() >>> 5) + 1;
+ }
+
+ /* Returns sign bit */
+ private int signBit() {
+ return signum < 0 ? 1 : 0;
+ }
+
+ /* Returns an int of sign bits */
+ private int signInt() {
+ return signum < 0 ? -1 : 0;
+ }
+
+ /**
+ * Returns the specified int of the little-endian two's complement
+ * representation (int 0 is the least significant). The int number can
+ * be arbitrarily high (values are logically preceded by infinitely many
+ * sign ints).
+ */
+ private int getInt(int n) {
+ if (n < 0)
+ return 0;
+ if (n >= mag.length)
+ return signInt();
+
+ int magInt = mag[mag.length-n-1];
+
+ return (signum >= 0 ? magInt :
+ (n <= firstNonzeroIntNum() ? -magInt : ~magInt));
+ }
+
+ /**
+ * Returns the index of the int that contains the first nonzero int in the
+ * little-endian binary representation of the magnitude (int 0 is the
+ * least significant). If the magnitude is zero, return value is undefined.
+ */
+ private int firstNonzeroIntNum() {
+ int fn = firstNonzeroIntNum - 2;
+ if (fn == -2) { // firstNonzeroIntNum not initialized yet
+ fn = 0;
+
+ // Search for the first nonzero int
+ int i;
+ int mlen = mag.length;
+ for (i = mlen - 1; i >= 0 && mag[i] == 0; i--)
+ ;
+ fn = mlen - i - 1;
+ firstNonzeroIntNum = fn + 2; // offset by two to initialize
+ }
+ return fn;
+ }
+
+ /** use serialVersionUID from JDK 1.1. for interoperability */
+ private static final long serialVersionUID = -8287574255936472291L;
+
+ /**
+ * Serializable fields for BigInteger.
+ *
+ * @serialField signum int
+ * signum of this BigInteger.
+ * @serialField magnitude int[]
+ * magnitude array of this BigInteger.
+ * @serialField bitCount int
+ * number of bits in this BigInteger
+ * @serialField bitLength int
+ * the number of bits in the minimal two's-complement
+ * representation of this BigInteger
+ * @serialField lowestSetBit int
+ * lowest set bit in the twos complement representation
+ */
+ private static final ObjectStreamField[] serialPersistentFields = {
+ new ObjectStreamField("signum", Integer.TYPE),
+ new ObjectStreamField("magnitude", byte[].class),
+ new ObjectStreamField("bitCount", Integer.TYPE),
+ new ObjectStreamField("bitLength", Integer.TYPE),
+ new ObjectStreamField("firstNonzeroByteNum", Integer.TYPE),
+ new ObjectStreamField("lowestSetBit", Integer.TYPE)
+ };
+
+ /**
+ * Reconstitute the {@code BigInteger} instance from a stream (that is,
+ * deserialize it). The magnitude is read in as an array of bytes
+ * for historical reasons, but it is converted to an array of ints
+ * and the byte array is discarded.
+ * Note:
+ * The current convention is to initialize the cache fields, bitCount,
+ * bitLength and lowestSetBit, to 0 rather than some other marker value.
+ * Therefore, no explicit action to set these fields needs to be taken in
+ * readObject because those fields already have a 0 value be default since
+ * defaultReadObject is not being used.
+ */
+ private void readObject(java.io.ObjectInputStream s)
+ throws java.io.IOException, ClassNotFoundException {
+ /*
+ * In order to maintain compatibility with previous serialized forms,
+ * the magnitude of a BigInteger is serialized as an array of bytes.
+ * The magnitude field is used as a temporary store for the byte array
+ * that is deserialized. The cached computation fields should be
+ * transient but are serialized for compatibility reasons.
+ */
+
+ // prepare to read the alternate persistent fields
+ ObjectInputStream.GetField fields = s.readFields();
+
+ // Read the alternate persistent fields that we care about
+ int sign = fields.get("signum", -2);
+ byte[] magnitude = (byte[])fields.get("magnitude", null);
+
+ // Validate signum
+ if (sign < -1 || sign > 1) {
+ String message = "BigInteger: Invalid signum value";
+ if (fields.defaulted("signum"))
+ message = "BigInteger: Signum not present in stream";
+ throw new java.io.StreamCorruptedException(message);
+ }
+ int[] mag = stripLeadingZeroBytes(magnitude);
+ if ((mag.length == 0) != (sign == 0)) {
+ String message = "BigInteger: signum-magnitude mismatch";
+ if (fields.defaulted("magnitude"))
+ message = "BigInteger: Magnitude not present in stream";
+ throw new java.io.StreamCorruptedException(message);
+ }
+
+ // Commit final fields via Unsafe
+ UnsafeHolder.putSign(this, sign);
+
+ // Calculate mag field from magnitude and discard magnitude
+ UnsafeHolder.putMag(this, mag);
+ if (mag.length >= MAX_MAG_LENGTH) {
+ try {
+ checkRange();
+ } catch (ArithmeticException e) {
+ throw new java.io.StreamCorruptedException("BigInteger: Out of the supported range");
+ }
+ }
+ }
+
+ // Support for resetting final fields while deserializing
+ private static class UnsafeHolder {
+ private static final sun.misc.Unsafe unsafe;
+ private static final long signumOffset;
+ private static final long magOffset;
+ static {
+ try {
+ unsafe = sun.misc.Unsafe.getUnsafe();
+ signumOffset = unsafe.objectFieldOffset
+ (BigInteger.class.getDeclaredField("signum"));
+ magOffset = unsafe.objectFieldOffset
+ (BigInteger.class.getDeclaredField("mag"));
+ } catch (Exception ex) {
+ throw new ExceptionInInitializerError(ex);
+ }
+ }
+
+ static void putSign(BigInteger bi, int sign) {
+ unsafe.putIntVolatile(bi, signumOffset, sign);
+ }
+
+ static void putMag(BigInteger bi, int[] magnitude) {
+ unsafe.putObjectVolatile(bi, magOffset, magnitude);
+ }
+ }
+
+ /**
+ * Save the {@code BigInteger} instance to a stream.
+ * The magnitude of a BigInteger is serialized as a byte array for
+ * historical reasons.
+ *
+ * @serialData two necessary fields are written as well as obsolete
+ * fields for compatibility with older versions.
+ */
+ private void writeObject(ObjectOutputStream s) throws IOException {
+ // set the values of the Serializable fields
+ ObjectOutputStream.PutField fields = s.putFields();
+ fields.put("signum", signum);
+ fields.put("magnitude", magSerializedForm());
+ // The values written for cached fields are compatible with older
+ // versions, but are ignored in readObject so don't otherwise matter.
+ // BEGIN Android-changed: Don't include the following fields.
+ // fields.put("bitCount", -1);
+ // fields.put("bitLength", -1);
+ // fields.put("lowestSetBit", -2);
+ // fields.put("firstNonzeroByteNum", -2);
+ // END Android-changed
+
+ // save them
+ s.writeFields();
+}
+
+ /**
+ * Returns the mag array as an array of bytes.
+ */
+ private byte[] magSerializedForm() {
+ int len = mag.length;
+
+ int bitLen = (len == 0 ? 0 : ((len - 1) << 5) + bitLengthForInt(mag[0]));
+ int byteLen = (bitLen + 7) >>> 3;
+ byte[] result = new byte[byteLen];
+
+ for (int i = byteLen - 1, bytesCopied = 4, intIndex = len - 1, nextInt = 0;
+ i >= 0; i--) {
+ if (bytesCopied == 4) {
+ nextInt = mag[intIndex--];
+ bytesCopied = 1;
+ } else {
+ nextInt >>>= 8;
+ bytesCopied++;
+ }
+ result[i] = (byte)nextInt;
+ }
+ return result;
+ }
+
+ /**
+ * Converts this {@code BigInteger} to a {@code long}, checking
+ * for lost information. If the value of this {@code BigInteger}
+ * is out of the range of the {@code long} type, then an
+ * {@code ArithmeticException} is thrown.
+ *
+ * @return this {@code BigInteger} converted to a {@code long}.
+ * @throws ArithmeticException if the value of {@code this} will
+ * not exactly fit in a {@code long}.
+ * @see BigInteger#longValue
+ * @since 1.8
+ */
+ public long longValueExact() {
+ if (mag.length <= 2 && bitLength() <= 63)
+ return longValue();
+ else
+ throw new ArithmeticException("BigInteger out of long range");
+ }
+
+ /**
+ * Converts this {@code BigInteger} to an {@code int}, checking
+ * for lost information. If the value of this {@code BigInteger}
+ * is out of the range of the {@code int} type, then an
+ * {@code ArithmeticException} is thrown.
+ *
+ * @return this {@code BigInteger} converted to an {@code int}.
+ * @throws ArithmeticException if the value of {@code this} will
+ * not exactly fit in a {@code int}.
+ * @see BigInteger#intValue
+ * @since 1.8
+ */
+ public int intValueExact() {
+ if (mag.length <= 1 && bitLength() <= 31)
+ return intValue();
+ else
+ throw new ArithmeticException("BigInteger out of int range");
+ }
+
+ /**
+ * Converts this {@code BigInteger} to a {@code short}, checking
+ * for lost information. If the value of this {@code BigInteger}
+ * is out of the range of the {@code short} type, then an
+ * {@code ArithmeticException} is thrown.
+ *
+ * @return this {@code BigInteger} converted to a {@code short}.
+ * @throws ArithmeticException if the value of {@code this} will
+ * not exactly fit in a {@code short}.
+ * @see BigInteger#shortValue
+ * @since 1.8
+ */
+ public short shortValueExact() {
+ if (mag.length <= 1 && bitLength() <= 31) {
+ int value = intValue();
+ if (value >= Short.MIN_VALUE && value <= Short.MAX_VALUE)
+ return shortValue();
+ }
+ throw new ArithmeticException("BigInteger out of short range");
+ }
+
+ /**
+ * Converts this {@code BigInteger} to a {@code byte}, checking
+ * for lost information. If the value of this {@code BigInteger}
+ * is out of the range of the {@code byte} type, then an
+ * {@code ArithmeticException} is thrown.
+ *
+ * @return this {@code BigInteger} converted to a {@code byte}.
+ * @throws ArithmeticException if the value of {@code this} will
+ * not exactly fit in a {@code byte}.
+ * @see BigInteger#byteValue
+ * @since 1.8
+ */
+ public byte byteValueExact() {
+ if (mag.length <= 1 && bitLength() <= 31) {
+ int value = intValue();
+ if (value >= Byte.MIN_VALUE && value <= Byte.MAX_VALUE)
+ return byteValue();
+ }
+ throw new ArithmeticException("BigInteger out of byte range");
+ }
+}
diff --git a/ojluni/src/main/java/java/math/BitSieve.java b/ojluni/src/main/java/java/math/BitSieve.java
new file mode 100644
index 0000000000..8d0d370f9b
--- /dev/null
+++ b/ojluni/src/main/java/java/math/BitSieve.java
@@ -0,0 +1,212 @@
+/*
+ * Copyright (c) 1999, 2007, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.math;
+
+/**
+ * A simple bit sieve used for finding prime number candidates. Allows setting
+ * and clearing of bits in a storage array. The size of the sieve is assumed to
+ * be constant to reduce overhead. All the bits of a new bitSieve are zero, and
+ * bits are removed from it by setting them.
+ *
+ * To reduce storage space and increase efficiency, no even numbers are
+ * represented in the sieve (each bit in the sieve represents an odd number).
+ * The relationship between the index of a bit and the number it represents is
+ * given by
+ * N = offset + (2*index + 1);
+ * Where N is the integer represented by a bit in the sieve, offset is some
+ * even integer offset indicating where the sieve begins, and index is the
+ * index of a bit in the sieve array.
+ *
+ * @see BigInteger
+ * @author Michael McCloskey
+ * @since 1.3
+ */
+class BitSieve {
+ /**
+ * Stores the bits in this bitSieve.
+ */
+ private long bits[];
+
+ /**
+ * Length is how many bits this sieve holds.
+ */
+ private int length;
+
+ /**
+ * A small sieve used to filter out multiples of small primes in a search
+ * sieve.
+ */
+ private static BitSieve smallSieve = new BitSieve();
+
+ /**
+ * Construct a "small sieve" with a base of 0. This constructor is
+ * used internally to generate the set of "small primes" whose multiples
+ * are excluded from sieves generated by the main (package private)
+ * constructor, BitSieve(BigInteger base, int searchLen). The length
+ * of the sieve generated by this constructor was chosen for performance;
+ * it controls a tradeoff between how much time is spent constructing
+ * other sieves, and how much time is wasted testing composite candidates
+ * for primality. The length was chosen experimentally to yield good
+ * performance.
+ */
+ private BitSieve() {
+ length = 150 * 64;
+ bits = new long[(unitIndex(length - 1) + 1)];
+
+ // Mark 1 as composite
+ set(0);
+ int nextIndex = 1;
+ int nextPrime = 3;
+
+ // Find primes and remove their multiples from sieve
+ do {
+ sieveSingle(length, nextIndex + nextPrime, nextPrime);
+ nextIndex = sieveSearch(length, nextIndex + 1);
+ nextPrime = 2*nextIndex + 1;
+ } while((nextIndex > 0) && (nextPrime < length));
+ }
+
+ /**
+ * Construct a bit sieve of searchLen bits used for finding prime number
+ * candidates. The new sieve begins at the specified base, which must
+ * be even.
+ */
+ BitSieve(BigInteger base, int searchLen) {
+ /*
+ * Candidates are indicated by clear bits in the sieve. As a candidates
+ * nonprimality is calculated, a bit is set in the sieve to eliminate
+ * it. To reduce storage space and increase efficiency, no even numbers
+ * are represented in the sieve (each bit in the sieve represents an
+ * odd number).
+ */
+ bits = new long[(unitIndex(searchLen-1) + 1)];
+ length = searchLen;
+ int start = 0;
+
+ int step = smallSieve.sieveSearch(smallSieve.length, start);
+ int convertedStep = (step *2) + 1;
+
+ // Construct the large sieve at an even offset specified by base
+ MutableBigInteger b = new MutableBigInteger(base);
+ MutableBigInteger q = new MutableBigInteger();
+ do {
+ // Calculate base mod convertedStep
+ start = b.divideOneWord(convertedStep, q);
+
+ // Take each multiple of step out of sieve
+ start = convertedStep - start;
+ if (start%2 == 0)
+ start += convertedStep;
+ sieveSingle(searchLen, (start-1)/2, convertedStep);
+
+ // Find next prime from small sieve
+ step = smallSieve.sieveSearch(smallSieve.length, step+1);
+ convertedStep = (step *2) + 1;
+ } while (step > 0);
+ }
+
+ /**
+ * Given a bit index return unit index containing it.
+ */
+ private static int unitIndex(int bitIndex) {
+ return bitIndex >>> 6;
+ }
+
+ /**
+ * Return a unit that masks the specified bit in its unit.
+ */
+ private static long bit(int bitIndex) {
+ return 1L << (bitIndex & ((1<<6) - 1));
+ }
+
+ /**
+ * Get the value of the bit at the specified index.
+ */
+ private boolean get(int bitIndex) {
+ int unitIndex = unitIndex(bitIndex);
+ return ((bits[unitIndex] & bit(bitIndex)) != 0);
+ }
+
+ /**
+ * Set the bit at the specified index.
+ */
+ private void set(int bitIndex) {
+ int unitIndex = unitIndex(bitIndex);
+ bits[unitIndex] |= bit(bitIndex);
+ }
+
+ /**
+ * This method returns the index of the first clear bit in the search
+ * array that occurs at or after start. It will not search past the
+ * specified limit. It returns -1 if there is no such clear bit.
