summaryrefslogtreecommitdiff
path: root/neuralnetworks/utils/adapter/aidl
diff options
context:
space:
mode:
Diffstat (limited to 'neuralnetworks/utils/adapter/aidl')
-rw-r--r--neuralnetworks/utils/adapter/aidl/include/nnapi/hal/aidl/Burst.h5
-rw-r--r--neuralnetworks/utils/adapter/aidl/include/nnapi/hal/aidl/Device.h4
-rw-r--r--neuralnetworks/utils/adapter/aidl/include/nnapi/hal/aidl/PreparedModel.h12
-rw-r--r--neuralnetworks/utils/adapter/aidl/src/Burst.cpp28
-rw-r--r--neuralnetworks/utils/adapter/aidl/src/Device.cpp47
-rw-r--r--neuralnetworks/utils/adapter/aidl/src/PreparedModel.cpp77
6 files changed, 140 insertions, 33 deletions
diff --git a/neuralnetworks/utils/adapter/aidl/include/nnapi/hal/aidl/Burst.h b/neuralnetworks/utils/adapter/aidl/include/nnapi/hal/aidl/Burst.h
index f2687c4a69..8d42e2fc7f 100644
--- a/neuralnetworks/utils/adapter/aidl/include/nnapi/hal/aidl/Burst.h
+++ b/neuralnetworks/utils/adapter/aidl/include/nnapi/hal/aidl/Burst.h
@@ -46,6 +46,11 @@ class Burst : public BnBurst {
bool measureTiming, int64_t deadlineNs,
int64_t loopTimeoutDurationNs,
ExecutionResult* executionResult) override;
+ ndk::ScopedAStatus executeSynchronouslyWithConfig(
+ const Request& request, const std::vector<int64_t>& memoryIdentifierTokens,
+ const ExecutionConfig& config, int64_t deadlineNs,
+ ExecutionResult* executionResult) override;
+
ndk::ScopedAStatus releaseMemoryResource(int64_t memoryIdentifierToken) override;
class ThreadSafeMemoryCache {
diff --git a/neuralnetworks/utils/adapter/aidl/include/nnapi/hal/aidl/Device.h b/neuralnetworks/utils/adapter/aidl/include/nnapi/hal/aidl/Device.h
index aa29d63b6b..c94f27085f 100644
--- a/neuralnetworks/utils/adapter/aidl/include/nnapi/hal/aidl/Device.h
+++ b/neuralnetworks/utils/adapter/aidl/include/nnapi/hal/aidl/Device.h
@@ -31,6 +31,7 @@
#include <aidl/android/hardware/neuralnetworks/IPreparedModelParcel.h>
#include <aidl/android/hardware/neuralnetworks/Model.h>
#include <aidl/android/hardware/neuralnetworks/NumberOfCacheFiles.h>
+#include <aidl/android/hardware/neuralnetworks/PrepareModelConfig.h>
#include <aidl/android/hardware/neuralnetworks/Priority.h>
#include <android/binder_auto_utils.h>
#include <nnapi/IDevice.h>
@@ -72,6 +73,9 @@ class Device : public BnDevice {
const std::vector<ndk::ScopedFileDescriptor>& dataCache,
const std::vector<uint8_t>& token,
const std::shared_ptr<IPreparedModelCallback>& callback) override;
+ ndk::ScopedAStatus prepareModelWithConfig(
+ const Model& model, const PrepareModelConfig& config,
+ const std::shared_ptr<IPreparedModelCallback>& callback) override;
protected:
const ::android::nn::SharedDevice kDevice;
diff --git a/neuralnetworks/utils/adapter/aidl/include/nnapi/hal/aidl/PreparedModel.h b/neuralnetworks/utils/adapter/aidl/include/nnapi/hal/aidl/PreparedModel.h
index f92b0bc783..d1359d6ac1 100644
--- a/neuralnetworks/utils/adapter/aidl/include/nnapi/hal/aidl/PreparedModel.h
+++ b/neuralnetworks/utils/adapter/aidl/include/nnapi/hal/aidl/PreparedModel.h
@@ -51,9 +51,17 @@ class PreparedModel : public BnPreparedModel {
int64_t loopTimeoutDurationNs, int64_t durationNs,
FencedExecutionResult* executionResult) override;
