/* * Copyright (c) 2019, The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include using std::optional; using std::string; using std::vector; namespace android { namespace hardware { namespace identity { TEST(IdentityCredentialSupport, encodeHex) { EXPECT_EQ("", support::encodeHex(vector({}))); EXPECT_EQ("01", support::encodeHex(vector({1}))); EXPECT_EQ("000102030405060708090a0b0c0d0e0f10", support::encodeHex( vector({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}))); EXPECT_EQ("0102ffe060", support::encodeHex(vector({1, 2, 255, 224, 96}))); } TEST(IdentityCredentialSupport, decodeHex) { EXPECT_EQ(vector({}), support::decodeHex("")); EXPECT_EQ(vector({1}), support::decodeHex("01")); EXPECT_EQ(vector({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}), support::decodeHex("000102030405060708090a0b0c0d0e0f10")); EXPECT_FALSE(support::decodeHex("0g")); EXPECT_FALSE(support::decodeHex("0")); EXPECT_FALSE(support::decodeHex("012")); } TEST(IdentityCredentialSupport, CborPrettyPrint) { EXPECT_EQ("'Some text'", support::cborPrettyPrint(cppbor::Tstr("Some text").encode())); EXPECT_EQ("''", support::cborPrettyPrint(cppbor::Tstr("").encode())); EXPECT_EQ("{0x01, 0x00, 0x02, 0xf0, 0xff, 0x40}", support::cborPrettyPrint( cppbor::Bstr(vector({1, 0, 2, 240, 255, 64})).encode())); EXPECT_EQ("{}", support::cborPrettyPrint(cppbor::Bstr(vector()).encode())); EXPECT_EQ("true", support::cborPrettyPrint(cppbor::Bool(true).encode())); EXPECT_EQ("false", support::cborPrettyPrint(cppbor::Bool(false).encode())); EXPECT_EQ("42", support::cborPrettyPrint(cppbor::Uint(42).encode())); EXPECT_EQ("9223372036854775807", // 0x7fff ffff ffff ffff support::cborPrettyPrint(cppbor::Uint(std::numeric_limits::max()).encode())); EXPECT_EQ("-42", support::cborPrettyPrint(cppbor::Nint(-42).encode())); EXPECT_EQ("-9223372036854775808", // -0x8000 0000 0000 0000 support::cborPrettyPrint(cppbor::Nint(std::numeric_limits::min()).encode())); } TEST(IdentityCredentialSupport, CborPrettyPrintCompound) { cppbor::Array array = cppbor::Array("foo", "bar", "baz"); EXPECT_EQ("['foo', 'bar', 'baz', ]", support::cborPrettyPrint(array.encode())); cppbor::Map map = cppbor::Map().add("foo", 42).add("bar", 43).add("baz", 44); EXPECT_EQ( "{\n" " 'foo' : 42,\n" " 'bar' : 43,\n" " 'baz' : 44,\n" "}", support::cborPrettyPrint(map.encode())); cppbor::Array array2 = cppbor::Array(cppbor::Tstr("Some text"), cppbor::Nint(-42)); EXPECT_EQ("['Some text', -42, ]", support::cborPrettyPrint(array2.encode())); cppbor::Map map2 = cppbor::Map().add(42, "foo").add(43, "bar").add(44, "baz"); EXPECT_EQ( "{\n" " 42 : 'foo',\n" " 43 : 'bar',\n" " 44 : 'baz',\n" "}", support::cborPrettyPrint(map2.encode())); cppbor::Array deeplyNestedArrays = cppbor::Array(cppbor::Array(cppbor::Array("a", "b", "c")), cppbor::Array(cppbor::Array("d", "e", cppbor::Array("f", "g")))); EXPECT_EQ( "[\n" " ['a', 'b', 'c', ],\n" " [\n 'd',\n" " 'e',\n" " ['f', 'g', ],\n" " ],\n" "]", support::cborPrettyPrint(deeplyNestedArrays.encode())); EXPECT_EQ( "[\n" " {0x0a, 0x0b},\n" " 'foo',\n" " 42,\n" " ['foo', 'bar', 'baz', ],\n" " {\n" " 'foo' : 42,\n" " 'bar' : 43,\n" " 'baz' : 44,\n" " },\n" " {\n" " 'deep1' : ['Some text', -42, ],\n" " 'deep2' : {\n" " 42 : 'foo',\n" " 43 : 'bar',\n" " 44 : 