+ */
+ private int sieveSearch(int limit, int start) {
+ if (start >= limit)
+ return -1;
+
+ int index = start;
+ do {
+ if (!get(index))
+ return index;
+ index++;
+ } while(index < limit-1);
+ return -1;
+ }
+
+ /**
+ * Sieve a single set of multiples out of the sieve. Begin to remove
+ * multiples of the specified step starting at the specified start index,
+ * up to the specified limit.
+ */
+ private void sieveSingle(int limit, int start, int step) {
+ while(start < limit) {
+ set(start);
+ start += step;
+ }
+ }
+
+ /**
+ * Test probable primes in the sieve and return successful candidates.
+ */
+ BigInteger retrieve(BigInteger initValue, int certainty, java.util.Random random) {
+ // Examine the sieve one long at a time to find possible primes
+ int offset = 1;
+ for (int i=0; i<bits.length; i++) {
+ long nextLong = ~bits[i];
+ for (int j=0; j<64; j++) {
+ if ((nextLong & 1) == 1) {
+ BigInteger candidate = initValue.add(
+ BigInteger.valueOf(offset));
+ if (candidate.primeToCertainty(certainty, random))
+ return candidate;
+ }
+ nextLong >>>= 1;
+ offset+=2;
+ }
+ }
+ return null;
+ }
+}
diff --git a/ojluni/src/main/java/java/math/MathContext.java b/ojluni/src/main/java/java/math/MathContext.java
new file mode 100644
index 0000000000..f9947d36ca
--- /dev/null
+++ b/ojluni/src/main/java/java/math/MathContext.java
@@ -0,0 +1,326 @@
+/*
+ * Copyright (c) 2003, 2007, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+/*
+ * Portions Copyright IBM Corporation, 1997, 2001. All Rights Reserved.
+ */
+
+package java.math;
+import java.io.*;
+
+/**
+ * Immutable objects which encapsulate the context settings which
+ * describe certain rules for numerical operators, such as those
+ * implemented by the {@link BigDecimal} class.
+ *
+ * <p>The base-independent settings are:
+ * <ol>
+ * <li>{@code precision}:
+ * the number of digits to be used for an operation; results are
+ * rounded to this precision
+ *
+ * <li>{@code roundingMode}:
+ * a {@link RoundingMode} object which specifies the algorithm to be
+ * used for rounding.
+ * </ol>
+ *
+ * @see BigDecimal
+ * @see RoundingMode
+ * @author Mike Cowlishaw
+ * @author Joseph D. Darcy
+ * @since 1.5
+ */
+
+public final class MathContext implements Serializable {
+
+ /* ----- Constants ----- */
+
+ // defaults for constructors
+ private static final int DEFAULT_DIGITS = 9;
+ private static final RoundingMode DEFAULT_ROUNDINGMODE = RoundingMode.HALF_UP;
+ // Smallest values for digits (Maximum is Integer.MAX_VALUE)
+ private static final int MIN_DIGITS = 0;
+
+ // Serialization version
+ private static final long serialVersionUID = 5579720004786848255L;
+
+ /* ----- Public Properties ----- */
+ /**
+ * A {@code MathContext} object whose settings have the values
+ * required for unlimited precision arithmetic.
+ * The values of the settings are:
+ * <code>
+ * precision=0 roundingMode=HALF_UP
+ * </code>
+ */
+ public static final MathContext UNLIMITED =
+ new MathContext(0, RoundingMode.HALF_UP);
+
+ /**
+ * A {@code MathContext} object with a precision setting
+ * matching the IEEE 754R Decimal32 format, 7 digits, and a
+ * rounding mode of {@link RoundingMode#HALF_EVEN HALF_EVEN}, the
+ * IEEE 754R default.
+ */
+ public static final MathContext DECIMAL32 =
+ new MathContext(7, RoundingMode.HALF_EVEN);
+
+ /**
+ * A {@code MathContext} object with a precision setting
+ * matching the IEEE 754R Decimal64 format, 16 digits, and a
+ * rounding mode of {@link RoundingMode#HALF_EVEN HALF_EVEN}, the
+ * IEEE 754R default.
+ */
+ public static final MathContext DECIMAL64 =
+ new MathContext(16, RoundingMode.HALF_EVEN);
+
+ /**
+ * A {@code MathContext} object with a precision setting
+ * matching the IEEE 754R Decimal128 format, 34 digits, and a
+ * rounding mode of {@link RoundingMode#HALF_EVEN HALF_EVEN}, the
+ * IEEE 754R default.
+ */
+ public static final MathContext DECIMAL128 =
+ new MathContext(34, RoundingMode.HALF_EVEN);
+
+ /* ----- Shared Properties ----- */
+ /**
+ * The number of digits to be used for an operation. A value of 0
+ * indicates that unlimited precision (as many digits as are
+ * required) will be used. Note that leading zeros (in the
+ * coefficient of a number) are never significant.
+ *
+ * <p>{@code precision} will always be non-negative.
+ *
+ * @serial
+ */
+ final int precision;
+
+ /**
+ * The rounding algorithm to be used for an operation.
+ *
+ * @see RoundingMode
+ * @serial
+ */
+ final RoundingMode roundingMode;
+
+ /* ----- Constructors ----- */
+
+ /**
+ * Constructs a new {@code MathContext} with the specified
+ * precision and the {@link RoundingMode#HALF_UP HALF_UP} rounding
+ * mode.
+ *
+ * @param setPrecision The non-negative {@code int} precision setting.
+ * @throws IllegalArgumentException if the {@code setPrecision} parameter is less
+ * than zero.
+ */
+ public MathContext(int setPrecision) {
+ this(setPrecision, DEFAULT_ROUNDINGMODE);
+ return;
+ }
+
+ /**
+ * Constructs a new {@code MathContext} with a specified
+ * precision and rounding mode.
+ *
+ * @param setPrecision The non-negative {@code int} precision setting.
+ * @param setRoundingMode The rounding mode to use.
+ * @throws IllegalArgumentException if the {@code setPrecision} parameter is less
+ * than zero.
+ * @throws NullPointerException if the rounding mode argument is {@code null}
+ */
+ public MathContext(int setPrecision,
+ RoundingMode setRoundingMode) {
+ if (setPrecision < MIN_DIGITS)
+ throw new IllegalArgumentException("Digits < 0");
+ if (setRoundingMode == null)
+ throw new NullPointerException("null RoundingMode");
+
+ precision = setPrecision;
+ roundingMode = setRoundingMode;
+ return;
+ }
+
+ /**
+ * Constructs a new {@code MathContext} from a string.
+ *
+ * The string must be in the same format as that produced by the
+ * {@link #toString} method.
+ *
+ * <p>An {@code IllegalArgumentException} is thrown if the precision
+ * section of the string is out of range ({@code < 0}) or the string is
+ * not in the format created by the {@link #toString} method.
+ *
+ * @param val The string to be parsed
+ * @throws IllegalArgumentException if the precision section is out of range
+ * or of incorrect format
+ * @throws NullPointerException if the argument is {@code null}
+ */
+ public MathContext(String val) {
+ boolean bad = false;
+ int setPrecision;
+ if (val == null)
+ throw new NullPointerException("null String");
+ try { // any error here is a string format problem
+ if (!val.startsWith("precision=")) throw new RuntimeException();
+ int fence = val.indexOf(' '); // could be -1
+ int off = 10; // where value starts
+ setPrecision = Integer.parseInt(val.substring(10, fence));
+
+ if (!val.startsWith("roundingMode=", fence+1))
+ throw new RuntimeException();
+ off = fence + 1 + 13;
+ String str = val.substring(off, val.length());
+ roundingMode = RoundingMode.valueOf(str);
+ } catch (RuntimeException re) {
+ throw new IllegalArgumentException("bad string format");
+ }
+
+ if (setPrecision < MIN_DIGITS)
+ throw new IllegalArgumentException("Digits < 0");
+ // the other parameters cannot be invalid if we got here
+ precision = setPrecision;
+ }
+
+ /**
+ * Returns the {@code precision} setting.
+ * This value is always non-negative.
+ *
+ * @return an {@code int} which is the value of the {@code precision}
+ * setting
+ */
+ public int getPrecision() {
+ return precision;
+ }
+
+ /**
+ * Returns the roundingMode setting.
+ * This will be one of
+ * {@link RoundingMode#CEILING},
+ * {@link RoundingMode#DOWN},
+ * {@link RoundingMode#FLOOR},
+ * {@link RoundingMode#HALF_DOWN},
+ * {@link RoundingMode#HALF_EVEN},
+ * {@link RoundingMode#HALF_UP},
+ * {@link RoundingMode#UNNECESSARY}, or
+ * {@link RoundingMode#UP}.
+ *
+ * @return a {@code RoundingMode} object which is the value of the
+ * {@code roundingMode} setting
+ */
+
+ public RoundingMode getRoundingMode() {
+ return roundingMode;
+ }
+
+ /**
+ * Compares this {@code MathContext} with the specified
+ * {@code Object} for equality.
+ *
+ * @param x {@code Object} to which this {@code MathContext} is to
+ * be compared.
+ * @return {@code true} if and only if the specified {@code Object} is
+ * a {@code MathContext} object which has exactly the same
+ * settings as this object
+ */
+ public boolean equals(Object x){
+ MathContext mc;
+ if (!(x instanceof MathContext))
+ return false;
+ mc = (MathContext) x;
+ return mc.precision == this.precision
+ && mc.roundingMode == this.roundingMode; // no need for .equals()
+ }
+
+ /**
+ * Returns the hash code for this {@code MathContext}.
+ *
+ * @return hash code for this {@code MathContext}
+ */
+ public int hashCode() {
+ return this.precision + roundingMode.hashCode() * 59;
+ }
+
+ /**
+ * Returns the string representation of this {@code MathContext}.
+ * The {@code String} returned represents the settings of the
+ * {@code MathContext} object as two space-delimited words
+ * (separated by a single space character, <tt>'&#92;u0020'</tt>,
+ * and with no leading or trailing white space), as follows:
+ * <ol>
+ * <li>
+ * The string {@code "precision="}, immediately followed
+ * by the value of the precision setting as a numeric string as if
+ * generated by the {@link Integer#toString(int) Integer.toString}
+ * method.
+ *
+ * <li>
+ * The string {@code "roundingMode="}, immediately
+ * followed by the value of the {@code roundingMode} setting as a
+ * word. This word will be the same as the name of the
+ * corresponding public constant in the {@link RoundingMode}
+ * enum.
+ * </ol>
+ * <p>
+ * For example:
+ * <pre>
+ * precision=9 roundingMode=HALF_UP
+ * </pre>
+ *
+ * Additional words may be appended to the result of
+ * {@code toString} in the future if more properties are added to
+ * this class.
+ *
+ * @return a {@code String} representing the context settings
+ */
+ public java.lang.String toString() {
+ return "precision=" + precision + " " +
+ "roundingMode=" + roundingMode.toString();
+ }
+
+ // Private methods
+
+ /**
+ * Reconstitute the {@code MathContext} instance from a stream (that is,
+ * deserialize it).
+ *
+ * @param s the stream being read.
+ */
+ private void readObject(java.io.ObjectInputStream s)
+ throws java.io.IOException, ClassNotFoundException {
+ s.defaultReadObject(); // read in all fields
+ // validate possibly bad fields
+ if (precision < MIN_DIGITS) {
+ String message = "MathContext: invalid digits in stream";
+ throw new java.io.StreamCorruptedException(message);
+ }
+ if (roundingMode == null) {
+ String message = "MathContext: null roundingMode in stream";
+ throw new java.io.StreamCorruptedException(message);
+ }
+ }
+
+}
diff --git a/ojluni/src/main/java/java/math/MutableBigInteger.java b/ojluni/src/main/java/java/math/MutableBigInteger.java
new file mode 100644
index 0000000000..b9cb0fb0de
--- /dev/null
+++ b/ojluni/src/main/java/java/math/MutableBigInteger.java
@@ -0,0 +1,2263 @@
+/*
+ * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.math;
+
+/**
+ * A class used to represent multiprecision integers that makes efficient
+ * use of allocated space by allowing a number to occupy only part of
+ * an array so that the arrays do not have to be reallocated as often.
+ * When performing an operation with many iterations the array used to
+ * hold a number is only reallocated when necessary and does not have to
+ * be the same size as the number it represents. A mutable number allows
+ * calculations to occur on the same number without having to create
+ * a new number for every step of the calculation as occurs with
+ * BigIntegers.
+ *
+ * @see BigInteger
+ * @author Michael McCloskey
+ * @author Timothy Buktu
+ * @since 1.3
+ */
+
+import static java.math.BigDecimal.INFLATED;
+import static java.math.BigInteger.LONG_MASK;
+import java.util.Arrays;
+
+class MutableBigInteger {
+ /**
+ * Holds the magnitude of this MutableBigInteger in big endian order.
+ * The magnitude may start at an offset into the value array, and it may
+ * end before the length of the value array.
+ */
+ int[] value;
+
+ /**
+ * The number of ints of the value array that are currently used
+ * to hold the magnitude of this MutableBigInteger. The magnitude starts
+ * at an offset and offset + intLen may be less than value.length.
+ */
+ int intLen;
+
+ /**
+ * The offset into the value array where the magnitude of this
+ * MutableBigInteger begins.
+ */
+ int offset = 0;
+
+ // Constants
+ /**
+ * MutableBigInteger with one element value array with the value 1. Used by
+ * BigDecimal divideAndRound to increment the quotient. Use this constant
+ * only when the method is not going to modify this object.
+ */
+ static final MutableBigInteger ONE = new MutableBigInteger(1);
+
+ /**
+ * The minimum {@code intLen} for cancelling powers of two before
+ * dividing.
+ * If the number of ints is less than this threshold,
+ * {@code divideKnuth} does not eliminate common powers of two from
+ * the dividend and divisor.
+ */
+ static final int KNUTH_POW2_THRESH_LEN = 6;
+
+ /**
+ * The minimum number of trailing zero ints for cancelling powers of two
+ * before dividing.
+ * If the dividend and divisor don't share at least this many zero ints
+ * at the end, {@code divideKnuth} does not eliminate common powers
+ * of two from the dividend and divisor.
+ */
+ static final int KNUTH_POW2_THRESH_ZEROS = 3;
+
+ // Constructors
+
+ /**
+ * The default constructor. An empty MutableBigInteger is created with
+ * a one word capacity.
+ */
+ MutableBigInteger() {
+ value = new int[1];
+ intLen = 0;
+ }
+
+ /**
+ * Construct a new MutableBigInteger with a magnitude specified by
+ * the int val.
+ */
+ MutableBigInteger(int val) {
+ value = new int[1];
+ intLen = 1;
+ value[0] = val;
+ }
+
+ /**
+ * Construct a new MutableBigInteger with the specified value array
+ * up to the length of the array supplied.
+ */
+ MutableBigInteger(int[] val) {
+ value = val;
+ intLen = val.length;
+ }
+
+ /**
+ * Construct a new MutableBigInteger with a magnitude equal to the
+ * specified BigInteger.
+ */
+ MutableBigInteger(BigInteger b) {
+ intLen = b.mag.length;
+ value = Arrays.copyOf(b.mag, intLen);
+ }
+
+ /**
+ * Construct a new MutableBigInteger with a magnitude equal to the
+ * specified MutableBigInteger.
+ */
+ MutableBigInteger(MutableBigInteger val) {
+ intLen = val.intLen;
+ value = Arrays.copyOfRange(val.value, val.offset, val.offset + intLen);
+ }
+
+ /**
+ * Makes this number an {@code n}-int number all of whose bits are ones.
+ * Used by Burnikel-Ziegler division.
+ * @param n number of ints in the {@code value} array
+ * @return a number equal to {@code ((1<<(32*n)))-1}
+ */
+ private void ones(int n) {
+ if (n > value.length)
+ value = new int[n];
+ Arrays.fill(value, -1);
+ offset = 0;
+ intLen = n;
+ }
+
+ /**
+ * Internal helper method to return the magnitude array. The caller is not
+ * supposed to modify the returned array.