ndk::ScopedAStatus configureExecutionBurst(std::shared_ptr<IBurst>* burst) override;
- ndk::ScopedAStatus createReusableExecution(const Request& request, bool measureTiming,
- int64_t loopTimeoutDurationNs,
+ ndk::ScopedAStatus createReusableExecution(const Request& request,
+ const ExecutionConfig& config,
std::shared_ptr<IExecution>* execution) override;
+ ndk::ScopedAStatus executeSynchronouslyWithConfig(const Request& request,
+ const ExecutionConfig& config,
+ int64_t deadlineNs,
+ ExecutionResult* executionResult) override;
+ ndk::ScopedAStatus executeFencedWithConfig(
+ const Request& request, const std::vector<ndk::ScopedFileDescriptor>& waitFor,
+ const ExecutionConfig& config, int64_t deadlineNs, int64_t durationNs,
+ FencedExecutionResult* executionResult) override;
::android::nn::SharedPreparedModel getUnderlyingPreparedModel() const;
diff --git a/neuralnetworks/utils/adapter/aidl/src/Burst.cpp b/neuralnetworks/utils/adapter/aidl/src/Burst.cpp
index 4fabb20635..a4a80faf2a 100644
--- a/neuralnetworks/utils/adapter/aidl/src/Burst.cpp
+++ b/neuralnetworks/utils/adapter/aidl/src/Burst.cpp
@@ -93,7 +93,8 @@ std::vector<nn::IBurst::OptionalCacheHold> ensureAllMemoriesAreCached(
nn::ExecutionResult<ExecutionResult> executeSynchronously(
const nn::IBurst& burst, const Burst::ThreadSafeMemoryCache& cache, const Request& request,
const std::vector<int64_t>& memoryIdentifierTokens, bool measureTiming, int64_t deadlineNs,
- int64_t loopTimeoutDurationNs) {
+ int64_t loopTimeoutDurationNs, const std::vector<TokenValuePair>& hints,
+ const std::vector<ExtensionNameAndPrefix>& extensionNameToPrefix) {
if (request.pools.size() != memoryIdentifierTokens.size()) {
return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT)
<< "request.pools.size() != memoryIdentifierTokens.size()";
@@ -107,11 +108,13 @@ nn::ExecutionResult<ExecutionResult> executeSynchronously(
const auto nnMeasureTiming = measureTiming ? nn::MeasureTiming::YES : nn::MeasureTiming::NO;
const auto nnDeadline = NN_TRY(makeOptionalTimePoint(deadlineNs));
const auto nnLoopTimeoutDuration = NN_TRY(makeOptionalDuration(loopTimeoutDurationNs));
+ auto nnHints = NN_TRY(convertInput(hints));
+ auto nnExtensionNameToPrefix = NN_TRY(convertInput(extensionNameToPrefix));
const auto hold = ensureAllMemoriesAreCached(&nnRequest, memoryIdentifierTokens, burst, cache);
- const auto result =
- burst.execute(nnRequest, nnMeasureTiming, nnDeadline, nnLoopTimeoutDuration);
+ const auto result = burst.execute(nnRequest, nnMeasureTiming, nnDeadline, nnLoopTimeoutDuration,
+ nnHints, nnExtensionNameToPrefix);
if (!result.ok() && result.error().code == nn::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE) {
const auto& [message, code, outputShapes] = result.error();
@@ -155,7 +158,24 @@ ndk::ScopedAStatus Burst::executeSynchronously(const Request& request,
ExecutionResult* executionResult) {
auto result =
adapter::executeSynchronously(*kBurst, kMemoryCache, request, memoryIdentifierTokens,
- measureTiming, deadlineNs, loopTimeoutDurationNs);
+ measureTiming, deadlineNs, loopTimeoutDurationNs, {}, {});
+ if (!result.has_value()) {
+ auto [message, code, _] = std::move(result).error();