'baz',\n" " },\n" " },\n" "]", support::cborPrettyPrint(cppbor::Array(cppbor::Bstr(vector{10, 11}), cppbor::Tstr("foo"), cppbor::Uint(42), std::move(array), std::move(map), (cppbor::Map() .add("deep1", std::move(array2)) .add("deep2", std::move(map2)))) .encode())); } TEST(IdentityCredentialSupport, Signatures) { vector data = {1, 2, 3}; optional> keyPair = support::createEcKeyPair(); ASSERT_TRUE(keyPair); optional> privKey = support::ecKeyPairGetPrivateKey(keyPair.value()); ASSERT_TRUE(privKey); optional> pubKey = support::ecKeyPairGetPublicKey(keyPair.value()); ASSERT_TRUE(pubKey); optional> signature = support::signEcDsa(privKey.value(), data); ASSERT_TRUE( support::checkEcDsaSignature(support::sha256(data), signature.value(), pubKey.value())); // Manipulate the signature, check that verification fails. vector modifiedSignature = signature.value(); modifiedSignature[0] ^= 0xff; ASSERT_FALSE( support::checkEcDsaSignature(support::sha256(data), modifiedSignature, pubKey.value())); // Manipulate the data being checked, check that verification fails. vector modifiedDigest = support::sha256(data); modifiedDigest[0] ^= 0xff; ASSERT_FALSE(support::checkEcDsaSignature(modifiedDigest, signature.value(), pubKey.value())); } string replaceLine(const string& str, ssize_t lineNumber, const string& replacement) { vector lines; std::istringstream f(str); string s; while (std::getline(f, s, '\n')) { lines.push_back(s); } size_t numLines = lines.size(); if (lineNumber < 0) { lineNumber = numLines - (-lineNumber); } string ret; size_t n = 0; for (const string& line : lines) { if (n == lineNumber) { ret += replacement + "\n"; } else { ret += line + "\n"; } n++; } return ret; } TEST(IdentityCredentialSupport, CoseSignatures) { optional> keyPair = support::createEcKeyPair(); ASSERT_TRUE(keyPair); optional> privKey = support::ecKeyPairGetPrivateKey(keyPair.value()); ASSERT_TRUE(privKey); optional> pubKey = support::ecKeyPairGetPublicKey(keyPair.value()); ASSERT_TRUE(pubKey); vector data = {1, 2, 3}; optional> coseSign1 = support::coseSignEcDsa( privKey.value(), data, {} /* detachedContent */, {} /* x5chain */); ASSERT_TRUE(support::coseCheckEcDsaSignature(coseSign1.value(), {} /* detachedContent */, pubKey.value())); optional> payload = support::coseSignGetPayload(coseSign1.value()); ASSERT_TRUE(payload); ASSERT_EQ(data, payload.value()); // Finally, check that |coseSign1| are the bytes of a valid COSE_Sign1 message string out = support::cborPrettyPrint(coseSign1.value()); out = replaceLine(out, -2, " [] // Signature Removed"); EXPECT_EQ( "[\n" " {0xa1, 0x01, 0x26},\n" // Bytes of {1:-7} 1 is 'alg' label and -7 is "ECDSA 256" " {},\n" " {0x01, 0x02, 0x03},\n" " [] // Signature Removed\n" "]\n", out); } TEST(IdentityCredentialSupport, CoseSignaturesAdditionalData) { optional> keyPair = support::createEcKeyPair(); ASSERT_TRUE(keyPair); optional> privKey = support::ecKeyPairGetPrivateKey(keyPair.value()); ASSERT_TRUE(privKey); optional> pubKey = support::ecKeyPairGetPublicKey(keyPair.value()); ASSERT_TRUE(pubKey); vector detachedContent = {1, 2, 3}; optional> coseSign1 = support::coseSignEcDsa(privKey.value(), {} /* data */, detachedContent, {} /* x5chain */); ASSERT_TRUE( support::coseCheckEcDsaSignature(coseSign1.value(), detachedContent, pubKey.value())); optional> payload = support::coseSignGetPayload(coseSign1.value()); ASSERT_TRUE(payload); ASSERT_EQ(0, payload.value().size()); // Finally, check that |coseSign1| are the bytes of a valid COSE_Sign1 message string out = support::cborPrettyPrint(coseSign1.value()); out = replaceLine(out, -2, " [] // Signature Removed"); EXPECT_EQ( "[\n" " {0xa1, 0x01, 0x26},\n" // Bytes of {1:-7} 1 is 'alg' label and -7 is "ECDSA 256" " {},\n" " null,\n" " [] // Signature Removed\n" "]\n", out); } vector generateCertChain(size_t numCerts) { vector> certs; for (size_t n = 0; n < numCerts; n++) { optional> keyPair = support::createEcKeyPair(); optional> privKey = support::ecKeyPairGetPrivateKey(keyPair.value()); optional> pubKey = support::ecKeyPairGetPublicKey(keyPair.value()); optional> cert = support::ecPublicKeyGenerateCertificate( pubKey.value(), privKey.value(), "0001", "someIssuer", "someSubject", 0, 0); certs.push_back(cert.value()); } return support::certificateChainJoin(certs); } TEST(IdentityCredentialSupport, CoseSignaturesX5ChainWithSingleCert) { optional> keyPair = support::createEcKeyPair(); ASSERT_TRUE(keyPair); optional> privKey = support::ecKeyPairGetPrivateKey(keyPair.value()); ASSERT_TRUE(privKey); optional> pubKey = support::ecKeyPairGetPublicKey(keyPair.value()); ASSERT_TRUE(pubKey); vector certChain = generateCertChain(1); optional>> splitCerts = support::certificateChainSplit(certChain); ASSERT_EQ(1, splitCerts.value().size()); vector detachedContent = {1, 2, 3}; optional> coseSign1 = support::coseSignEcDsa(privKey.value(), {} /* data */, detachedContent, certChain); ASSERT_TRUE( support::coseCheckEcDsaSignature(coseSign1.value(), detachedContent, pubKey.value())); optional> payload = support::coseSignGetPayload(coseSign1.value()); ASSERT_TRUE(payload); ASSERT_EQ(0, payload.value().size()); optional> certsRecovered = support::coseSignGetX5Chain(coseSign1.value()); EXPECT_EQ(certsRecovered.value(), certChain); } TEST(IdentityCredentialSupport, CoseSignaturesX5ChainWithMultipleCerts) { optional> keyPair = support::createEcKeyPair(); ASSERT_TRUE(keyPair); optional> privKey = support::ecKeyPairGetPrivateKey(keyPair.value()); ASSERT_TRUE(privKey); optional> pubKey = support::ecKeyPairGetPublicKey(keyPair.value()); ASSERT_TRUE(pubKey); vector certChain = generateCertChain(5); optional>> splitCerts = support::certificateChainSplit(certChain); ASSERT_EQ(5, splitCerts.value().size()); vector detachedContent = {1, 2, 3}; optional> coseSign1 = support::coseSignEcDsa(privKey.value(), {} /* data */, detachedContent, certChain); ASSERT_TRUE( support::coseCheckEcDsaSignature(coseSign1.value(), detachedContent, pubKey.value())); optional> payload = support::coseSignGetPayload(coseSign1.value()); ASSERT_TRUE(payload); ASSERT_EQ(0, payload.value().size()); optional> certsRecovered = support::coseSignGetX5Chain(coseSign1.value()); EXPECT_EQ(certsRecovered.value(), certChain); } TEST(IdentityCredentialSupport, CertificateChain) { optional> keyPair = support::createEcKeyPair(); ASSERT_TRUE(keyPair); optional> privKey = support::ecKeyPairGetPrivateKey(keyPair.value()); ASSERT_TRUE(privKey); optional> pubKey = support::ecKeyPairGetPublicKey(keyPair.value()); ASSERT_TRUE(pubKey); optional> cert = support::ecPublicKeyGenerateCertificate( pubKey.value(), privKey.value(), "0001", "someIssuer", "someSubject", 0, 0); optional> extractedPubKey = support::certificateChainGetTopMostKey(cert.value()); ASSERT_TRUE(extractedPubKey); ASSERT_EQ(pubKey.value(), extractedPubKey.value()); // We expect to the chain returned by ecPublicKeyGenerateCertificate() to only have a // single element optional>> splitCerts = support::certificateChainSplit(cert.value()); ASSERT_EQ(1, splitCerts.value().size()); ASSERT_EQ(splitCerts.value()[0], cert.value()); optional> otherKeyPair = support::createEcKeyPair(); ASSERT_TRUE(otherKeyPair); optional> otherPrivKey = support::ecKeyPairGetPrivateKey(keyPair.value()); ASSERT_TRUE(otherPrivKey); optional> otherPubKey = support::ecKeyPairGetPublicKey(keyPair.value()); ASSERT_TRUE(otherPubKey); optional> otherCert = support::ecPublicKeyGenerateCertificate( otherPubKey.value(), privKey.value(), "0001", "someIssuer", "someSubject", 0, 0); // Now both cert and otherCert are two distinct certificates. Let's make a // chain and check that certificateChainSplit() works as expected. ASSERT_NE(cert.value(), otherCert.value()); const vector> certs2 = {cert.value(), otherCert.value()}; vector certs2combined = support::certificateChainJoin(certs2); ASSERT_EQ(certs2combined.size(), cert.value().size() + otherCert.value().size()); optional>> splitCerts2 = support::certificateChainSplit(certs2combined); ASSERT_EQ(certs2, splitCerts2.value()); } vector strToVec(const string& str) { vector ret; size_t size = str.size(); ret.resize(size); memcpy(ret.data(), str.data(), size); return ret; } // Test vector from https://en.wikipedia.org/wiki/HMAC TEST(IdentityCredentialSupport, hmacSha256) { vector key = strToVec("key"); vector data = strToVec("The quick brown fox jumps over the lazy dog"); vector expected = support::decodeHex("f7bc83f430538424b13298e6aa6fb143ef4d59a14946175997479dbc2d1a3cd8") .value(); optional> hmac = support::hmacSha256(key, data); ASSERT_TRUE(hmac); ASSERT_EQ(expected, hmac.value()); } // See also CoseMac0 test in UtilUnitTest.java inside cts/tests/tests/identity/ TEST(IdentityCredentialSupport, CoseMac0) { vector key; key.resize(32); vector data = {0x10, 0x11, 0x12, 0x13}; vector detachedContent = {}; optional> mac = support::coseMac0(key, data, detachedContent); ASSERT_TRUE(mac); EXPECT_EQ( "[\n" " {0xa1, 0x01, 0x05},\n" " {},\n" " {0x10, 0x11, 0x12, 0x13},\n" " {0x6c, 0xec, 0xb5, 0x6a, 0xc9, 0x5c, 0xae, 0x3b, 0x41, 0x13, 0xde, 0xa4, 0xd8, " "0x86, 0x5c, 0x28, 0x2c, 0xd5, 0xa5, 0x13, 0xff, 0x3b, 0xd1, 0xde, 0x70, 0x5e, 0xbb, " "0xe2, 0x2d, 0x42, 0xbe, 0x53},\n" "]", support::cborPrettyPrint(mac.value())); } TEST(IdentityCredentialSupport, CoseMac0DetachedContent) { vector key; key.resize(32); vector data = {}; vector detachedContent = {0x10, 0x11, 0x12, 0x13}; optional> mac = support::coseMac0(key, data, detachedContent); ASSERT_TRUE(mac); // Same HMAC as in CoseMac0 test, only difference is that payload is null. EXPECT_EQ( "[\n" " {0xa1, 0x01, 0x05},\n" " {},\n" " null,\n" " {0x6c, 0xec, 0xb5, 0x6a, 0xc9, 0x5c, 0xae, 0x3b, 0x41, 0x13, 0xde, 0xa4, 0xd8, " "0x86, 0x5c, 0x28, 0x2c, 0xd5, 0xa5, 0x13, 0xff, 0x3b, 0xd1, 0xde, 0x70, 0x5e, 0xbb, " "0xe2, 0x2d, 0x42, 0xbe, 0x53},\n" "]", support::cborPrettyPrint(mac.value())); } // Generates a private key in DER format for a small value of 'd'. // // Used for test vectors. // vector p256PrivateKeyFromD(uint8_t