+ */
+ private int[] getMagnitudeArray() {
+ if (offset > 0 || value.length != intLen)
+ return Arrays.copyOfRange(value, offset, offset + intLen);
+ return value;
+ }
+
+ /**
+ * Convert this MutableBigInteger to a long value. The caller has to make
+ * sure this MutableBigInteger can be fit into long.
+ */
+ private long toLong() {
+ assert (intLen <= 2) : "this MutableBigInteger exceeds the range of long";
+ if (intLen == 0)
+ return 0;
+ long d = value[offset] & LONG_MASK;
+ return (intLen == 2) ? d << 32 | (value[offset + 1] & LONG_MASK) : d;
+ }
+
+ /**
+ * Convert this MutableBigInteger to a BigInteger object.
+ */
+ BigInteger toBigInteger(int sign) {
+ if (intLen == 0 || sign == 0)
+ return BigInteger.ZERO;
+ return new BigInteger(getMagnitudeArray(), sign);
+ }
+
+ /**
+ * Converts this number to a nonnegative {@code BigInteger}.
+ */
+ BigInteger toBigInteger() {
+ normalize();
+ return toBigInteger(isZero() ? 0 : 1);
+ }
+
+ /**
+ * Convert this MutableBigInteger to BigDecimal object with the specified sign
+ * and scale.
+ */
+ BigDecimal toBigDecimal(int sign, int scale) {
+ if (intLen == 0 || sign == 0)
+ return BigDecimal.zeroValueOf(scale);
+ int[] mag = getMagnitudeArray();
+ int len = mag.length;
+ int d = mag[0];
+ // If this MutableBigInteger can't be fit into long, we need to
+ // make a BigInteger object for the resultant BigDecimal object.
+ if (len > 2 || (d < 0 && len == 2))
+ return new BigDecimal(new BigInteger(mag, sign), INFLATED, scale, 0);
+ long v = (len == 2) ?
+ ((mag[1] & LONG_MASK) | (d & LONG_MASK) << 32) :
+ d & LONG_MASK;
+ return BigDecimal.valueOf(sign == -1 ? -v : v, scale);
+ }
+
+ /**
+ * This is for internal use in converting from a MutableBigInteger
+ * object into a long value given a specified sign.
+ * returns INFLATED if value is not fit into long
+ */
+ long toCompactValue(int sign) {
+ if (intLen == 0 || sign == 0)
+ return 0L;
+ int[] mag = getMagnitudeArray();
+ int len = mag.length;
+ int d = mag[0];
+ // If this MutableBigInteger can not be fitted into long, we need to
+ // make a BigInteger object for the resultant BigDecimal object.
+ if (len > 2 || (d < 0 && len == 2))
+ return INFLATED;
+ long v = (len == 2) ?
+ ((mag[1] & LONG_MASK) | (d & LONG_MASK) << 32) :
+ d & LONG_MASK;
+ return sign == -1 ? -v : v;
+ }
+
+ /**
+ * Clear out a MutableBigInteger for reuse.
+ */
+ void clear() {
+ offset = intLen = 0;
+ for (int index=0, n=value.length; index < n; index++)
+ value[index] = 0;
+ }
+
+ /**
+ * Set a MutableBigInteger to zero, removing its offset.
+ */
+ void reset() {
+ offset = intLen = 0;
+ }
+
+ /**
+ * Compare the magnitude of two MutableBigIntegers. Returns -1, 0 or 1
+ * as this MutableBigInteger is numerically less than, equal to, or
+ * greater than <tt>b</tt>.
+ */
+ final int compare(MutableBigInteger b) {
+ int blen = b.intLen;
+ if (intLen < blen)
+ return -1;
+ if (intLen > blen)
+ return 1;
+
+ // Add Integer.MIN_VALUE to make the comparison act as unsigned integer
+ // comparison.
+ int[] bval = b.value;
+ for (int i = offset, j = b.offset; i < intLen + offset; i++, j++) {
+ int b1 = value[i] + 0x80000000;
+ int b2 = bval[j] + 0x80000000;
+ if (b1 < b2)
+ return -1;
+ if (b1 > b2)
+ return 1;
+ }
+ return 0;
+ }
+
+ /**
+ * Returns a value equal to what {@code b.leftShift(32*ints); return compare(b);}
+ * would return, but doesn't change the value of {@code b}.
+ */
+ private int compareShifted(MutableBigInteger b, int ints) {
+ int blen = b.intLen;
+ int alen = intLen - ints;
+ if (alen < blen)
+ return -1;
+ if (alen > blen)
+ return 1;
+
+ // Add Integer.MIN_VALUE to make the comparison act as unsigned integer
+ // comparison.
+ int[] bval = b.value;
+ for (int i = offset, j = b.offset; i < alen + offset; i++, j++) {
+ int b1 = value[i] + 0x80000000;
+ int b2 = bval[j] + 0x80000000;
+ if (b1 < b2)
+ return -1;
+ if (b1 > b2)
+ return 1;
+ }
+ return 0;
+ }
+
+ /**
+ * Compare this against half of a MutableBigInteger object (Needed for
+ * remainder tests).
+ * Assumes no leading unnecessary zeros, which holds for results
+ * from divide().
+ */
+ final int compareHalf(MutableBigInteger b) {
+ int blen = b.intLen;
+ int len = intLen;
+ if (len <= 0)
+ return blen <= 0 ? 0 : -1;
+ if (len > blen)
+ return 1;
+ if (len < blen - 1)
+ return -1;
+ int[] bval = b.value;
+ int bstart = 0;
+ int carry = 0;
+ // Only 2 cases left:len == blen or len == blen - 1
+ if (len != blen) { // len == blen - 1
+ if (bval[bstart] == 1) {
+ ++bstart;
+ carry = 0x80000000;
+ } else
+ return -1;
+ }
+ // compare values with right-shifted values of b,
+ // carrying shifted-out bits across words
+ int[] val = value;
+ for (int i = offset, j = bstart; i < len + offset;) {
+ int bv = bval[j++];
+ long hb = ((bv >>> 1) + carry) & LONG_MASK;
+ long v = val[i++] & LONG_MASK;
+ if (v != hb)
+ return v < hb ? -1 : 1;
+ carry = (bv & 1) << 31; // carray will be either 0x80000000 or 0
+ }
+ return carry == 0 ? 0 : -1;
+ }
+
+ /**
+ * Return the index of the lowest set bit in this MutableBigInteger. If the
+ * magnitude of this MutableBigInteger is zero, -1 is returned.
+ */
+ private final int getLowestSetBit() {
+ if (intLen == 0)
+ return -1;
+ int j, b;
+ for (j=intLen-1; (j > 0) && (value[j+offset] == 0); j--)
+ ;
+ b = value[j+offset];
+ if (b == 0)
+ return -1;
+ return ((intLen-1-j)<<5) + Integer.numberOfTrailingZeros(b);
+ }
+
+ /**
+ * Return the int in use in this MutableBigInteger at the specified
+ * index. This method is not used because it is not inlined on all
+ * platforms.
+ */
+ private final int getInt(int index) {
+ return value[offset+index];
+ }
+
+ /**
+ * Return a long which is equal to the unsigned value of the int in
+ * use in this MutableBigInteger at the specified index. This method is
+ * not used because it is not inlined on all platforms.
+ */
+ private final long getLong(int index) {
+ return value[offset+index] & LONG_MASK;
+ }
+
+ /**
+ * Ensure that the MutableBigInteger is in normal form, specifically
+ * making sure that there are no leading zeros, and that if the
+ * magnitude is zero, then intLen is zero.
+ */
+ final void normalize() {
+ if (intLen == 0) {
+ offset = 0;
+ return;
+ }
+
+ int index = offset;
+ if (value[index] != 0)
+ return;
+
+ int indexBound = index+intLen;
+ do {
+ index++;
+ } while(index < indexBound && value[index] == 0);
+
+ int numZeros = index - offset;
+ intLen -= numZeros;
+ offset = (intLen == 0 ? 0 : offset+numZeros);
+ }
+
+ /**
+ * If this MutableBigInteger cannot hold len words, increase the size
+ * of the value array to len words.
+ */
+ private final void ensureCapacity(int len) {
+ if (value.length < len) {
+ value = new int[len];
+ offset = 0;
+ intLen = len;
+ }
+ }
+
+ /**
+ * Convert this MutableBigInteger into an int array with no leading
+ * zeros, of a length that is equal to this MutableBigInteger's intLen.
+ */
+ int[] toIntArray() {
+ int[] result = new int[intLen];
+ for(int i=0; i < intLen; i++)
+ result[i] = value[offset+i];
+ return result;
+ }
+
+ /**
+ * Sets the int at index+offset in this MutableBigInteger to val.
+ * This does not get inlined on all platforms so it is not used
+ * as often as originally intended.
+ */
+ void setInt(int index, int val) {
+ value[offset + index] = val;
+ }
+
+ /**
+ * Sets this MutableBigInteger's value array to the specified array.
+ * The intLen is set to the specified length.
+ */
+ void setValue(int[] val, int length) {
+ value = val;
+ intLen = length;
+ offset = 0;
+ }
+
+ /**
+ * Sets this MutableBigInteger's value array to a copy of the specified
+ * array. The intLen is set to the length of the new array.
+ */
+ void copyValue(MutableBigInteger src) {
+ int len = src.intLen;
+ if (value.length < len)
+ value = new int[len];
+ System.arraycopy(src.value, src.offset, value, 0, len);
+ intLen = len;
+ offset = 0;
+ }
+
+ /**
+ * Sets this MutableBigInteger's value array to a copy of the specified
+ * array. The intLen is set to the length of the specified array.
+ */
+ void copyValue(int[] val) {
+ int len = val.length;
+ if (value.length < len)
+ value = new int[len];
+ System.arraycopy(val, 0, value, 0, len);
+ intLen = len;
+ offset = 0;
+ }
+
+ /**
+ * Returns true iff this MutableBigInteger has a value of one.
+ */
+ boolean isOne() {
+ return (intLen == 1) && (value[offset] == 1);
+ }
+
+ /**
+ * Returns true iff this MutableBigInteger has a value of zero.
+ */
+ boolean isZero() {
+ return (intLen == 0);
+ }
+
+ /**
+ * Returns true iff this MutableBigInteger is even.
+ */
+ boolean isEven() {
+ return (intLen == 0) || ((value[offset + intLen - 1] & 1) == 0);
+ }
+
+ /**
+ * Returns true iff this MutableBigInteger is odd.
+ */
+ boolean isOdd() {
+ return isZero() ? false : ((value[offset + intLen - 1] & 1) == 1);
+ }
+
+ /**
+ * Returns true iff this MutableBigInteger is in normal form. A
+ * MutableBigInteger is in normal form if it has no leading zeros
+ * after the offset, and intLen + offset <= value.length.
+ */
+ boolean isNormal() {
+ if (intLen + offset > value.length)
+ return false;
+ if (intLen == 0)
+ return true;
+ return (value[offset] != 0);
+ }
+
+ /**
+ * Returns a String representation of this MutableBigInteger in radix 10.
+ */
+ public String toString() {
+ BigInteger b = toBigInteger(1);
+ return b.toString();
+ }
+
+ /**
+ * Like {@link #rightShift(int)} but {@code n} can be greater than the length of the number.
+ */
+ void safeRightShift(int n) {
+ if (n/32 >= intLen) {
+ reset();
+ } else {
+ rightShift(n);
+ }
+ }
+
+ /**
+ * Right shift this MutableBigInteger n bits. The MutableBigInteger is left
+ * in normal form.
+ */
+ void rightShift(int n) {
+ if (intLen == 0)
+ return;
+ int nInts = n >>> 5;
+ int nBits = n & 0x1F;
+ this.intLen -= nInts;
+ if (nBits == 0)
+ return;
+ int bitsInHighWord = BigInteger.bitLengthForInt(value[offset]);
+ if (nBits >= bitsInHighWord) {
+ this.primitiveLeftShift(32 - nBits);
+ this.intLen--;
+ } else {
+ primitiveRightShift(nBits);
+ }
+ }
+
+ /**
+ * Like {@link #leftShift(int)} but {@code n} can be zero.
+ */
+ void safeLeftShift(int n) {
+ if (n > 0) {
+ leftShift(n);
+ }
+ }
+
+ /**
+ * Left shift this MutableBigInteger n bits.
+ */
+ void leftShift(int n) {
+ /*
+ * If there is enough storage space in this MutableBigInteger already
+ * the available space will be used. Space to the right of the used
+ * ints in the value array is faster to utilize, so the extra space
+ * will be taken from the right if possible.
+ */
+ if (intLen == 0)
+ return;
+ int nInts = n >>> 5;
+ int nBits = n&0x1F;
+ int bitsInHighWord = BigInteger.bitLengthForInt(value[offset]);
+
+ // If shift can be done without moving words, do so
+ if (n <= (32-bitsInHighWord)) {
+ primitiveLeftShift(nBits);
+ return;
+ }
+
+ int newLen = intLen + nInts +1;
+ if (nBits <= (32-bitsInHighWord))
+ newLen--;
+ if (value.length < newLen) {
+ // The array must grow
+ int[] result = new int[newLen];
+ for (int i=0; i < intLen; i++)
+ result[i] = value[offset+i];
+ setValue(result, newLen);
+ } else if (value.length - offset >= newLen) {
+ // Use space on right
+ for(int i=0; i < newLen - intLen; i++)
+ value[offset+intLen+i] = 0;
+ } else {
+ // Must use space on left
+ for (int i=0; i < intLen; i++)
+ value[i] = value[offset+i];
+ for (int i=intLen; i < newLen; i++)
+ value[i] = 0;
+ offset = 0;
+ }
+ intLen = newLen;
+ if (nBits == 0)
+ return;
+ if (nBits <= (32-bitsInHighWord))
+ primitiveLeftShift(nBits);
+ else
+ primitiveRightShift(32 -nBits);
+ }
+
+ /**
+ * A primitive used for division. This method adds in one multiple of the
+ * divisor a back to the dividend result at a specified offset. It is used
+ * when qhat was estimated too large, and must be adjusted.
+ */
+ private int divadd(int[] a, int[] result, int offset) {
+ long carry = 0;
+
+ for (int j=a.length-1; j >= 0; j--) {
+ long sum = (a[j] & LONG_MASK) +
+ (result[j+offset] & LONG_MASK) + carry;
+ result[j+offset] = (int)sum;
+ carry = sum >>> 32;
+ }
+ return (int)carry;
+ }
+
+ /**
+ * This method is used for division. It multiplies an n word input a by one
+ * word input x, and subtracts the n word product from q. This is needed
+ * when subtracting qhat*divisor from dividend.
+ */
+ private int mulsub(int[] q, int[] a, int x, int len, int offset) {
+ long xLong = x & LONG_MASK;
+ long carry = 0;
+ offset += len;
+
+ for (int j=len-1; j >= 0; j--) {
+ long product = (a[j] & LONG_MASK) * xLong + carry;
+ long difference = q[offset] - product;
+ q[offset--] = (int)difference;
+ carry = (product >>> 32)
+ + (((difference & LONG_MASK) >
+ (((~(int)product) & LONG_MASK))) ? 1:0);
+ }
+ return (int)carry;
+ }
+
+ /**
+ * The method is the same as mulsun, except the fact that q array is not
+ * updated, the only result of the method is borrow flag.