+ const auto aidlCode = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE);
+ return ndk::ScopedAStatus::fromServiceSpecificErrorWithMessage(
+ static_cast<int32_t>(aidlCode), message.c_str());
+ }
+ *executionResult = std::move(result).value();
+ return ndk::ScopedAStatus::ok();
+}
+
+ndk::ScopedAStatus Burst::executeSynchronouslyWithConfig(
+ const Request& request, const std::vector<int64_t>& memoryIdentifierTokens,
+ const ExecutionConfig& config, int64_t deadlineNs, ExecutionResult* executionResult) {
+ auto result = adapter::executeSynchronously(
+ *kBurst, kMemoryCache, request, memoryIdentifierTokens, config.measureTiming,
+ deadlineNs, config.loopTimeoutDurationNs, config.executionHints,
+ config.extensionNameToPrefix);
if (!result.has_value()) {
auto [message, code, _] = std::move(result).error();
const auto aidlCode = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE);
diff --git a/neuralnetworks/utils/adapter/aidl/src/Device.cpp b/neuralnetworks/utils/adapter/aidl/src/Device.cpp
index 763be7f3fa..84aaddbe9d 100644
--- a/neuralnetworks/utils/adapter/aidl/src/Device.cpp
+++ b/neuralnetworks/utils/adapter/aidl/src/Device.cpp
@@ -148,13 +148,14 @@ void notify(IPreparedModelCallback* callback, PrepareModelResult result) {
}
}
-nn::GeneralResult<void> prepareModel(const nn::SharedDevice& device, const Executor& executor,
- const Model& model, ExecutionPreference preference,
- Priority priority, int64_t deadlineNs,
- const std::vector<ndk::ScopedFileDescriptor>& modelCache,
- const std::vector<ndk::ScopedFileDescriptor>& dataCache,
- const std::vector<uint8_t>& token,
- const std::shared_ptr<IPreparedModelCallback>& callback) {
+nn::GeneralResult<void> prepareModel(
+ const nn::SharedDevice& device, const Executor& executor, const Model& model,
+ ExecutionPreference preference, Priority priority, int64_t deadlineNs,
+ const std::vector<ndk::ScopedFileDescriptor>& modelCache,
+ const std::vector<ndk::ScopedFileDescriptor>& dataCache, const std::vector<uint8_t>& token,
+ const std::vector<TokenValuePair>& hints,
+ const std::vector<ExtensionNameAndPrefix>& extensionNameToPrefix,
+ const std::shared_ptr<IPreparedModelCallback>& callback) {
if (callback.get() == nullptr) {
return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT) << "Invalid callback";
}
@@ -166,12 +167,16 @@ nn::GeneralResult<void> prepareModel(const nn::SharedDevice& device, const Execu
auto nnModelCache = NN_TRY(convertInput(modelCache));
auto nnDataCache = NN_TRY(convertInput(dataCache));
const auto nnToken = NN_TRY(convertCacheToken(token));
+ auto nnHints = NN_TRY(convertInput(hints));
+ auto nnExtensionNameToPrefix = NN_TRY(convertInput(extensionNameToPrefix));
Task task = [device, nnModel = std::move(nnModel), nnPreference, nnPriority, nnDeadline,
nnModelCache = std::move(nnModelCache), nnDataCache = std::move(nnDataCache),
- nnToken, callback] {
- auto result = device->prepareModel(nnModel, nnPreference, nnPriority, nnDeadline,
- nnModelCache, nnDataCache, nnToken);
+ nnToken, nnHints = std::move(nnHints),
+ nnExtensionNameToPrefix = std::move(nnExtensionNameToPrefix), callback] {
+ auto result =
+ device->prepareModel(nnModel, nnPreference, nnPriority, nnDeadline, nnModelCache,