d) { vector privateUncompressed; privateUncompressed.resize(32); privateUncompressed[31] = d; optional> privateKey = support::ecPrivateKeyToKeyPair(privateUncompressed); return privateKey.value(); } std::pair, vector> p256PrivateKeyGetXandY( const vector privateKey) { optional> publicUncompressed = support::ecKeyPairGetPublicKey(privateKey); vector x = vector(publicUncompressed.value().begin() + 1, publicUncompressed.value().begin() + 33); vector y = vector(publicUncompressed.value().begin() + 33, publicUncompressed.value().begin() + 65); return std::make_pair(x, y); } const cppbor::Item* findValueForTstr(const cppbor::Map* map, const string& keyValue) { // TODO: Need cast until libcppbor's Map::get() is marked as const auto [item, found] = ((cppbor::Map*)map)->get(keyValue); if (!found) { return nullptr; } return item.get(); } const cppbor::Array* findArrayValueForTstr(const cppbor::Map* map, const string& keyValue) { const cppbor::Item* item = findValueForTstr(map, keyValue); if (item == nullptr) { return nullptr; } return item->asArray(); } const cppbor::Map* findMapValueForTstr(const cppbor::Map* map, const string& keyValue) { const cppbor::Item* item = findValueForTstr(map, keyValue); if (item == nullptr) { return nullptr; } return item->asMap(); } const cppbor::Semantic* findSemanticValueForTstr(const cppbor::Map* map, const string& keyValue) { const cppbor::Item* item = findValueForTstr(map, keyValue); if (item == nullptr) { return nullptr; } return item->asSemantic(); } const std::string findStringValueForTstr(const cppbor::Map* map, const string& keyValue) { const cppbor::Item* item = findValueForTstr(map, keyValue); if (item == nullptr) { return nullptr; } const cppbor::Tstr* tstr = item->asTstr(); if (tstr == nullptr) { return ""; } return tstr->value(); } TEST(IdentityCredentialSupport, testVectors_18013_5) { // This is a test against known vectors for ISO 18013-5. // // The objective of this test is to verify that support::calcEMacKey() and // support::calcMac() agree with the given test vectors. // // We're given static device key: // // x: 28412803729898893058558238221310261427084375743576167377786533380249859400145 // y: 65403602826180996396520286939226973026599920614829401631985882360676038096704 // d: 11 // vector deviceKey = p256PrivateKeyFromD(11); auto [deviceKeyX, deviceKeyY] = p256PrivateKeyGetXandY(deviceKey); EXPECT_EQ(support::encodeHex(deviceKeyX), "3ed113b7883b4c590638379db0c21cda16742ed0255048bf433391d374bc21d1"); EXPECT_EQ(support::encodeHex(deviceKeyY), "9099209accc4c8a224c843afa4f4c68a090d04da5e9889dae2f8eefce82a3740"); // We're given Ephemeral reader key: // // x: 59535862115950685744176693329402396749019581632805653266809849538337418304154 // y: 53776829996815113213100700404832701936765102413212294632483274374518863708344 // d: 20 // vector ephemeralReaderKey = p256PrivateKeyFromD(20); auto [ephemeralReaderKeyX, ephemeralReaderKeyY] = p256PrivateKeyGetXandY(ephemeralReaderKey); EXPECT_EQ(support::encodeHex(ephemeralReaderKeyX), "83a01a9378395bab9bcd6a0ad03cc56d56e6b19250465a94a234dc4c6b28da9a"); EXPECT_EQ(support::encodeHex(ephemeralReaderKeyY), "76e49b6de2f73234ae6a5eb9d612b75c9f2202bb6923f54ff8240aaa86f640b8"); vector ephemeralReaderKeyPublic = support::ecKeyPairGetPublicKey(ephemeralReaderKey).value(); // We're