+ */
+ private int mulsubBorrow(int[] q, int[] a, int x, int len, int offset) {
+ long xLong = x & LONG_MASK;
+ long carry = 0;
+ offset += len;
+ for (int j=len-1; j >= 0; j--) {
+ long product = (a[j] & LONG_MASK) * xLong + carry;
+ long difference = q[offset--] - product;
+ carry = (product >>> 32)
+ + (((difference & LONG_MASK) >
+ (((~(int)product) & LONG_MASK))) ? 1:0);
+ }
+ return (int)carry;
+ }
+
+ /**
+ * Right shift this MutableBigInteger n bits, where n is
+ * less than 32.
+ * Assumes that intLen > 0, n > 0 for speed
+ */
+ private final void primitiveRightShift(int n) {
+ int[] val = value;
+ int n2 = 32 - n;
+ for (int i=offset+intLen-1, c=val[i]; i > offset; i--) {
+ int b = c;
+ c = val[i-1];
+ val[i] = (c << n2) | (b >>> n);
+ }
+ val[offset] >>>= n;
+ }
+
+ /**
+ * Left shift this MutableBigInteger n bits, where n is
+ * less than 32.
+ * Assumes that intLen > 0, n > 0 for speed
+ */
+ private final void primitiveLeftShift(int n) {
+ int[] val = value;
+ int n2 = 32 - n;
+ for (int i=offset, c=val[i], m=i+intLen-1; i < m; i++) {
+ int b = c;
+ c = val[i+1];
+ val[i] = (b << n) | (c >>> n2);
+ }
+ val[offset+intLen-1] <<= n;
+ }
+
+ /**
+ * Returns a {@code BigInteger} equal to the {@code n}
+ * low ints of this number.
+ */
+ private BigInteger getLower(int n) {
+ if (isZero()) {
+ return BigInteger.ZERO;
+ } else if (intLen < n) {
+ return toBigInteger(1);
+ } else {
+ // strip zeros
+ int len = n;
+ while (len > 0 && value[offset+intLen-len] == 0)
+ len--;
+ int sign = len > 0 ? 1 : 0;
+ return new BigInteger(Arrays.copyOfRange(value, offset+intLen-len, offset+intLen), sign);
+ }
+ }
+
+ /**
+ * Discards all ints whose index is greater than {@code n}.
+ */
+ private void keepLower(int n) {
+ if (intLen >= n) {
+ offset += intLen - n;
+ intLen = n;
+ }
+ }
+
+ /**
+ * Adds the contents of two MutableBigInteger objects.The result
+ * is placed within this MutableBigInteger.
+ * The contents of the addend are not changed.
+ */
+ void add(MutableBigInteger addend) {
+ int x = intLen;
+ int y = addend.intLen;
+ int resultLen = (intLen > addend.intLen ? intLen : addend.intLen);
+ int[] result = (value.length < resultLen ? new int[resultLen] : value);
+
+ int rstart = result.length-1;
+ long sum;
+ long carry = 0;
+
+ // Add common parts of both numbers
+ while(x > 0 && y > 0) {
+ x--; y--;
+ sum = (value[x+offset] & LONG_MASK) +
+ (addend.value[y+addend.offset] & LONG_MASK) + carry;
+ result[rstart--] = (int)sum;
+ carry = sum >>> 32;
+ }
+
+ // Add remainder of the longer number
+ while(x > 0) {
+ x--;
+ if (carry == 0 && result == value && rstart == (x + offset))
+ return;
+ sum = (value[x+offset] & LONG_MASK) + carry;
+ result[rstart--] = (int)sum;
+ carry = sum >>> 32;
+ }
+ while(y > 0) {
+ y--;
+ sum = (addend.value[y+addend.offset] & LONG_MASK) + carry;
+ result[rstart--] = (int)sum;
+ carry = sum >>> 32;
+ }
+
+ if (carry > 0) { // Result must grow in length
+ resultLen++;
+ if (result.length < resultLen) {
+ int temp[] = new int[resultLen];
+ // Result one word longer from carry-out; copy low-order
+ // bits into new result.
+ System.arraycopy(result, 0, temp, 1, result.length);
+ temp[0] = 1;
+ result = temp;
+ } else {
+ result[rstart--] = 1;
+ }
+ }
+
+ value = result;
+ intLen = resultLen;
+ offset = result.length - resultLen;
+ }
+
+ /**
+ * Adds the value of {@code addend} shifted {@code n} ints to the left.
+ * Has the same effect as {@code addend.leftShift(32*ints); add(addend);}
+ * but doesn't change the value of {@code addend}.
+ */
+ void addShifted(MutableBigInteger addend, int n) {
+ if (addend.isZero()) {
+ return;
+ }
+
+ int x = intLen;
+ int y = addend.intLen + n;
+ int resultLen = (intLen > y ? intLen : y);
+ int[] result = (value.length < resultLen ? new int[resultLen] : value);
+
+ int rstart = result.length-1;
+ long sum;
+ long carry = 0;
+
+ // Add common parts of both numbers
+ while (x > 0 && y > 0) {
+ x--; y--;
+ int bval = y+addend.offset < addend.value.length ? addend.value[y+addend.offset] : 0;
+ sum = (value[x+offset] & LONG_MASK) +
+ (bval & LONG_MASK) + carry;
+ result[rstart--] = (int)sum;
+ carry = sum >>> 32;
+ }
+
+ // Add remainder of the longer number
+ while (x > 0) {
+ x--;
+ if (carry == 0 && result == value && rstart == (x + offset)) {
+ return;
+ }
+ sum = (value[x+offset] & LONG_MASK) + carry;
+ result[rstart--] = (int)sum;
+ carry = sum >>> 32;
+ }
+ while (y > 0) {
+ y--;
+ int bval = y+addend.offset < addend.value.length ? addend.value[y+addend.offset] : 0;
+ sum = (bval & LONG_MASK) + carry;
+ result[rstart--] = (int)sum;
+ carry = sum >>> 32;
+ }
+
+ if (carry > 0) { // Result must grow in length
+ resultLen++;
+ if (result.length < resultLen) {
+ int temp[] = new int[resultLen];
+ // Result one word longer from carry-out; copy low-order
+ // bits into new result.
+ System.arraycopy(result, 0, temp, 1, result.length);
+ temp[0] = 1;
+ result = temp;
+ } else {
+ result[rstart--] = 1;
+ }
+ }
+
+ value = result;
+ intLen = resultLen;
+ offset = result.length - resultLen;
+ }
+
+ /**
+ * Like {@link #addShifted(MutableBigInteger, int)} but {@code this.intLen} must
+ * not be greater than {@code n}. In other words, concatenates {@code this}
+ * and {@code addend}.
+ */
+ void addDisjoint(MutableBigInteger addend, int n) {
+ if (addend.isZero())
+ return;
+
+ int x = intLen;
+ int y = addend.intLen + n;
+ int resultLen = (intLen > y ? intLen : y);
+ int[] result;
+ if (value.length < resultLen)
+ result = new int[resultLen];
+ else {
+ result = value;
+ Arrays.fill(value, offset+intLen, value.length, 0);
+ }
+
+ int rstart = result.length-1;
+
+ // copy from this if needed
+ System.arraycopy(value, offset, result, rstart+1-x, x);
+ y -= x;
+ rstart -= x;
+
+ int len = Math.min(y, addend.value.length-addend.offset);
+ System.arraycopy(addend.value, addend.offset, result, rstart+1-y, len);
+
+ // zero the gap
+ for (int i=rstart+1-y+len; i < rstart+1; i++)
+ result[i] = 0;
+
+ value = result;
+ intLen = resultLen;
+ offset = result.length - resultLen;
+ }
+
+ /**
+ * Adds the low {@code n} ints of {@code addend}.
+ */
+ void addLower(MutableBigInteger addend, int n) {
+ MutableBigInteger a = new MutableBigInteger(addend);
+ if (a.offset + a.intLen >= n) {
+ a.offset = a.offset + a.intLen - n;
+ a.intLen = n;
+ }
+ a.normalize();
+ add(a);
+ }
+
+ /**
+ * Subtracts the smaller of this and b from the larger and places the
+ * result into this MutableBigInteger.
+ */
+ int subtract(MutableBigInteger b) {
+ MutableBigInteger a = this;
+
+ int[] result = value;
+ int sign = a.compare(b);
+
+ if (sign == 0) {
+ reset();
+ return 0;
+ }
+ if (sign < 0) {
+ MutableBigInteger tmp = a;
+ a = b;
+ b = tmp;
+ }
+
+ int resultLen = a.intLen;
+ if (result.length < resultLen)
+ result = new int[resultLen];
+
+ long diff = 0;
+ int x = a.intLen;
+ int y = b.intLen;
+ int rstart = result.length - 1;
+
+ // Subtract common parts of both numbers
+ while (y > 0) {
+ x--; y--;
+
+ diff = (a.value[x+a.offset] & LONG_MASK) -
+ (b.value[y+b.offset] & LONG_MASK) - ((int)-(diff>>32));
+ result[rstart--] = (int)diff;
+ }
+ // Subtract remainder of longer number
+ while (x > 0) {
+ x--;
+ diff = (a.value[x+a.offset] & LONG_MASK) - ((int)-(diff>>32));
+ result[rstart--] = (int)diff;
+ }
+
+ value = result;
+ intLen = resultLen;
+ offset = value.length - resultLen;
+ normalize();
+ return sign;
+ }
+
+ /**
+ * Subtracts the smaller of a and b from the larger and places the result
+ * into the larger. Returns 1 if the answer is in a, -1 if in b, 0 if no
+ * operation was performed.
+ */
+ private int difference(MutableBigInteger b) {
+ MutableBigInteger a = this;
+ int sign = a.compare(b);
+ if (sign == 0)
+ return 0;
+ if (sign < 0) {
+ MutableBigInteger tmp = a;
+ a = b;
+ b = tmp;
+ }
+
+ long diff = 0;
+ int x = a.intLen;
+ int y = b.intLen;
+
+ // Subtract common parts of both numbers
+ while (y > 0) {
+ x--; y--;
+ diff = (a.value[a.offset+ x] & LONG_MASK) -
+ (b.value[b.offset+ y] & LONG_MASK) - ((int)-(diff>>32));
+ a.value[a.offset+x] = (int)diff;
+ }
+ // Subtract remainder of longer number
+ while (x > 0) {
+ x--;
+ diff = (a.value[a.offset+ x] & LONG_MASK) - ((int)-(diff>>32));
+ a.value[a.offset+x] = (int)diff;
+ }
+
+ a.normalize();
+ return sign;
+ }
+
+ /**
+ * Multiply the contents of two MutableBigInteger objects. The result is
+ * placed into MutableBigInteger z. The contents of y are not changed.
+ */
+ void multiply(MutableBigInteger y, MutableBigInteger z) {
+ int xLen = intLen;
+ int yLen = y.intLen;
+ int newLen = xLen + yLen;
+
+ // Put z into an appropriate state to receive product
+ if (z.value.length < newLen)
+ z.value = new int[newLen];
+ z.offset = 0;
+ z.intLen = newLen;
+
+ // The first iteration is hoisted out of the loop to avoid extra add
+ long carry = 0;
+ for (int j=yLen-1, k=yLen+xLen-1; j >= 0; j--, k--) {
+ long product = (y.value[j+y.offset] & LONG_MASK) *
+ (value[xLen-1+offset] & LONG_MASK) + carry;
+ z.value[k] = (int)product;
+ carry = product >>> 32;
+ }
+ z.value[xLen-1] = (int)carry;
+
+ // Perform the multiplication word by word
+ for (int i = xLen-2; i >= 0; i--) {
+ carry = 0;
+ for (int j=yLen-1, k=yLen+i; j >= 0; j--, k--) {
+ long product = (y.value[j+y.offset] & LONG_MASK) *
+ (value[i+offset] & LONG_MASK) +
+ (z.value[k] & LONG_MASK) + carry;
+ z.value[k] = (int)product;
+ carry = product >>> 32;
+ }
+ z.value[i] = (int)carry;
+ }
+
+ // Remove leading zeros from product
+ z.normalize();
+ }
+
+ /**
+ * Multiply the contents of this MutableBigInteger by the word y. The
+ * result is placed into z.
+ */
+ void mul(int y, MutableBigInteger z) {
+ if (y == 1) {
+ z.copyValue(this);
+ return;
+ }
+
+ if (y == 0) {
+ z.clear();
+ return;
+ }
+
+ // Perform the multiplication word by word
+ long ylong = y & LONG_MASK;
+ int[] zval = (z.value.length < intLen+1 ? new int[intLen + 1]
+ : z.value);
+ long carry = 0;
+ for (int i = intLen-1; i >= 0; i--) {
+ long product = ylong * (value[i+offset] & LONG_MASK) + carry;
+ zval[i+1] = (int)product;
+ carry = product >>> 32;
+ }
+
+ if (carry == 0) {
+ z.offset = 1;
+ z.intLen = intLen;
+ } else {
+ z.offset = 0;
+ z.intLen = intLen + 1;
+ zval[0] = (int)carry;
+ }
+ z.value = zval;
+ }
+
+ /**
+ * This method is used for division of an n word dividend by a one word
+ * divisor. The quotient is placed into quotient. The one word divisor is
+ * specified by divisor.
+ *
+ * @return the remainder of the division is returned.
+ *
+ */
+ int divideOneWord(int divisor, MutableBigInteger quotient) {
+ long divisorLong = divisor & LONG_MASK;
+
+ // Special case of one word dividend
+ if (intLen == 1) {
+ long dividendValue = value[offset] & LONG_MASK;
+ int q = (int) (dividendValue / divisorLong);
+ int r = (int) (dividendValue - q * divisorLong);
+ quotient.value[0] = q;
+ quotient.intLen = (q == 0) ? 0 : 1;
+ quotient.offset = 0;
+ return r;
+ }
+
+ if (quotient.value.length < intLen)
+ quotient.value = new int[intLen];
+ quotient.offset = 0;
+ quotient.intLen = intLen;
+
+ // Normalize the divisor
+ int shift = Integer.numberOfLeadingZeros(divisor);
+
+ int rem = value[offset];
+ long remLong = rem & LONG_MASK;
+ if (remLong < divisorLong) {
+ quotient.value[0] = 0;
+ } else {
+ quotient.value[0] = (int)(remLong / divisorLong);
+ rem = (int) (remLong - (quotient.value[0] * divisorLong));
+ remLong = rem & LONG_MASK;
+ }
+ int xlen = intLen;
+ while (--xlen > 0) {
+ long dividendEstimate = (remLong << 32) |
+ (value[offset + intLen - xlen] & LONG_MASK);
+ int q;
+ if (dividendEstimate >= 0) {
+ q = (int) (dividendEstimate / divisorLong);
+ rem = (int) (dividendEstimate - q * divisorLong);
+ } else {
+ long tmp = divWord(dividendEstimate, divisor);
+ q = (int) (tmp & LONG_MASK);
+ rem = (int) (tmp >>> 32);
+ }
+ quotient.value[intLen - xlen] = q;
+ remLong = rem & LONG_MASK;
+ }
+
+ quotient.normalize();
+ // Unnormalize
+ if (shift > 0)
+ return rem % divisor;
+ else
+ return rem;
+ }
+
+ /**
+ * Calculates the quotient of this div b and places the quotient in the
+ * provided MutableBigInteger objects and the remainder object is returned.
+ *
+ */
+ MutableBigInteger divide(MutableBigInteger b, MutableBigInteger quotient) {
+ return divide(b,quotient,true);
+ }
+
+ MutableBigInteger divide(MutableBigInteger b, MutableBigInteger quotient, boolean needRemainder) {
+ if (b.intLen < BigInteger.BURNIKEL_ZIEGLER_THRESHOLD ||
+ intLen - b.intLen < BigInteger.BURNIKEL_ZIEGLER_OFFSET) {
+ return divideKnuth(b, quotient, needRemainder);
+ } else {
+ return divideAndRemainderBurnikelZiegler(b, quotient);
+ }
+ }
+
+ /**
+ * @see #divideKnuth(MutableBigInteger, MutableBigInteger, boolean)
+ */
+ MutableBigInteger divideKnuth(MutableBigInteger b, MutableBigInteger quotient) {
+ return divideKnuth(b,quotient,true);
+ }
+
+ /**
+ * Calculates the quotient of this div b and places the quotient in the
+ * provided MutableBigInteger objects and the remainder object is returned.