+ nnDataCache, nnToken, nnHints, nnExtensionNameToPrefix);
notify(callback.get(), std::move(result));
};
executor(std::move(task), nnDeadline);
@@ -273,8 +278,9 @@ ndk::ScopedAStatus Device::prepareModel(const Model& model, ExecutionPreference
const std::vector<ndk::ScopedFileDescriptor>& dataCache,
const std::vector<uint8_t>& token,
const std::shared_ptr<IPreparedModelCallback>& callback) {
- const auto result = adapter::prepareModel(kDevice, kExecutor, model, preference, priority,
- deadlineNs, modelCache, dataCache, token, callback);
+ const auto result =
+ adapter::prepareModel(kDevice, kExecutor, model, preference, priority, deadlineNs,
+ modelCache, dataCache, token, {}, {}, callback);
if (!result.has_value()) {
const auto& [message, code] = result.error();
const auto aidlCode = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE);
@@ -301,4 +307,21 @@ ndk::ScopedAStatus Device::prepareModelFromCache(
return ndk::ScopedAStatus::ok();
}
+ndk::ScopedAStatus Device::prepareModelWithConfig(
+ const Model& model, const PrepareModelConfig& config,
+ const std::shared_ptr<IPreparedModelCallback>& callback) {
+ const auto result = adapter::prepareModel(
+ kDevice, kExecutor, model, config.preference, config.priority, config.deadlineNs,
+ config.modelCache, config.dataCache, config.cacheToken, config.compilationHints,
+ config.extensionNameToPrefix, callback);
+ if (!result.has_value()) {
+ const auto& [message, code] = result.error();
+ const auto aidlCode = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE);
+ callback->notify(aidlCode, nullptr);
+ return ndk::ScopedAStatus::fromServiceSpecificErrorWithMessage(
+ static_cast<int32_t>(aidlCode), message.c_str());
+ }
+ return ndk::ScopedAStatus::ok();
+}
+
} // namespace aidl::android::hardware::neuralnetworks::adapter
diff --git a/neuralnetworks/utils/adapter/aidl/src/PreparedModel.cpp b/neuralnetworks/utils/adapter/aidl/src/PreparedModel.cpp
index 5cab62c625..790558fde4 100644
--- a/neuralnetworks/utils/adapter/aidl/src/PreparedModel.cpp
+++ b/neuralnetworks/utils/adapter/aidl/src/PreparedModel.cpp
@@ -118,17 +118,20 @@ nn::GeneralResult<nn::OptionalTimePoint> makeOptionalTimePoint(int64_t durationN
return durationNs < 0 ? nn::OptionalTimePoint{} : nn::TimePoint(makeDuration(durationNs));
}
-nn::ExecutionResult<ExecutionResult> executeSynchronously(const nn::IPreparedModel& preparedModel,
- const Request& request,
- bool measureTiming, int64_t deadlineNs,
- int64_t loopTimeoutDurationNs) {
+nn::ExecutionResult<ExecutionResult> executeSynchronously(
+ const nn::IPreparedModel& preparedModel, const Request& request, bool measureTiming,
+ int64_t deadlineNs, int64_t loopTimeoutDurationNs, const std::vector<TokenValuePair>& hints,
+ const std::vector<ExtensionNameAndPrefix>& extensionNameToPrefix) {
const auto nnRequest = NN_TRY(convertInput(request));
const auto nnMeasureTiming = measureTiming ? nn::MeasureTiming::YES : nn::MeasureTiming::NO;
const auto nnDeadline = NN_TRY(makeOptionalTimePoint(deadlineNs));
const auto nnLoopTimeoutDuration = NN_TRY(makeOptionalDuration(loopTimeoutDurationNs));
+ auto nnHints = NN_TRY(convertInput(hints));
+ auto nnExtensionNameToPrefix = NN_TRY(convertInput(extensionNameToPrefix));