given SessionEstablishment. // // SessionEstablishment = { // "eReaderKey" : EReaderKeyBytes, // "data" : bstr ; Encrypted mdoc request // } // // Fish out EReaderKey from this. // // Note that the test vector below is incorrect insofar that it uses // "eReaderKeyBytes" instead of just "eReaderKey". This will be corrected in // the future. // optional> sessionEstablishmentEncoded = support::decodeHex( "a26f655265616465724b65794279746573d818584ba40102200121582083a01a9378395bab9bcd6a0ad03c" "c56d56e6b19250465a94a234dc4c6b28da9a22582076e49b6de2f73234ae6a5eb9d612b75c9f2202bb6923" "f54ff8240aaa86f640b864646174615902d945b31040c57491acb6d46a71f6c1f67a0b837df1bda9089fd0" "3d0b1fdac3eeb2874a4ef6f90c97d03397186ba00a91102faae7e992e15f761d5662c3c37e3c6c2cfd2ebc" "0bf59dbb8795e377bd7dd353230a41ba2d82294b45871a39b42ca531f26b52f46e356fbaf5075c8fd5b8b0" "8a0df4a1d2e1bdd2e5d69169c1efbb51e393e608d833d325bebfbccb2e15ec08f94b264582fa7b93f7cebc" "aa69f4f0cac2744d4fe35b04df26b2ae69273eed33024949080c1c95a6ef046beede959e9494297dd770af" "4ac6fdd56783aa012555c213dc05cf0f41d1c95119720fcfe1621027f80e2ddd56ea3c1fc596f7b2579333" "5a887ec788092b4a69d23b6219e27d0249b50b3fdcb95b5227007689362e0416b3bae3dae7cb56b4394666" "4e3a3f60dce8d0b678fcd754bebf87bd2b0278dd782d952488a46f2874e34c2dd97bb74084a62b850e9719" "252cd1dca7dbf1858193f6cf093cb3735312bbe1138cf29d8f350e285923f8ef07065299926720b42264e8" "fd5d4b133e72f47c4e999ea689c353f8b41e50a59838e1a0d09eca4a557f77a9c389a0591ad1639119ce86" "edc3320130480ee5101effae6066e8c85aac9ead2ae83e49c1e508aab02f753decbb522ea2200d62fd5d26" "094bd35100bffaa1cdc6af9f7e9cfe7b63da6b5671cd5ac2cf5da450c72addc64cde441f3b7f7fdaf930ad" "1e13388e8a7308d8ca4607e59e082db431a232e7e12cb692baeb4b2127e110ff24cea322ffdbc2e4d9c4c6" "bed27753137d07897c8613627a799a560cf1a2d1edb3de029442862940a5ed7785eea8b6ace93aa6af0792" "fd82877f62d07b757d0179ecbb7347004ecc9c0690d41f75f188cb17ffd2cec2ad8c9675466bb33b737a2a" "e7592b2dcb8132aced2e572266f3f5413a5f9d6d4339a1e4662622af2e7e157a4ea3bfd5c4247e2ec91d8c" "5c3c17427d5edfae673d0e0f782a8d40fa805fd8bc82ae3cb21a65cdad863e02309f6b01d1753fa884b778" "f6e019a2004d8964deeb11f1fd478fcb"); ASSERT_TRUE(sessionEstablishmentEncoded); auto [sessionEstablishmentItem, _se, _se2] = cppbor::parse(sessionEstablishmentEncoded.value()); const cppbor::Map* sessionEstablishment = sessionEstablishmentItem->asMap(); ASSERT_NE(sessionEstablishment, nullptr); const cppbor::Semantic* eReaderKeyBytes = findSemanticValueForTstr(sessionEstablishment, "eReaderKeyBytes"); ASSERT_NE(eReaderKeyBytes, nullptr); ASSERT_EQ(eReaderKeyBytes->value(), 24); const cppbor::Bstr* eReaderKeyBstr = eReaderKeyBytes->child()->asBstr(); ASSERT_NE(eReaderKeyBstr, nullptr); vector eReaderKeyEncoded = eReaderKeyBstr->value(); // TODO: verify this agrees with ephemeralReaderKeyX and ephemeralReaderKeyY // We're given DeviceEngagement. // vector deviceEngagementEncoded = support::decodeHex( "a20063312e30018201d818584ba401022001215820cef66d6b2a3a993e591214d1ea223fb545ca" "6c471c48306e4c36069404c5723f225820878662a229aaae906e123cdd9d3b4c10590ded29fe75" "1eeeca34bbaa44af0773") .value(); // Now calculate SessionTranscriptBytes. It is defined as // // SessionTranscript = [ // DeviceEngagementBytes, // EReaderKeyBytes, // Handover // ] // // SessionTranscriptBytes = #6.24(bstr .cbor