+ *
+ * Uses Algorithm D in Knuth section 4.3.1.
+ * Many optimizations to that algorithm have been adapted from the Colin
+ * Plumb C library.
+ * It special cases one word divisors for speed. The content of b is not
+ * changed.
+ *
+ */
+ MutableBigInteger divideKnuth(MutableBigInteger b, MutableBigInteger quotient, boolean needRemainder) {
+ if (b.intLen == 0)
+ throw new ArithmeticException("BigInteger divide by zero");
+
+ // Dividend is zero
+ if (intLen == 0) {
+ quotient.intLen = quotient.offset = 0;
+ return needRemainder ? new MutableBigInteger() : null;
+ }
+
+ int cmp = compare(b);
+ // Dividend less than divisor
+ if (cmp < 0) {
+ quotient.intLen = quotient.offset = 0;
+ return needRemainder ? new MutableBigInteger(this) : null;
+ }
+ // Dividend equal to divisor
+ if (cmp == 0) {
+ quotient.value[0] = quotient.intLen = 1;
+ quotient.offset = 0;
+ return needRemainder ? new MutableBigInteger() : null;
+ }
+
+ quotient.clear();
+ // Special case one word divisor
+ if (b.intLen == 1) {
+ int r = divideOneWord(b.value[b.offset], quotient);
+ if(needRemainder) {
+ if (r == 0)
+ return new MutableBigInteger();
+ return new MutableBigInteger(r);
+ } else {
+ return null;
+ }
+ }
+
+ // Cancel common powers of two if we're above the KNUTH_POW2_* thresholds
+ if (intLen >= KNUTH_POW2_THRESH_LEN) {
+ int trailingZeroBits = Math.min(getLowestSetBit(), b.getLowestSetBit());
+ if (trailingZeroBits >= KNUTH_POW2_THRESH_ZEROS*32) {
+ MutableBigInteger a = new MutableBigInteger(this);
+ b = new MutableBigInteger(b);
+ a.rightShift(trailingZeroBits);
+ b.rightShift(trailingZeroBits);
+ MutableBigInteger r = a.divideKnuth(b, quotient);
+ r.leftShift(trailingZeroBits);
+ return r;
+ }
+ }
+
+ return divideMagnitude(b, quotient, needRemainder);
+ }
+
+ /**
+ * Computes {@code this/b} and {@code this%b} using the
+ * <a href="http://cr.yp.to/bib/1998/burnikel.ps"> Burnikel-Ziegler algorithm</a>.
+ * This method implements algorithm 3 from pg. 9 of the Burnikel-Ziegler paper.
+ * The parameter beta was chosen to b 2<sup>32</sup> so almost all shifts are
+ * multiples of 32 bits.<br/>
+ * {@code this} and {@code b} must be nonnegative.
+ * @param b the divisor
+ * @param quotient output parameter for {@code this/b}
+ * @return the remainder
+ */
+ MutableBigInteger divideAndRemainderBurnikelZiegler(MutableBigInteger b, MutableBigInteger quotient) {
+ int r = intLen;
+ int s = b.intLen;
+
+ // Clear the quotient
+ quotient.offset = quotient.intLen = 0;
+
+ if (r < s) {
+ return this;
+ } else {
+ // Unlike Knuth division, we don't check for common powers of two here because
+ // BZ already runs faster if both numbers contain powers of two and cancelling them has no
+ // additional benefit.
+
+ // step 1: let m = min{2^k | (2^k)*BURNIKEL_ZIEGLER_THRESHOLD > s}
+ int m = 1 << (32-Integer.numberOfLeadingZeros(s/BigInteger.BURNIKEL_ZIEGLER_THRESHOLD));
+
+ int j = (s+m-1) / m; // step 2a: j = ceil(s/m)
+ int n = j * m; // step 2b: block length in 32-bit units
+ long n32 = 32L * n; // block length in bits
+ int sigma = (int) Math.max(0, n32 - b.bitLength()); // step 3: sigma = max{T | (2^T)*B < beta^n}
+ MutableBigInteger bShifted = new MutableBigInteger(b);
+ bShifted.safeLeftShift(sigma); // step 4a: shift b so its length is a multiple of n
+ MutableBigInteger aShifted = new MutableBigInteger (this);
+ aShifted.safeLeftShift(sigma); // step 4b: shift a by the same amount
+
+ // step 5: t is the number of blocks needed to accommodate a plus one additional bit
+ int t = (int) ((aShifted.bitLength()+n32) / n32);
+ if (t < 2) {
+ t = 2;
+ }
+
+ // step 6: conceptually split a into blocks a[t-1], ..., a[0]
+ MutableBigInteger a1 = aShifted.getBlock(t-1, t, n); // the most significant block of a
+
+ // step 7: z[t-2] = [a[t-1], a[t-2]]
+ MutableBigInteger z = aShifted.getBlock(t-2, t, n); // the second to most significant block
+ z.addDisjoint(a1, n); // z[t-2]
+
+ // do schoolbook division on blocks, dividing 2-block numbers by 1-block numbers
+ MutableBigInteger qi = new MutableBigInteger();
+ MutableBigInteger ri;
+ for (int i=t-2; i > 0; i--) {
+ // step 8a: compute (qi,ri) such that z=b*qi+ri
+ ri = z.divide2n1n(bShifted, qi);
+
+ // step 8b: z = [ri, a[i-1]]
+ z = aShifted.getBlock(i-1, t, n); // a[i-1]
+ z.addDisjoint(ri, n);
+ quotient.addShifted(qi, i*n); // update q (part of step 9)
+ }
+ // final iteration of step 8: do the loop one more time for i=0 but leave z unchanged
+ ri = z.divide2n1n(bShifted, qi);
+ quotient.add(qi);
+
+ ri.rightShift(sigma); // step 9: a and b were shifted, so shift back
+ return ri;
+ }
+ }
+
+ /**
+ * This method implements algorithm 1 from pg. 4 of the Burnikel-Ziegler paper.
+ * It divides a 2n-digit number by a n-digit number.<br/>
+ * The parameter beta is 2<sup>32</sup> so all shifts are multiples of 32 bits.
+ * <br/>
+ * {@code this} must be a nonnegative number such that {@code this.bitLength() <= 2*b.bitLength()}
+ * @param b a positive number such that {@code b.bitLength()} is even
+ * @param quotient output parameter for {@code this/b}
+ * @return {@code this%b}
+ */
+ private MutableBigInteger divide2n1n(MutableBigInteger b, MutableBigInteger quotient) {
+ int n = b.intLen;
+
+ // step 1: base case
+ if (n%2 != 0 || n < BigInteger.BURNIKEL_ZIEGLER_THRESHOLD) {
+ return divideKnuth(b, quotient);
+ }
+
+ // step 2: view this as [a1,a2,a3,a4] where each ai is n/2 ints or less
+ MutableBigInteger aUpper = new MutableBigInteger(this);
+ aUpper.safeRightShift(32*(n/2)); // aUpper = [a1,a2,a3]
+ keepLower(n/2); // this = a4
+
+ // step 3: q1=aUpper/b, r1=aUpper%b
+ MutableBigInteger q1 = new MutableBigInteger();
+ MutableBigInteger r1 = aUpper.divide3n2n(b, q1);
+
+ // step 4: quotient=[r1,this]/b, r2=[r1,this]%b
+ addDisjoint(r1, n/2); // this = [r1,this]
+ MutableBigInteger r2 = divide3n2n(b, quotient);
+
+ // step 5: let quotient=[q1,quotient] and return r2
+ quotient.addDisjoint(q1, n/2);
+ return r2;
+ }
+
+ /**
+ * This method implements algorithm 2 from pg. 5 of the Burnikel-Ziegler paper.
+ * It divides a 3n-digit number by a 2n-digit number.<br/>
+ * The parameter beta is 2<sup>32</sup> so all shifts are multiples of 32 bits.<br/>
+ * <br/>
+ * {@code this} must be a nonnegative number such that {@code 2*this.bitLength() <= 3*b.bitLength()}
+ * @param quotient output parameter for {@code this/b}
+ * @return {@code this%b}
+ */
+ private MutableBigInteger divide3n2n(MutableBigInteger b, MutableBigInteger quotient) {
+ int n = b.intLen / 2; // half the length of b in ints
+
+ // step 1: view this as [a1,a2,a3] where each ai is n ints or less; let a12=[a1,a2]
+ MutableBigInteger a12 = new MutableBigInteger(this);
+ a12.safeRightShift(32*n);
+
+ // step 2: view b as [b1,b2] where each bi is n ints or less
+ MutableBigInteger b1 = new MutableBigInteger(b);
+ b1.safeRightShift(n * 32);
+ BigInteger b2 = b.getLower(n);
+
+ MutableBigInteger r;
+ MutableBigInteger d;
+ if (compareShifted(b, n) < 0) {
+ // step 3a: if a1<b1, let quotient=a12/b1 and r=a12%b1
+ r = a12.divide2n1n(b1, quotient);
+
+ // step 4: d=quotient*b2
+ d = new MutableBigInteger(quotient.toBigInteger().multiply(b2));
+ } else {
+ // step 3b: if a1>=b1, let quotient=beta^n-1 and r=a12-b1*2^n+b1
+ quotient.ones(n);
+ a12.add(b1);
+ b1.leftShift(32*n);
+ a12.subtract(b1);
+ r = a12;
+
+ // step 4: d=quotient*b2=(b2 << 32*n) - b2
+ d = new MutableBigInteger(b2);
+ d.leftShift(32 * n);
+ d.subtract(new MutableBigInteger(b2));
+ }
+
+ // step 5: r = r*beta^n + a3 - d (paper says a4)
+ // However, don't subtract d until after the while loop so r doesn't become negative
+ r.leftShift(32 * n);
+ r.addLower(this, n);
+
+ // step 6: add b until r>=d
+ while (r.compare(d) < 0) {
+ r.add(b);
+ quotient.subtract(MutableBigInteger.ONE);
+ }
+ r.subtract(d);
+
+ return r;
+ }
+
+ /**
+ * Returns a {@code MutableBigInteger} containing {@code blockLength} ints from
+ * {@code this} number, starting at {@code index*blockLength}.<br/>
+ * Used by Burnikel-Ziegler division.
+ * @param index the block index
+ * @param numBlocks the total number of blocks in {@code this} number
+ * @param blockLength length of one block in units of 32 bits
+ * @return
+ */
+ private MutableBigInteger getBlock(int index, int numBlocks, int blockLength) {
+ int blockStart = index * blockLength;
+ if (blockStart >= intLen) {
+ return new MutableBigInteger();
+ }
+
+ int blockEnd;
+ if (index == numBlocks-1) {
+ blockEnd = intLen;
+ } else {
+ blockEnd = (index+1) * blockLength;
+ }
+ if (blockEnd > intLen) {
+ return new MutableBigInteger();
+ }
+
+ int[] newVal = Arrays.copyOfRange(value, offset+intLen-blockEnd, offset+intLen-blockStart);
+ return new MutableBigInteger(newVal);
+ }
+
+ /** @see BigInteger#bitLength() */
+ long bitLength() {
+ if (intLen == 0)
+ return 0;
+ return intLen*32L - Integer.numberOfLeadingZeros(value[offset]);
+ }
+
+ /**
+ * Internally used to calculate the quotient of this div v and places the
+ * quotient in the provided MutableBigInteger object and the remainder is
+ * returned.
+ *
+ * @return the remainder of the division will be returned.
+ */
+ long divide(long v, MutableBigInteger quotient) {
+ if (v == 0)
+ throw new ArithmeticException("BigInteger divide by zero");
+
+ // Dividend is zero
+ if (intLen == 0) {
+ quotient.intLen = quotient.offset = 0;
+ return 0;
+ }
+ if (v < 0)
+ v = -v;
+
+ int d = (int)(v >>> 32);
+ quotient.clear();
+ // Special case on word divisor
+ if (d == 0)
+ return divideOneWord((int)v, quotient) & LONG_MASK;
+ else {
+ return divideLongMagnitude(v, quotient).toLong();
+ }
+ }
+
+ private static void copyAndShift(int[] src, int srcFrom, int srcLen, int[] dst, int dstFrom, int shift) {
+ int n2 = 32 - shift;
+ int c=src[srcFrom];
+ for (int i=0; i < srcLen-1; i++) {
+ int b = c;
+ c = src[++srcFrom];
+ dst[dstFrom+i] = (b << shift) | (c >>> n2);
+ }
+ dst[dstFrom+srcLen-1] = c << shift;
+ }
+
+ /**
+ * Divide this MutableBigInteger by the divisor.
+ * The quotient will be placed into the provided quotient object &
+ * the remainder object is returned.