const auto result =
- preparedModel.execute(nnRequest, nnMeasureTiming, nnDeadline, nnLoopTimeoutDuration);
+ preparedModel.execute(nnRequest, nnMeasureTiming, nnDeadline, nnLoopTimeoutDuration,
+ nnHints, nnExtensionNameToPrefix);
if (!result.ok() && result.error().code == nn::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE) {
const auto& [message, code, outputShapes] = result.error();
@@ -147,16 +150,21 @@ nn::ExecutionResult<ExecutionResult> executeSynchronously(const nn::IPreparedMod
nn::GeneralResult<FencedExecutionResult> executeFenced(
const nn::IPreparedModel& preparedModel, const Request& request,
const std::vector<ndk::ScopedFileDescriptor>& waitFor, bool measureTiming,
- int64_t deadlineNs, int64_t loopTimeoutDurationNs, int64_t durationNs) {
+ int64_t deadlineNs, int64_t loopTimeoutDurationNs, int64_t durationNs,
+ const std::vector<TokenValuePair>& hints,
+ const std::vector<ExtensionNameAndPrefix>& extensionNameToPrefix) {
const auto nnRequest = NN_TRY(convertInput(request));
const auto nnWaitFor = NN_TRY(convertSyncFences(waitFor));
const auto nnMeasureTiming = measureTiming ? nn::MeasureTiming::YES : nn::MeasureTiming::NO;
const auto nnDeadline = NN_TRY(makeOptionalTimePoint(deadlineNs));
const auto nnLoopTimeoutDuration = NN_TRY(makeOptionalDuration(loopTimeoutDurationNs));
const auto nnDuration = NN_TRY(makeOptionalDuration(durationNs));
+ auto nnHints = NN_TRY(convertInput(hints));
+ auto nnExtensionNameToPrefix = NN_TRY(convertInput(extensionNameToPrefix));
auto [syncFence, executeFencedInfoCallback] = NN_TRY(preparedModel.executeFenced(
- nnRequest, nnWaitFor, nnMeasureTiming, nnDeadline, nnLoopTimeoutDuration, nnDuration));
+ nnRequest, nnWaitFor, nnMeasureTiming, nnDeadline, nnLoopTimeoutDuration, nnDuration,
+ nnHints, nnExtensionNameToPrefix));
ndk::ScopedFileDescriptor fileDescriptor;
if (syncFence.hasFd()) {
@@ -171,11 +179,16 @@ nn::GeneralResult<FencedExecutionResult> executeFenced(
nn::GeneralResult<nn::SharedExecution> createReusableExecution(
const nn::IPreparedModel& preparedModel, const Request& request, bool measureTiming,
- int64_t loopTimeoutDurationNs) {
+ int64_t loopTimeoutDurationNs, const std::vector<TokenValuePair>& hints,
+ const std::vector<ExtensionNameAndPrefix>& extensionNameToPrefix) {
const auto nnRequest = NN_TRY(convertInput(request));
const auto nnMeasureTiming = measureTiming ? nn::MeasureTiming::YES : nn::MeasureTiming::NO;
const auto nnLoopTimeoutDuration = NN_TRY(makeOptionalDuration(loopTimeoutDurationNs));
- return preparedModel.createReusableExecution(nnRequest, nnMeasureTiming, nnLoopTimeoutDuration);
+ auto nnHints = NN_TRY(convertInput(hints));
+ auto nnExtensionNameToPrefix = NN_TRY(convertInput(extensionNameToPrefix));
+
+ return preparedModel.createReusableExecution(nnRequest, nnMeasureTiming, nnLoopTimeoutDuration,
+ nnHints, nnExtensionNameToPrefix);
}
nn::ExecutionResult<ExecutionResult> executeSynchronously(const nn::IExecution& execution,
@@ -231,7 +244,7 @@ ndk::ScopedAStatus PreparedModel::executeSynchronously(const Request& request, b
int64_t loopTimeoutDurationNs,
ExecutionResult* executionResult) {