SessionTranscript) // cppbor::Array sessionTranscript; sessionTranscript.add(cppbor::Semantic(24, deviceEngagementEncoded)); sessionTranscript.add(cppbor::Semantic(24, eReaderKeyEncoded)); sessionTranscript.add(cppbor::Null()); vector sessionTranscriptEncoded = sessionTranscript.encode(); vector sessionTranscriptBytes = cppbor::Semantic(24, sessionTranscriptEncoded).encode(); // The expected EMacKey is 4c1ebb8aacc633465390fa44edfdb49cb57f2e079aaa771d812584699c0b97e2 // // Verify that support::calcEMacKey() gets the same result. // optional> eMacKey = support::calcEMacKey(support::ecKeyPairGetPrivateKey(deviceKey).value(), // private key ephemeralReaderKeyPublic, // public key sessionTranscriptBytes); // sessionTranscriptBytes ASSERT_TRUE(eMacKey); ASSERT_EQ(support::encodeHex(eMacKey.value()), "4c1ebb8aacc633465390fa44edfdb49cb57f2e079aaa771d812584699c0b97e2"); // Also do it the other way around // optional> eMacKey2 = support::calcEMacKey( support::ecKeyPairGetPrivateKey(ephemeralReaderKey).value(), // private key support::ecKeyPairGetPublicKey(deviceKey).value(), // public key sessionTranscriptBytes); // sessionTranscriptBytes ASSERT_TRUE(eMacKey2); ASSERT_EQ(support::encodeHex(eMacKey2.value()), "4c1ebb8aacc633465390fa44edfdb49cb57f2e079aaa771d812584699c0b97e2"); // We're given DeviceResponse // vector deviceResponseEncoded = support::decodeHex( "a36776657273696f6e63312e3069646f63756d656e747381a367646f6354797065756f72672e69" "736f2e31383031332e352e312e6d444c6c6973737565725369676e6564a26a6e616d6553706163" "6573a2716f72672e69736f2e31383031332e352e3181d8185863a4686469676573744944016672" "616e646f6d58208798645b20ea200e19ffabac92624bee6aec63aceedecfb1b80077d22bfc20e9" "71656c656d656e744964656e7469666965726b66616d696c795f6e616d656c656c656d656e7456" "616c756563446f656b636f6d2e6578616d706c6581d8185864a468646967657374494401667261" "6e646f6d5820218ecf13521b53f4b96abaebe56417afec0e4c91fc8fb26086cd1e5cdc1a94ff71" "656c656d656e744964656e7469666965726f616e6f746865725f656c656d656e746c656c656d65" "6e7456616c75650a6a697373756572417574688443a10126a118215901d2308201ce30820174a0" "0302010202141f7d44f4f107c5ee3f566049cf5d72de294b0d23300a06082a8648ce3d04030230" "233114301206035504030c0b75746f7069612069616361310b3009060355040613025553301e17" "0d3230313030313030303030305a170d3231313030313030303030305a30213112301006035504" "030c0975746f706961206473310b30090603550406130255533059301306072a8648ce3d020106" "082a8648ce3d03010703420004301d9e502dc7e05da85da026a7ae9aa0fac9db7d52a95b3e3e3f" "9aa0a1b45b8b6551b6f6b3061223e0d23c026b017d72298d9ae46887ca61d58db6aea17ee267a3" "8187308184301e0603551d120417301581136578616d706c65406578616d706c652e636f6d301c" "0603551d1f041530133011a00fa00d820b6578616d706c652e636f6d301d0603551d0e04160414" "7bef4db59a1ffb07592bfc57f4743b8a73aea792300e0603551d0f0101ff040403020780301506" "03551d250101ff040b3009060728818c5d050102300a06082a8648ce3d04030203480030450220" "21d52fb1fbda80e5bfda1e8dfb1bc7bf0acb7261d5c9ff54425af76eb21571c602210082bf301f" "89e0a2cb9ca9c9050352de80b47956764f7a3e07bf6a8cd87528a3b55901d2d8185901cda66776" "657273696f6e63312e306f646967657374416c676f726974686d675348412d3235366c76616c75" "6544696765737473a2716f72672e69736f2e31383031332e352e31a20058203b22af1126771f02" "f0ea0d546d4ee3c5b51637381154f5211b79daf5f9facaa8015820f2cba0ce3cde5df901a3da75" "13a