+ */
+ private MutableBigInteger divideMagnitude(MutableBigInteger div,
+ MutableBigInteger quotient,
+ boolean needRemainder ) {
+ // assert div.intLen > 1
+ // D1 normalize the divisor
+ int shift = Integer.numberOfLeadingZeros(div.value[div.offset]);
+ // Copy divisor value to protect divisor
+ final int dlen = div.intLen;
+ int[] divisor;
+ MutableBigInteger rem; // Remainder starts as dividend with space for a leading zero
+ if (shift > 0) {
+ divisor = new int[dlen];
+ copyAndShift(div.value,div.offset,dlen,divisor,0,shift);
+ if (Integer.numberOfLeadingZeros(value[offset]) >= shift) {
+ int[] remarr = new int[intLen + 1];
+ rem = new MutableBigInteger(remarr);
+ rem.intLen = intLen;
+ rem.offset = 1;
+ copyAndShift(value,offset,intLen,remarr,1,shift);
+ } else {
+ int[] remarr = new int[intLen + 2];
+ rem = new MutableBigInteger(remarr);
+ rem.intLen = intLen+1;
+ rem.offset = 1;
+ int rFrom = offset;
+ int c=0;
+ int n2 = 32 - shift;
+ for (int i=1; i < intLen+1; i++,rFrom++) {
+ int b = c;
+ c = value[rFrom];
+ remarr[i] = (b << shift) | (c >>> n2);
+ }
+ remarr[intLen+1] = c << shift;
+ }
+ } else {
+ divisor = Arrays.copyOfRange(div.value, div.offset, div.offset + div.intLen);
+ rem = new MutableBigInteger(new int[intLen + 1]);
+ System.arraycopy(value, offset, rem.value, 1, intLen);
+ rem.intLen = intLen;
+ rem.offset = 1;
+ }
+
+ int nlen = rem.intLen;
+
+ // Set the quotient size
+ final int limit = nlen - dlen + 1;
+ if (quotient.value.length < limit) {
+ quotient.value = new int[limit];
+ quotient.offset = 0;
+ }
+ quotient.intLen = limit;
+ int[] q = quotient.value;
+
+
+ // Must insert leading 0 in rem if its length did not change
+ if (rem.intLen == nlen) {
+ rem.offset = 0;
+ rem.value[0] = 0;
+ rem.intLen++;
+ }
+
+ int dh = divisor[0];
+ long dhLong = dh & LONG_MASK;
+ int dl = divisor[1];
+
+ // D2 Initialize j
+ for (int j=0; j < limit-1; j++) {
+ // D3 Calculate qhat
+ // estimate qhat
+ int qhat = 0;
+ int qrem = 0;
+ boolean skipCorrection = false;
+ int nh = rem.value[j+rem.offset];
+ int nh2 = nh + 0x80000000;
+ int nm = rem.value[j+1+rem.offset];
+
+ if (nh == dh) {
+ qhat = ~0;
+ qrem = nh + nm;
+ skipCorrection = qrem + 0x80000000 < nh2;
+ } else {
+ long nChunk = (((long)nh) << 32) | (nm & LONG_MASK);
+ if (nChunk >= 0) {
+ qhat = (int) (nChunk / dhLong);
+ qrem = (int) (nChunk - (qhat * dhLong));
+ } else {
+ long tmp = divWord(nChunk, dh);
+ qhat = (int) (tmp & LONG_MASK);
+ qrem = (int) (tmp >>> 32);
+ }
+ }
+
+ if (qhat == 0)
+ continue;
+
+ if (!skipCorrection) { // Correct qhat
+ long nl = rem.value[j+2+rem.offset] & LONG_MASK;
+ long rs = ((qrem & LONG_MASK) << 32) | nl;
+ long estProduct = (dl & LONG_MASK) * (qhat & LONG_MASK);
+
+ if (unsignedLongCompare(estProduct, rs)) {
+ qhat--;
+ qrem = (int)((qrem & LONG_MASK) + dhLong);
+ if ((qrem & LONG_MASK) >= dhLong) {
+ estProduct -= (dl & LONG_MASK);
+ rs = ((qrem & LONG_MASK) << 32) | nl;
+ if (unsignedLongCompare(estProduct, rs))
+ qhat--;
+ }
+ }
+ }
+
+ // D4 Multiply and subtract
+ rem.value[j+rem.offset] = 0;
+ int borrow = mulsub(rem.value, divisor, qhat, dlen, j+rem.offset);
+
+ // D5 Test remainder
+ if (borrow + 0x80000000 > nh2) {
+ // D6 Add back
+ divadd(divisor, rem.value, j+1+rem.offset);
+ qhat--;
+ }
+
+ // Store the quotient digit
+ q[j] = qhat;
+ } // D7 loop on j
+ // D3 Calculate qhat
+ // estimate qhat
+ int qhat = 0;
+ int qrem = 0;
+ boolean skipCorrection = false;
+ int nh = rem.value[limit - 1 + rem.offset];
+ int nh2 = nh + 0x80000000;
+ int nm = rem.value[limit + rem.offset];
+
+ if (nh == dh) {
+ qhat = ~0;
+ qrem = nh + nm;
+ skipCorrection = qrem + 0x80000000 < nh2;
+ } else {
+ long nChunk = (((long) nh) << 32) | (nm & LONG_MASK);
+ if (nChunk >= 0) {
+ qhat = (int) (nChunk / dhLong);
+ qrem = (int) (nChunk - (qhat * dhLong));
+ } else {
+ long tmp = divWord(nChunk, dh);
+ qhat = (int) (tmp & LONG_MASK);
+ qrem = (int) (tmp >>> 32);
+ }
+ }
+ if (qhat != 0) {
+ if (!skipCorrection) { // Correct qhat
+ long nl = rem.value[limit + 1 + rem.offset] & LONG_MASK;
+ long rs = ((qrem & LONG_MASK) << 32) | nl;
+ long estProduct = (dl & LONG_MASK) * (qhat & LONG_MASK);
+
+ if (unsignedLongCompare(estProduct, rs)) {
+ qhat--;
+ qrem = (int) ((qrem & LONG_MASK) + dhLong);
+ if ((qrem & LONG_MASK) >= dhLong) {
+ estProduct -= (dl & LONG_MASK);
+ rs = ((qrem & LONG_MASK) << 32) | nl;
+ if (unsignedLongCompare(estProduct, rs))
+ qhat--;
+ }
+ }
+ }
+
+
+ // D4 Multiply and subtract
+ int borrow;
+ rem.value[limit - 1 + rem.offset] = 0;
+ if(needRemainder)
+ borrow = mulsub(rem.value, divisor, qhat, dlen, limit - 1 + rem.offset);
+ else
+ borrow = mulsubBorrow(rem.value, divisor, qhat, dlen, limit - 1 + rem.offset);
+
+ // D5 Test remainder
+ if (borrow + 0x80000000 > nh2) {
+ // D6 Add back
+ if(needRemainder)
+ divadd(divisor, rem.value, limit - 1 + 1 + rem.offset);
+ qhat--;
+ }
+
+ // Store the quotient digit
+ q[(limit - 1)] = qhat;
+ }
+
+
+ if (needRemainder) {
+ // D8 Unnormalize
+ if (shift > 0)
+ rem.rightShift(shift);
+ rem.normalize();
+ }
+ quotient.normalize();
+ return needRemainder ? rem : null;
+ }
+
+ /**
+ * Divide this MutableBigInteger by the divisor represented by positive long
+ * value. The quotient will be placed into the provided quotient object &
+ * the remainder object is returned.
+ */
+ private MutableBigInteger divideLongMagnitude(long ldivisor, MutableBigInteger quotient) {
+ // Remainder starts as dividend with space for a leading zero
+ MutableBigInteger rem = new MutableBigInteger(new int[intLen + 1]);
+ System.arraycopy(value, offset, rem.value, 1, intLen);
+ rem.intLen = intLen;
+ rem.offset = 1;
+
+ int nlen = rem.intLen;
+
+ int limit = nlen - 2 + 1;
+ if (quotient.value.length < limit) {
+ quotient.value = new int[limit];
+ quotient.offset = 0;
+ }
+ quotient.intLen = limit;
+ int[] q = quotient.value;
+
+ // D1 normalize the divisor
+ int shift = Long.numberOfLeadingZeros(ldivisor);
+ if (shift > 0) {
+ ldivisor<<=shift;
+ rem.leftShift(shift);
+ }
+
+ // Must insert leading 0 in rem if its length did not change
+ if (rem.intLen == nlen) {
+ rem.offset = 0;
+ rem.value[0] = 0;
+ rem.intLen++;
+ }
+
+ int dh = (int)(ldivisor >>> 32);
+ long dhLong = dh & LONG_MASK;
+ int dl = (int)(ldivisor & LONG_MASK);
+
+ // D2 Initialize j
+ for (int j = 0; j < limit; j++) {
+ // D3 Calculate qhat
+ // estimate qhat
+ int qhat = 0;
+ int qrem = 0;
+ boolean skipCorrection = false;
+ int nh = rem.value[j + rem.offset];
+ int nh2 = nh + 0x80000000;
+ int nm = rem.value[j + 1 + rem.offset];
+
+ if (nh == dh) {
+ qhat = ~0;
+ qrem = nh + nm;
+ skipCorrection = qrem + 0x80000000 < nh2;
+ } else {
+ long nChunk = (((long) nh) << 32) | (nm & LONG_MASK);
+ if (nChunk >= 0) {
+ qhat = (int) (nChunk / dhLong);
+ qrem = (int) (nChunk - (qhat * dhLong));
+ } else {
+ long tmp = divWord(nChunk, dh);
+ qhat =(int)(tmp & LONG_MASK);
+ qrem = (int)(tmp>>>32);
+ }
+ }
+
+ if (qhat == 0)
+ continue;
+
+ if (!skipCorrection) { // Correct qhat
+ long nl = rem.value[j + 2 + rem.offset] & LONG_MASK;
+ long rs = ((qrem & LONG_MASK) << 32) | nl;
+ long estProduct = (dl & LONG_MASK) * (qhat & LONG_MASK);
+
+ if (unsignedLongCompare(estProduct, rs)) {
+ qhat--;
+ qrem = (int) ((qrem & LONG_MASK) + dhLong);
+ if ((qrem & LONG_MASK) >= dhLong) {
+ estProduct -= (dl & LONG_MASK);
+ rs = ((qrem & LONG_MASK) << 32) | nl;
+ if (unsignedLongCompare(estProduct, rs))
+ qhat--;
+ }
+ }
+ }
+
+ // D4 Multiply and subtract
+ rem.value[j + rem.offset] = 0;
+ int borrow = mulsubLong(rem.value, dh, dl, qhat, j + rem.offset);
+
+ // D5 Test remainder
+ if (borrow + 0x80000000 > nh2) {
+ // D6 Add back
+ divaddLong(dh,dl, rem.value, j + 1 + rem.offset);
+ qhat--;
+ }
+
+ // Store the quotient digit
+ q[j] = qhat;
+ } // D7 loop on j
+
+ // D8 Unnormalize
+ if (shift > 0)
+ rem.rightShift(shift);
+
+ quotient.normalize();
+ rem.normalize();
+ return rem;
+ }
+
+ /**
+ * A primitive used for division by long.
+ * Specialized version of the method divadd.
+ * dh is a high part of the divisor, dl is a low part
+ */
+ private int divaddLong(int dh, int dl, int[] result, int offset) {
+ long carry = 0;
+
+ long sum = (dl & LONG_MASK) + (result[1+offset] & LONG_MASK);
+ result[1+offset] = (int)sum;
+
+ sum = (dh & LONG_MASK) + (result[offset] & LONG_MASK) + carry;
+ result[offset] = (int)sum;
+ carry = sum >>> 32;
+ return (int)carry;
+ }
+
+ /**
+ * This method is used for division by long.
+ * Specialized version of the method sulsub.
+ * dh is a high part of the divisor, dl is a low part
+ */
+ private int mulsubLong(int[] q, int dh, int dl, int x, int offset) {
+ long xLong = x & LONG_MASK;
+ offset += 2;
+ long product = (dl & LONG_MASK) * xLong;
+ long difference = q[offset] - product;
+ q[offset--] = (int)difference;
+ long carry = (product >>> 32)
+ + (((difference & LONG_MASK) >
+ (((~(int)product) & LONG_MASK))) ? 1:0);
+ product = (dh & LONG_MASK) * xLong + carry;
+ difference = q[offset] - product;
+ q[offset--] = (int)difference;
+ carry = (product >>> 32)
+ + (((difference & LONG_MASK) >
+ (((~(int)product) & LONG_MASK))) ? 1:0);
+ return (int)carry;
+ }
+
+ /**
+ * Compare two longs as if they were unsigned.
+ * Returns true iff one is bigger than two.
+ */
+ private boolean unsignedLongCompare(long one, long two) {
+ return (one+Long.MIN_VALUE) > (two+Long.MIN_VALUE);
+ }
+
+ /**
+ * This method divides a long quantity by an int to estimate
+ * qhat for two multi precision numbers. It is used when
+ * the signed value of n is less than zero.
+ * Returns long value where high 32 bits contain remainder value and
+ * low 32 bits contain quotient value.
+ */
+ static long divWord(long n, int d) {
+ long dLong = d & LONG_MASK;
+ long r;
+ long q;
+ if (dLong == 1) {
+ q = (int)n;
+ r = 0;
+ return (r << 32) | (q & LONG_MASK);
+ }
+
+ // Approximate the quotient and remainder
+ q = (n >>> 1) / (dLong >>> 1);
+ r = n - q*dLong;
+
+ // Correct the approximation
+ while (r < 0) {
+ r += dLong;
+ q--;
+ }
+ while (r >= dLong) {
+ r -= dLong;
+ q++;
+ }
+ // n - q*dlong == r && 0 <= r <dLong, hence we're done.
+ return (r << 32) | (q & LONG_MASK);
+ }
+
+ /**
+ * Calculate GCD of this and b. This and b are changed by the computation.
+ */
+ MutableBigInteger hybridGCD(MutableBigInteger b) {
+ // Use Euclid's algorithm until the numbers are approximately the
+ // same length, then use the binary GCD algorithm to find the GCD.
+ MutableBigInteger a = this;
+ MutableBigInteger q = new MutableBigInteger();
+
+ while (b.intLen != 0) {
+ if (Math.abs(a.intLen - b.intLen) < 2)
+ return a.binaryGCD(b);
+
+ MutableBigInteger r = a.divide(b, q);
+ a = b;
+ b = r;
+ }
+ return a;
+ }
+
+ /**
+ * Calculate GCD of this and v.
+ * Assumes that this and v are not zero.
+ */
+ private MutableBigInteger binaryGCD(MutableBigInteger v) {
+ // Algorithm B from Knuth section 4.5.2
+ MutableBigInteger u = this;
+ MutableBigInteger r = new MutableBigInteger();
+
+ // step B1
+ int s1 = u.getLowestSetBit();
+ int s2 = v.getLowestSetBit();
+ int k = (s1 < s2) ? s1 : s2;
+ if (k != 0) {
+ u.rightShift(k);
+ v.rightShift(k);
+ }
+
+ // step B2
+ boolean uOdd = (k == s1);
+ MutableBigInteger t = uOdd ? v: u;
+ int tsign = uOdd ? -1 : 1;
+
+ int lb;
+ while ((lb = t.getLowestSetBit()) >= 0) {
+ // steps B3 and B4
+ t.rightShift(lb);
+ // step B5
+ if (tsign > 0)
+ u = t;
+ else
+ v = t;
+
+ // Special case one word numbers
+ if (u.intLen < 2 && v.intLen < 2) {
+ int x = u.value[u.offset];
+ int y = v.value[v.offset];
+ x = binaryGcd(x, y);
+ r.value[0] = x;
+ r.intLen = 1;
+ r.offset = 0;
+ if (k > 0)
+ r.leftShift(k);
+ return r;
+ }
+
+ // step B6
+ if ((tsign = u.difference(v)) == 0)
+ break;
+ t = (tsign >= 0) ? u : v;
+ }
+
+ if (k > 0)
+ u.leftShift(k);
+ return u;
+ }
+
+ /**
+ * Calculate GCD of a and b interpreted as unsigned integers.
+ */
+ static int binaryGcd(int a, int b) {
+ if (b == 0)
+ return a;
+ if (a == 0)
+ return b;
+
+ // Right shift a & b till their last bits equal to 1.
+ int aZeros = Integer.numberOfTrailingZeros(a);
+ int bZeros = Integer.numberOfTrailingZeros(b);
+ a >>>= aZeros;
+ b >>>= bZeros;
+
+ int t = (aZeros < bZeros ? aZeros : bZeros);
+
+ while (a != b) {
+ if ((a+0x80000000) > (b+0x80000000)) { // a > b as unsigned
+ a -= b;
+ a >>>= Integer.numberOfTrailingZeros(a);
+ } else {
+ b -= a;
+ b >>>= Integer.numberOfTrailingZeros(b);
+ }
+ }
+ return a<<t;
+ }
+
+ /**
+ * Returns the modInverse of this mod p. This and p are not affected by
+ * the operation.
+ */
+ MutableBigInteger mutableModInverse(MutableBigInteger p) {
+ // Modulus is odd, use Schroeppel's algorithm
+ if (p.isOdd())
+ return modInverse(p);
+
+ // Base and modulus are even, throw exception
+ if (isEven())
+ throw new ArithmeticException("BigInteger not invertible.");
+
+ // Get even part of modulus expressed as a power of 2
+ int powersOf2 = p.getLowestSetBit();
+
+ // Construct odd part of modulus
+ MutableBigInteger oddMod = new MutableBigInteger(p);
+ oddMod.rightShift(powersOf2);
+
+ if (oddMod.isOne())
+ return modInverseMP2(powersOf2);
+
+ // Calculate 1/a mod oddMod
+ MutableBigInteger oddPart = modInverse(oddMod);
+
+ // Calculate 1/a mod evenMod
+ MutableBigInteger evenPart = modInverseMP2(powersOf2);
+
+ // Combine the results using Chinese Remainder Theorem
+ MutableBigInteger y1 = modInverseBP2(oddMod, powersOf2);
+ MutableBigInteger y2 = oddMod.modInverseMP2(powersOf2);
+
+ MutableBigInteger temp1 = new MutableBigInteger();
+ MutableBigInteger temp2 = new MutableBigInteger();
+ MutableBigInteger result = new MutableBigInteger();
+
+ oddPart.leftShift(powersOf2);
+ oddPart.multiply(y1, result);
+
+ evenPart.multiply(oddMod, temp1);
+ temp1.multiply(y2, temp2);
+
+ result.add(temp2);
+ return result.divide(p, temp1);
+ }
+
+ /*
+ * Calculate the multiplicative inverse of this mod 2^k.
+ */
+ MutableBigInteger modInverseMP2(int k) {
+ if (isEven())
+ throw new ArithmeticException("Non-invertible. (GCD != 1)");
+
+ if (k > 64)
+ return euclidModInverse(k);
+
+ int t = inverseMod32(value[offset+intLen-1]);
+
+ if (k < 33) {
+ t = (k == 32 ? t : t & ((1 << k) - 1));
+ return new MutableBigInteger(t);
+ }
+
+ long pLong = (value[offset+intLen-1] & LONG_MASK);
+ if (intLen > 1)
+ pLong |= ((long)value[offset+intLen-2] << 32);
+ long tLong = t & LONG_MASK;
+ tLong = tLong * (2 - pLong * tLong); // 1 more Newton iter step
+ tLong = (k == 64 ? tLong : tLong & ((1L << k) - 1));
+
+ MutableBigInteger result = new MutableBigInteger(new int[2]);
+ result.value[0] = (int)(tLong >>> 32);
+ result.value[1] = (int)tLong;
+ result.intLen = 2;
+ result.normalize();
+ return result;
+ }
+
+ /**
+ * Returns the multiplicative inverse of val mod 2^32. Assumes val is odd.
+ */
+ static int inverseMod32(int val) {
+ // Newton's iteration!
+ int t = val;
+ t *= 2 - val*t;
+ t *= 2 - val*t;
+ t *= 2 - val*t;
+ t *= 2 - val*t;
+ return t;
+ }
+
+ /**
+ * Returns the multiplicative inverse of val mod 2^64. Assumes val is odd.
+ */
+ static long inverseMod64(long val) {
+ // Newton's iteration!
+ long t = val;
+ t *= 2 - val*t;
+ t *= 2 - val*t;
+ t *= 2 - val*t;
+ t *= 2 - val*t;
+ t *= 2 - val*t;
+ assert(t * val == 1);
+ return t;
+ }
+
+ /**
+ * Calculate the multiplicative inverse of 2^k mod mod, where mod is odd.
+ */
+ static MutableBigInteger modInverseBP2(MutableBigInteger mod, int k) {
+ // Copy the mod to protect original
+ return fixup(new MutableBigInteger(1), new MutableBigInteger(mod), k);
+ }
+
+ /**
+ * Calculate the multiplicative inverse of this modulo mod, where the mod
+ * argument is odd. This and mod are not changed by the calculation.
+ *
+ * This method implements an algorithm due to Richard Schroeppel, that uses
+ * the same intermediate representation as Montgomery Reduction
+ * ("Montgomery Form"). The algorithm is described in an unpublished
+ * manuscript entitled "Fast Modular Reciprocals."
+ */
+ private MutableBigInteger modInverse(MutableBigInteger mod) {
+ MutableBigInteger p = new MutableBigInteger(mod);
+ MutableBigInteger f = new MutableBigInteger(this);
+ MutableBigInteger g = new MutableBigInteger(p);
+ SignedMutableBigInteger c = new SignedMutableBigInteger(1);
+ SignedMutableBigInteger d = new SignedMutableBigInteger();
+ MutableBigInteger temp = null;
+ SignedMutableBigInteger sTemp = null;
+
+ int k = 0;
+ // Right shift f k times until odd, left shift d k times
+ if (f.isEven()) {
+ int trailingZeros = f.getLowestSetBit();
+ f.rightShift(trailingZeros);
+ d.leftShift(trailingZeros);
+ k = trailingZeros;
+ }
+
+ // The Almost Inverse Algorithm
+ while (!f.isOne()) {
+ // If gcd(f, g) != 1, number is not invertible modulo mod
+ if (f.isZero())
+ throw new ArithmeticException("BigInteger not invertible.");
+
+ // If f < g exchange f, g and c, d
+ if (f.compare(g) < 0) {
+ temp = f; f = g; g = temp;
+ sTemp = d; d = c; c = sTemp;
+ }
+
+ // If f == g (mod 4)
+ if (((f.value[f.offset + f.intLen - 1] ^
+ g.value[g.offset + g.intLen - 1]) & 3) == 0) {
+ f.subtract(g);
+ c.signedSubtract(d);
+ } else { // If f != g (mod 4)
+ f.add(g);
+ c.signedAdd(d);
+ }
+
+ // Right shift f k times until odd, left shift d k times
+ int trailingZeros = f.getLowestSetBit();
+ f.rightShift(trailingZeros);
+ d.leftShift(trailingZeros);
+ k += trailingZeros;
+ }
+
+ if (c.compare(p) >= 0) { // c has a larger magnitude than p
+ MutableBigInteger remainder = c.divide(p,
+ new MutableBigInteger());
+ // The previous line ignores the sign so we copy the data back
+ // into c which will restore the sign as needed (and converts
+ // it back to a SignedMutableBigInteger)
+ c.copyValue(remainder);
+ }
+
+ if (c.sign < 0) {
+ c.signedAdd(p);
+ }
+
+ return fixup(c, p, k);
+ }
+
+ /**
+ * The Fixup Algorithm
+ * Calculates X such that X = C * 2^(-k) (mod P)
+ * Assumes C<P and P is odd.
+ */
+ static MutableBigInteger fixup(MutableBigInteger c, MutableBigInteger p,
+ int k) {
+ MutableBigInteger temp = new MutableBigInteger();
+ // Set r to the multiplicative inverse of p mod 2^32
+ int r = -inverseMod32(p.value[p.offset+p.intLen-1]);
+
+ for (int i=0, numWords = k >> 5; i < numWords; i++) {
+ // V = R * c (mod 2^j)
+ int v = r * c.value[c.offset + c.intLen-1];
+ // c = c + (v * p)
+ p.mul(v, temp);
+ c.add(temp);
+ // c = c / 2^j
+ c.intLen--;
+ }
+ int numBits = k & 0x1f;
+ if (numBits != 0) {
+ // V = R * c (mod 2^j)
+ int v = r * c.value[c.offset + c.intLen-1];
+ v &= ((1<<numBits) - 1);
+ // c = c + (v * p)
+ p.mul(v, temp);
+ c.add(temp);
+ // c = c / 2^j
+ c.rightShift(numBits);
+ }
+
+ // In theory, c may be greater than p at this point (Very rare!)
+ if (c.compare(p) >= 0)
+ c = c.divide(p, new MutableBigInteger());
+
+ return c;
+ }
+
+ /**
+ * Uses the extended Euclidean algorithm to compute the modInverse of base
+ * mod a modulus that is a power of 2. The modulus is 2^k.
+ */
+ MutableBigInteger euclidModInverse(int k) {
+ MutableBigInteger b = new MutableBigInteger(1);
+ b.leftShift(k);
+ MutableBigInteger mod = new MutableBigInteger(b);
+
+ MutableBigInteger a = new MutableBigInteger(this);
+ MutableBigInteger q = new MutableBigInteger();
+ MutableBigInteger r = b.divide(a, q);
+
+ MutableBigInteger swapper = b;
+ // swap b & r
+ b = r;
+ r = swapper;
+
+ MutableBigInteger t1 = new MutableBigInteger(q);
+ MutableBigInteger t0 = new MutableBigInteger(1);
+ MutableBigInteger temp = new MutableBigInteger();
+
+ while (!b.isOne()) {
+ r = a.divide(b, q);
+
+ if (r.intLen == 0)
+ throw new ArithmeticException("BigInteger not invertible.");
+
+ swapper = r;
+ a = swapper;
+
+ if (q.intLen == 1)
+ t1.mul(q.value[q.offset], temp);
+ else
+ q.multiply(t1, temp);
+ swapper = q;
+ q = temp;
+ temp = swapper;
+ t0.add(q);
+
+ if (a.isOne())
+ return t0;
+
+ r = b.divide(a, q);
+
+ if (r.intLen == 0)
+ throw new ArithmeticException("BigInteger not invertible.");
+
+ swapper = b;
+ b = r;
+
+ if (q.intLen == 1)
+ t0.mul(q.value[q.offset], temp);
+ else
+ q.multiply(t0, temp);
+ swapper = q; q = temp; temp = swapper;
+
+ t1.add(q);
+ }
+ mod.subtract(t1);
+ return mod;
+ }
+}
diff --git a/ojluni/src/main/java/java/math/RoundingMode.java b/ojluni/src/main/java/java/math/RoundingMode.java
new file mode 100644
index 0000000000..3a4fe97f4a
--- /dev/null
+++ b/ojluni/src/main/java/java/math/RoundingMode.java
@@ -0,0 +1,356 @@
+/*
+ * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+/*
+ * Portions Copyright IBM Corporation, 2001. All Rights Reserved.
+ */
+package java.math;
+
+/**
+ * Specifies a <i>rounding behavior</i> for numerical operations
+ * capable of discarding precision. Each rounding mode indicates how
+ * the least significant returned digit of a rounded result is to be
+ * calculated. If fewer digits are returned than the digits needed to
+ * represent the exact numerical result, the discarded digits will be
+ * referred to as the <i>discarded fraction</i> regardless the digits'
+ * contribution to the value of the number. In other words,
+ * considered as a numerical value, the discarded fraction could have
+ * an absolute value greater than one.
+ *
+ * <p>Each rounding mode description includes a table listing how
+ * different two-digit decimal values would round to a one digit
+ * decimal value under the rounding mode in question. The result
+ * column in the tables could be gotten by creating a
+ * {@code BigDecimal} number with the specified value, forming a
+ * {@link MathContext} object with the proper settings
+ * ({@code precision} set to {@code 1}, and the
+ * {@code roundingMode} set to the rounding mode in question), and
+ * calling {@link BigDecimal#round round} on this number with the
+ * proper {@code MathContext}. A summary table showing the results
+ * of these rounding operations for all rounding modes appears below.
+ *
+ *<table border>
+ * <caption><b>Summary of Rounding Operations Under Different Rounding Modes</b></caption>
+ * <tr><th></th><th colspan=8>Result of rounding input to one digit with the given
+ * rounding mode</th>
+ * <tr valign=top>
+ * <th>Input Number</th> <th>{@code UP}</th>
+ * <th>{@code DOWN}</th>
+ * <th>{@code CEILING}</th>
+ * <th>{@code FLOOR}</th>
+ * <th>{@code HALF_UP}</th>
+ * <th>{@code HALF_DOWN}</th>
+ * <th>{@code HALF_EVEN}</th>
+ * <th>{@code UNNECESSARY}</th>
+ *
+ * <tr align=right><td>5.5</td> <td>6</td> <td>5</td> <td>6</td> <td>5</td> <td>6</td> <td>5</td> <td>6</td> <td>throw {@code ArithmeticException}</td>
+ * <tr align=right><td>2.5</td> <td>3</td> <td>2</td> <td>3</td> <td>2</td> <td>3</td> <td>2</td> <td>2</td> <td>throw {@code ArithmeticException}</td>
+ * <tr align=right><td>1.6</td> <td>2</td> <td>1</td> <td>2</td> <td>1</td> <td>2</td> <td>2</td> <td>2</td> <td>throw {@code ArithmeticException}</td>
+ * <tr align=right><td>1.1</td> <td>2</td> <td>1</td> <td>2</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>throw {@code ArithmeticException}</td>
+ * <tr align=right><td>1.0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td>
+ * <tr align=right><td>-1.0</td> <td>-1</td> <td>-1</td> <td>-1</td> <td>-1</td> <td>-1</td> <td>-1</td> <td>-1</td> <td>-1</td>
+ * <tr align=right><td>-1.1</td> <td>-2</td> <td>-1</td> <td>-1</td> <td>-2</td> <td>-1</td> <td>-1</td> <td>-1</td> <td>throw {@code ArithmeticException}</td>
+ * <tr align=right><td>-1.6</td> <td>-2</td> <td>-1</td> <td>-1</td> <td>-2</td> <td>-2</td> <td>-2</td> <td>-2</td> <td>throw {@code ArithmeticException}</td>
+ * <tr align=right><td>-2.5</td> <td>-3</td> <td>-2</td> <td>-2</td> <td>-3</td> <td>-3</td> <td>-2</td> <td>-2</td> <td>throw {@code ArithmeticException}</td>
+ * <tr align=right><td>-5.5</td> <td>-6</td> <td>-5</td> <td>-5</td> <td>-6</td> <td>-6</td> <td>-5</td> <td>-6</td> <td>throw {@code ArithmeticException}</td>
+ *</table>
+ *
+ *
+ * <p>This {@code enum} is intended to replace the integer-based
+ * enumeration of rounding mode constants in {@link BigDecimal}
+ * ({@link BigDecimal#ROUND_UP}, {@link BigDecimal#ROUND_DOWN},
+ * etc. ).
+ *
+ * @see BigDecimal
+ * @see MathContext
+ * @author Josh Bloch
+ * @author Mike Cowlishaw
+ * @author Joseph D. Darcy
+ * @since 1.5
+ */
+public enum RoundingMode {
+
+ /**
+ * Rounding mode to round away from zero. Always increments the
+ * digit prior to a non-zero discarded fraction. Note that this
+ * rounding mode never decreases the magnitude of the calculated
+ * value.
+ *
+ *<p>Example:
+ *<table border>
+ * <caption><b>Rounding mode UP Examples</b></caption>
+ *<tr valign=top><th>Input Number</th>
+ * <th>Input rounded to one digit<br> with {@code UP} rounding
+ *<tr align=right><td>5.5</td> <td>6</td>
+ *<tr align=right><td>2.5</td> <td>3</td>
+ *<tr align=right><td>1.6</td> <td>2</td>
+ *<tr align=right><td>1.1</td> <td>2</td>
+ *<tr align=right><td>1.0</td> <td>1</td>
+ *<tr align=right><td>-1.0</td> <td>-1</td>
+ *<tr align=right><td>-1.1</td> <td>-2</td>
+ *<tr align=right><td>-1.6</td> <td>-2</td>
+ *<tr align=right><td>-2.5</td> <td>-3</td>
+ *<tr align=right><td>-5.5</td> <td>-6</td>
+ *</table>
+ */
+ UP(BigDecimal.ROUND_UP),
+
+ /**
+ * Rounding mode to round towards zero. Never increments the digit
+ * prior to a discarded fraction (i.e., truncates). Note that this
+ * rounding mode never increases the magnitude of the calculated value.
+ *
+ *<p>Example:
+ *<table border>
+ * <caption><b>Rounding mode DOWN Examples</b></caption>
+ *<tr valign=top><th>Input Number</th>
+ * <th>Input rounded to one digit<br> with {@code DOWN} rounding
+ *<tr align=right><td>5.5</td> <td>5</td>
+ *<tr align=right><td>2.5</td> <td>2</td>
+ *<tr align=right><td>1.6</td> <td>1</td>
+ *<tr align=right><td>1.1</td> <td>1</td>
+ *<tr align=right><td>1.0</td> <td>1</td>
+ *<tr align=right><td>-1.0</td> <td>-1</td>
+ *<tr align=right><td>-1.1</td> <td>-1</td>
+ *<tr align=right><td>-1.6</td> <td>-1</td>
+ *<tr align=right><td>-2.5</td> <td>-2</td>
+ *<tr align=right><td>-5.5</td> <td>-5</td>
+ *</table>
+ */
+ DOWN(BigDecimal.ROUND_DOWN),
+
+ /**
+ * Rounding mode to round towards positive infinity. If the
+ * result is positive, behaves as for {@code RoundingMode.UP};
+ * if negative, behaves as for {@code RoundingMode.DOWN}. Note
+ * that this rounding mode never decreases the calculated value.
+ *
+ *<p>Example:
+ *<table border>
+ * <caption><b>Rounding mode CEILING Examples</b></caption>
+ *<tr valign=top><th>Input Number</th>
+ * <th>Input rounded to one digit<br> with {@code CEILING} rounding
+ *<tr align=right><td>5.5</td> <td>6</td>
+ *<tr align=right><td>2.5</td> <td>3</td>
+ *<tr align=right><td>1.6</td> <td>2</td>
+ *<tr align=right><td>1.1</td> <td>2</td>
+ *<tr align=right><td>1.0</td> <td>1</td>
+ *<tr align=right><td>-1.0</td> <td>-1</td>
+ *<tr align=right><td>-1.1</td> <td>-1</td>
+ *<tr align=right><td>-1.6</td> <td>-1</td>
+ *<tr align=right><td>-2.5</td> <td>-2</td>
+ *<tr align=right><td>-5.5</td> <td>-5</td>
+ *</table>
+ */
+ CEILING(BigDecimal.ROUND_CEILING),
+
+ /**
+ * Rounding mode to round towards negative infinity. If the
+ * result is positive, behave as for {@code RoundingMode.DOWN};
+ * if negative, behave as for {@code RoundingMode.UP}. Note that
+ * this rounding mode never increases the calculated value.
+ *
+ *<p>Example:
+ *<table border>
+ * <caption><b>Rounding mode FLOOR Examples</b></caption>
+ *<tr valign=top><th>Input Number</th>
+ * <th>Input rounded to one digit<br> with {@code FLOOR} rounding
+ *<tr align=right><td>5.5</td> <td>5</td>
+ *<tr align=right><td>2.5</td> <td>2</td>
+ *<tr align=right><td>1.6</td> <td>1</td>
+ *<tr align=right><td>1.1</td> <td>1</td>
+ *<tr align=right><td>1.0</td> <td>1</td>
+ *<tr align=right><td>-1.0</td> <td>-1</td>
+ *<tr align=right><td>-1.1</td> <td>-2</td>
+ *<tr align=right><td>-1.6</td> <td>-2</td>
+ *<tr align=right><td>-2.5</td> <td>-3</td>
+ *<tr align=right><td>-5.5</td> <td>-6</td>
+ *</table>
+ */
+ FLOOR(BigDecimal.ROUND_FLOOR),
+
+ /**
+ * Rounding mode to round towards {@literal "nearest neighbor"}
+ * unless both neighbors are equidistant, in which case round up.
+ * Behaves as for {@code RoundingMode.UP} if the discarded
+ * fraction is &ge; 0.5; otherwise, behaves as for
+ * {@code RoundingMode.DOWN}. Note that this is the rounding
+ * mode commonly taught at school.
+ *
+ *<p>Example:
+ *<table border>
+ * <caption><b>Rounding mode HALF_UP Examples</b></caption>
+ *<tr valign=top><th>Input Number</th>
+ * <th>Input rounded to one digit<br> with {@code HALF_UP} rounding
+ *<tr align=right><td>5.5</td> <td>6</td>
+ *<tr align=right><td>2.5</td> <td>3</td>
+ *<tr align=right><td>1.6</td> <td>2</td>
+ *<tr align=right><td>1.1</td> <td>1</td>
+ *<tr align=right><td>1.0</td> <td>1</td>
+ *<tr align=right><td>-1.0</td> <td>-1</td>
+ *<tr align=right><td>-1.1</td> <td>-1</td>
+ *<tr align=right><td>-1.6</td> <td>-2</td>
+ *<tr align=right><td>-2.5</td> <td>-3</td>
+ *<tr align=right><td>-5.5</td> <td>-6</td>
+ *</table>
+ */
+ HALF_UP(BigDecimal.ROUND_HALF_UP),
+
+ /**
+ * Rounding mode to round towards {@literal "nearest neighbor"}
+ * unless both neighbors are equidistant, in which case round
+ * down. Behaves as for {@code RoundingMode.UP} if the discarded
+ * fraction is &gt; 0.5; otherwise, behaves as for
+ * {@code RoundingMode.DOWN}.
+ *
+ *<p>Example:
+ *<table border>
+ * <caption><b>Rounding mode HALF_DOWN Examples</b></caption>
+ *<tr valign=top><th>Input Number</th>
+ * <th>Input rounded to one digit<br> with {@code HALF_DOWN} rounding
+ *<tr align=right><td>5.5</td> <td>5</td>
+ *<tr align=right><td>2.5</td> <td>2</td>
+ *<tr align=right><td>1.6</td> <td>2</td>
+ *<tr align=right><td>1.1</td> <td>1</td>
+ *<tr align=right><td>1.0</td> <td>1</td>
+ *<tr align=right><td>-1.0</td> <td>-1</td>
+ *<tr align=right><td>-1.1</td> <td>-1</td>
+ *<tr align=right><td>-1.6</td> <td>-2</td>
+ *<tr align=right><td>-2.5</td> <td>-2</td>
+ *<tr align=right><td>-5.5</td> <td>-5</td>
+ *</table>
+ */
+ HALF_DOWN(BigDecimal.ROUND_HALF_DOWN),
+
+ /**
+ * Rounding mode to round towards the {@literal "nearest neighbor"}
+ * unless both neighbors are equidistant, in which case, round
+ * towards the even neighbor. Behaves as for
+ * {@code RoundingMode.HALF_UP} if the digit to the left of the
+ * discarded fraction is odd; behaves as for
+ * {@code RoundingMode.HALF_DOWN} if it's even. Note that this
+ * is the rounding mode that statistically minimizes cumulative
+ * error when applied repeatedly over a sequence of calculations.
+ * It is sometimes known as {@literal "Banker's rounding,"} and is
+ * chiefly used in the USA. This rounding mode is analogous to
+ * the rounding policy used for {@code float} and {@code double}
+ * arithmetic in Java.
+ *
+ *<p>Example:
+ *<table border>
+ * <caption><b>Rounding mode HALF_EVEN Examples</b></caption>
+ *<tr valign=top><th>Input Number</th>
+ * <th>Input rounded to one digit<br> with {@code HALF_EVEN} rounding
+ *<tr align=right><td>5.5</td> <td>6</td>
+ *<tr align=right><td>2.5</td> <td>2</td>
+ *<tr align=right><td>1.6</td> <td>2</td>
+ *<tr align=right><td>1.1</td> <td>1</td>
+ *<tr align=right><td>1.0</td> <td>1</td>
+ *<tr align=right><td>-1.0</td> <td>-1</td>
+ *<tr align=right><td>-1.1</td> <td>-1</td>
+ *<tr align=right><td>-1.6</td> <td>-2</td>
+ *<tr align=right><td>-2.5</td> <td>-2</td>
+ *<tr align=right><td>-5.5</td> <td>-6</td>
+ *</table>
+ */
+ HALF_EVEN(BigDecimal.ROUND_HALF_EVEN),
+
+ /**
+ * Rounding mode to assert that the requested operation has an exact
+ * result, hence no rounding is necessary. If this rounding mode is
+ * specified on an operation that yields an inexact result, an
+ * {@code ArithmeticException} is thrown.
+ *<p>Example:
+ *<table border>
+ * <caption><b>Rounding mode UNNECESSARY Examples</b></caption>
+ *<tr valign=top><th>Input Number</th>
+ * <th>Input rounded to one digit<br> with {@code UNNECESSARY} rounding
+ *<tr align=right><td>5.5</td> <td>throw {@code ArithmeticException}</td>
+ *<tr align=right><td>2.5</td> <td>throw {@code ArithmeticException}</td>
+ *<tr align=right><td>1.6</td> <td>throw {@code ArithmeticException}</td>
+ *<tr align=right><td>1.1</td> <td>throw {@code ArithmeticException}</td>
+ *<tr align=right><td>1.0</td> <td>1</td>
+ *<tr align=right><td>-1.0</td> <td>-1</td>
+ *<tr align=right><td>-1.1</td> <td>throw {@code ArithmeticException}</td>
+ *<tr align=right><td>-1.6</td> <td>throw {@code ArithmeticException}</td>
+ *<tr align=right><td>-2.5</td> <td>throw {@code ArithmeticException}</td>
+ *<tr align=right><td>-5.5</td> <td>throw {@code ArithmeticException}</td>
+ *</table>
+ */
+ UNNECESSARY(BigDecimal.ROUND_UNNECESSARY);
+
+ // Corresponding BigDecimal rounding constant
+ final int oldMode;
+
+ /**
+ * Constructor
+ *
+ * @param oldMode The {@code BigDecimal} constant corresponding to
+ * this mode
+ */
+ private RoundingMode(int oldMode) {
+ this.oldMode = oldMode;
+ }
+
+ /**
+ * Returns the {@code RoundingMode} object corresponding to a
+ * legacy integer rounding mode constant in {@link BigDecimal}.
+ *
+ * @param rm legacy integer rounding mode to convert
+ * @return {@code RoundingMode} corresponding to the given integer.
+ * @throws IllegalArgumentException integer is out of range
+ */
+ public static RoundingMode valueOf(int rm) {
+ switch(rm) {
+
+ case BigDecimal.ROUND_UP:
+ return UP;
+
+ case BigDecimal.ROUND_DOWN:
+ return DOWN;
+
+ case BigDecimal.ROUND_CEILING:
+ return CEILING;
+
+ case BigDecimal.ROUND_FLOOR:
+ return FLOOR;
+
+ case BigDecimal.ROUND_HALF_UP:
+ return HALF_UP;
+
+ case BigDecimal.ROUND_HALF_DOWN:
+ return HALF_DOWN;
+
+ case BigDecimal.ROUND_HALF_EVEN:
+ return HALF_EVEN;
+
+ case BigDecimal.ROUND_UNNECESSARY:
+ return UNNECESSARY;
+
+ default:
+ throw new IllegalArgumentException("argument out of range");
+ }
+ }
+}
diff --git a/ojluni/src/main/java/java/math/SignedMutableBigInteger.java b/ojluni/src/main/java/java/math/SignedMutableBigInteger.java
new file mode 100644
index 0000000000..a6e5fcd603
--- /dev/null
+++ b/ojluni/src/main/java/java/math/SignedMutableBigInteger.java
@@ -0,0 +1,135 @@
+/*
+ * Copyright (c) 1999, 2007, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.math;
+
+/**
+ * A class used to represent multiprecision integers that makes efficient
+ * use of allocated space by allowing a number to occupy only part of
+ * an array so that the arrays do not have to be reallocated as often.
+ * When performing an operation with many iterations the array used to
+ * hold a number is only increased when necessary and does not have to
+ * be the same size as the number it represents. A mutable number allows
+ * calculations to occur on the same number without having to create
+ * a new number for every step of the calculation as occurs with
+ * BigIntegers.
+ *
+ * Note that SignedMutableBigIntegers only support signed addition and
+ * subtraction. All other operations occur as with MutableBigIntegers.
+ *
+ * @see BigInteger
+ * @author Michael McCloskey
+ * @since 1.3
+ */
+
+class SignedMutableBigInteger extends MutableBigInteger {
+
+ /**
+ * The sign of this MutableBigInteger.
+ */
+ int sign = 1;
+
+ // Constructors
+
+ /**
+ * The default constructor. An empty MutableBigInteger is created with
+ * a one word capacity.
+ */
+ SignedMutableBigInteger() {
+ super();
+ }
+
+ /**
+ * Construct a new MutableBigInteger with a magnitude specified by
+ * the int val.
+ */
+ SignedMutableBigInteger(int val) {
+ super(val);
+ }
+
+ /**
+ * Construct a new MutableBigInteger with a magnitude equal to the
+ * specified MutableBigInteger.
+ */
+ SignedMutableBigInteger(MutableBigInteger val) {
+ super(val);
+ }
+
+ // Arithmetic Operations
+
+ /**
+ * Signed addition built upon unsigned add and subtract.
+ */
+ void signedAdd(SignedMutableBigInteger addend) {
+ if (sign == addend.sign)
+ add(addend);
+ else
+ sign = sign * subtract(addend);
+
+ }
+
+ /**
+ * Signed addition built upon unsigned add and subtract.
+ */
+ void signedAdd(MutableBigInteger addend) {
+ if (sign == 1)
+ add(addend);
+ else
+ sign = sign * subtract(addend);
+
+ }
+
+ /**
+ * Signed subtraction built upon unsigned add and subtract.
+ */
+ void signedSubtract(SignedMutableBigInteger addend) {
+ if (sign == addend.sign)
+ sign = sign * subtract(addend);
+ else
+ add(addend);
+
+ }
+
+ /**
+ * Signed subtraction built upon unsigned add and subtract.
+ */
+ void signedSubtract(MutableBigInteger addend) {
+ if (sign == 1)
+ sign = sign * subtract(addend);
+ else
+ add(addend);
+ if (intLen == 0)
+ sign = 1;
+ }
+
+ /**
+ * Print out the first intLen ints of this MutableBigInteger's value
+ * array starting at offset.
+ */
+ public String toString() {
+ return this.toBigInteger(sign).toString();
+ }
+
+}
diff --git a/luni/src/main/java/java/math/TEST_MAPPING b/ojluni/src/main/java/java/math/TEST_MAPPING
index 1038858691..1038858691 100644
--- a/luni/src/main/java/java/math/TEST_MAPPING
+++ b/ojluni/src/main/java/java/math/TEST_MAPPING
diff --git a/ojluni/src/main/java/java/math/package-info.java b/ojluni/src/main/java/java/math/package-info.java
new file mode 100644
index 0000000000..377cc25f9d
--- /dev/null
+++ b/ojluni/src/main/java/java/math/package-info.java
@@ -0,0 +1,45 @@
+/*
+ * Copyright (c) 1998, 2006, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+/**
+ * Provides classes for performing arbitrary-precision integer
+ * arithmetic ({@code BigInteger}) and arbitrary-precision decimal
+ * arithmetic ({@code BigDecimal}). {@code BigInteger} is analogous
+ * to the primitive integer types except that it provides arbitrary
+ * precision, hence operations on {@code BigInteger}s do not overflow
+ * or lose precision. In addition to standard arithmetic operations,
+ * {@code BigInteger} provides modular arithmetic, GCD calculation,
+ * primality testing, prime generation, bit manipulation, and a few
+ * other miscellaneous operations.
+ *
+ * {@code BigDecimal} provides arbitrary-precision signed decimal
+ * numbers suitable for currency calculations and the like. {@code
+ * BigDecimal} gives the user complete control over rounding behavior,
+ * allowing the user to choose from a comprehensive set of eight
+ * rounding modes.
+ *
+ * @since JDK1.1
+ */
+package java.math;
diff --git a/openjdk_java_files.bp b/openjdk_java_files.bp
index 7ba860c757..4af083f43a 100644
--- a/openjdk_java_files.bp
+++ b/openjdk_java_files.bp
@@ -259,6 +259,13 @@ filegroup {
"ojluni/src/main/java/java/lang/invoke/VarHandle.java",
"ojluni/src/main/java/java/lang/invoke/VolatileCallSite.java",
"ojluni/src/main/java/java/lang/invoke/WrongMethodTypeException.java",
+ "ojluni/src/main/java/java/math/BigDecimal.java",
+ "ojluni/src/main/java/java/math/BigInteger.java",
+ "ojluni/src/main/java/java/math/BitSieve.java",
+ "ojluni/src/main/java/java/math/MathContext.java",
+ "ojluni/src/main/java/java/math/MutableBigInteger.java",
+ "ojluni/src/main/java/java/math/RoundingMode.java",
+ "ojluni/src/main/java/java/math/SignedMutableBigInteger.java",
"ojluni/src/main/java/java/net/AbstractPlainDatagramSocketImpl.java",
"ojluni/src/main/java/java/net/AbstractPlainSocketImpl.java",
"ojluni/src/main/java/java/net/Authenticator.java",