auto result = adapter::executeSynchronously(*kPreparedModel, request, measureTiming, deadlineNs,
- loopTimeoutDurationNs);
+ loopTimeoutDurationNs, {}, {});
if (!result.has_value()) {
const auto& [message, code, _] = result.error();
const auto aidlCode = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE);
@@ -247,7 +260,41 @@ ndk::ScopedAStatus PreparedModel::executeFenced(
bool measureTiming, int64_t deadlineNs, int64_t loopTimeoutDurationNs, int64_t durationNs,
FencedExecutionResult* executionResult) {
auto result = adapter::executeFenced(*kPreparedModel, request, waitFor, measureTiming,
- deadlineNs, loopTimeoutDurationNs, durationNs);
+ deadlineNs, loopTimeoutDurationNs, durationNs, {}, {});
+ if (!result.has_value()) {
+ const auto& [message, code] = result.error();
+ const auto aidlCode = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE);
+ return ndk::ScopedAStatus::fromServiceSpecificErrorWithMessage(
+ static_cast<int32_t>(aidlCode), message.c_str());
+ }
+ *executionResult = std::move(result).value();
+ return ndk::ScopedAStatus::ok();
+}
+
+ndk::ScopedAStatus PreparedModel::executeSynchronouslyWithConfig(const Request& request,
+ const ExecutionConfig& config,
+ int64_t deadlineNs,
+ ExecutionResult* executionResult) {
+ auto result = adapter::executeSynchronously(
+ *kPreparedModel, request, config.measureTiming, deadlineNs,
+ config.loopTimeoutDurationNs, config.executionHints, config.extensionNameToPrefix);
+ if (!result.has_value()) {
+ const auto& [message, code, _] = result.error();
+ const auto aidlCode = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE);
+ return ndk::ScopedAStatus::fromServiceSpecificErrorWithMessage(
+ static_cast<int32_t>(aidlCode), message.c_str());
+ }
+ *executionResult = std::move(result).value();
+ return ndk::ScopedAStatus::ok();
+}
+
+ndk::ScopedAStatus PreparedModel::executeFencedWithConfig(
+ const Request& request, const std::vector<ndk::ScopedFileDescriptor>& waitFor,
+ const ExecutionConfig& config, int64_t deadlineNs, int64_t durationNs,
+ FencedExecutionResult* executionResult) {
+ auto result = adapter::executeFenced(*kPreparedModel, request, waitFor, config.measureTiming,
+ deadlineNs, config.loopTimeoutDurationNs, durationNs,
+ config.executionHints, config.extensionNameToPrefix);
if (!result.has_value()) {
const auto& [message, code] = result.error();
const auto aidlCode = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE);
@@ -275,11 +322,11 @@ nn::SharedPreparedModel PreparedModel::getUnderlyingPreparedModel() const {
}
ndk::ScopedAStatus PreparedModel::createReusableExecution(const Request& request,
- bool measureTiming,
- int64_t loopTimeoutDurationNs,
+ const ExecutionConfig& config,
std::shared_ptr<IExecution>* execution) {
- auto result = adapter::createReusableExecution(*kPreparedModel, request, measureTiming,
- loopTimeoutDurationNs);
+ auto result = adapter::createReusableExecution(
+ *kPreparedModel, request, config.measureTiming, config.loopTimeoutDurationNs,
+ config.executionHints, config.extensionNameToPrefix);
if (!result.has_value()) {
const auto& [message, code] = result.error();
const auto aidlCode = utils::convert(code).value_or(ErrorStatus::GENERAL_FAILURE);