4d7f7225fdfe5a306544529bf3dbcce655ca06b636f6d2e6578616d706c65a200582072636d" "ddc282424a63499f4b3927aaa3b74da7b9c0134178bf735e949e4a761e01582006322d3cbe6603" "876bdacc5b6679b51b0fc53d029c244fd5ea719d9028459c916d6465766963654b6579496e666f" "a1696465766963654b6579a4010220012158203ed113b7883b4c590638379db0c21cda16742ed0" "255048bf433391d374bc21d12258209099209accc4c8a224c843afa4f4c68a090d04da5e9889da" "e2f8eefce82a374067646f6354797065756f72672e69736f2e31383031332e352e312e6d444c6c" "76616c6964697479496e666fa3667369676e6564c074323032302d31302d30315431333a33303a" "30325a6976616c696446726f6dc074323032302d31302d30315431333a33303a30325a6a76616c" "6964556e74696cc074323032312d31302d30315431333a33303a30325a5840273ec1b59817d571" "b5a2c5c0ab0ea213d42acb18547fd7097afcc888a22ecbb863c6461ce0e240880895b4aaa84308" "784571c7be7aa3a2e7e3a2ea1a145ed1966c6465766963655369676e6564a26a6e616d65537061" "636573d81841a06a64657669636541757468a1696465766963654d61638443a10105a0f6582009" "da7c964ac004ec36ec64edd0c1abf50c03433c215c3ddb144768abcdf20a60667374617475730" "0") .value(); auto [deviceResponseItem, _, _2] = cppbor::parse(deviceResponseEncoded); const cppbor::Map* deviceResponse = deviceResponseItem->asMap(); ASSERT_NE(deviceResponse, nullptr); const cppbor::Array* documents = findArrayValueForTstr(deviceResponse, "documents"); ASSERT_NE(documents, nullptr); ASSERT_EQ(documents->size(), 1); const cppbor::Map* document = ((*documents)[0])->asMap(); ASSERT_NE(document, nullptr); // Get docType string docType = findStringValueForTstr(document, "docType"); ASSERT_EQ(docType, "org.iso.18013.5.1.mDL"); // Drill down... const cppbor::Map* deviceSigned = findMapValueForTstr(document, "deviceSigned"); ASSERT_NE(deviceSigned, nullptr); // Dig out the encoded form of DeviceNameSpaces // const cppbor::Semantic* deviceNameSpacesBytes = findSemanticValueForTstr(deviceSigned, "nameSpaces"); ASSERT_NE(deviceNameSpacesBytes, nullptr); ASSERT_EQ(deviceNameSpacesBytes->value(), 24); const cppbor::Bstr* deviceNameSpacesBstr = deviceNameSpacesBytes->child()->asBstr(); ASSERT_NE(deviceNameSpacesBstr, nullptr); vector deviceNameSpacesEncoded = deviceNameSpacesBstr->value(); // (For this version of 18013-5, DeviceNameSpaces is always supposed to be empty, check that.) EXPECT_EQ(deviceNameSpacesEncoded, cppbor::Map().encode()); const cppbor::Map* deviceAuth = findMapValueForTstr(deviceSigned, "deviceAuth"); ASSERT_NE(deviceAuth, nullptr); // deviceMac is is the COSE_Mac0.. dig out the encoded form to check that // support::calcMac() gives exactly the same bytes. // const cppbor::Array* deviceMac = findArrayValueForTstr(deviceAuth, "deviceMac"); ASSERT_NE(deviceMac, nullptr); vector deviceMacEncoded = deviceMac->encode(); // Now we calculate what it should be.. optional> calculatedMac = support::calcMac(sessionTranscriptEncoded, // SessionTranscript docType, // DocType deviceNameSpacesEncoded, // DeviceNamespaces eMacKey.value()); // EMacKey ASSERT_TRUE(calculatedMac); // ... and hopefully it's the same! ASSERT_EQ(calculatedMac.value().size(), deviceMacEncoded.size()); EXPECT_TRUE(memcmp(calculatedMac.value().data(), deviceMacEncoded.data(), deviceMacEncoded.size()) == 0); } } // namespace identity } // namespace hardware } // namespace android int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }