summaryrefslogtreecommitdiff
path: root/neuralnetworks/aidl/utils/src/PreparedModel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'neuralnetworks/aidl/utils/src/PreparedModel.cpp')
-rw-r--r--neuralnetworks/aidl/utils/src/PreparedModel.cpp260
1 files changed, 174 insertions, 86 deletions
diff --git a/neuralnetworks/aidl/utils/src/PreparedModel.cpp b/neuralnetworks/aidl/utils/src/PreparedModel.cpp
index 18e7636346..7e3a31cac1 100644
--- a/neuralnetworks/aidl/utils/src/PreparedModel.cpp
+++ b/neuralnetworks/aidl/utils/src/PreparedModel.cpp
@@ -30,7 +30,6 @@
#include <nnapi/TypeUtils.h>
#include <nnapi/Types.h>
#include <nnapi/hal/CommonUtils.h>
-#include <nnapi/hal/HandleError.h>
#include <memory>
#include <tuple>
@@ -51,79 +50,138 @@ nn::GeneralResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>> convertEx
nn::GeneralResult<std::pair<nn::Timing, nn::Timing>> convertFencedExecutionResults(
ErrorStatus status, const aidl_hal::Timing& timingLaunched,
const aidl_hal::Timing& timingFenced) {
- HANDLE_HAL_STATUS(status) << "fenced execution callback info failed with " << toString(status);
+ HANDLE_STATUS_AIDL(status) << "fenced execution callback info failed with " << toString(status);
return std::make_pair(NN_TRY(nn::convert(timingLaunched)), NN_TRY(nn::convert(timingFenced)));
}
+nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>> handleExecutionResult(
+ const ExecutionResult& result, const hal::utils::RequestRelocation& relocation) {
+ if (!result.outputSufficientSize) {
+ auto canonicalOutputShapes =
+ nn::convert(result.outputShapes).value_or(std::vector<nn::OutputShape>{});
+ return NN_ERROR(nn::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE, std::move(canonicalOutputShapes))
+ << "execution failed with " << nn::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE;
+ }
+ auto [outputShapes, timing] =
+ NN_TRY(convertExecutionResults(result.outputShapes, result.timing));
+
+ if (relocation.output) {
+ relocation.output->flush();
+ }
+ return std::make_pair(std::move(outputShapes), timing);
+}
+
+nn::GeneralResult<std::pair<nn::SyncFence, nn::ExecuteFencedInfoCallback>>
+handleFencedExecutionResult(const FencedExecutionResult& result,
+ const hal::utils::RequestRelocation& relocation) {
+ auto resultSyncFence = nn::SyncFence::createAsSignaled();
+ if (result.syncFence.get() != -1) {
+ resultSyncFence = nn::SyncFence::create(NN_TRY(nn::convert(result.syncFence))).value();
+ }
+
+ auto callback = result.callback;
+ if (callback == nullptr) {
+ return NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE) << "callback is null";
+ }
+
+ // If computeFenced required the request memory to be moved into shared memory, block here until
+ // the fenced execution has completed and flush the memory back.
+ if (relocation.output) {
+ const auto state = resultSyncFence.syncWait({});
+ if (state != nn::SyncFence::FenceState::SIGNALED) {
+ return NN_ERROR() << "syncWait failed with " << state;
+ }
+ relocation.output->flush();
+ }
+
+ // Create callback which can be used to retrieve the execution error status and timings.
+ nn::ExecuteFencedInfoCallback resultCallback =
+ [callback]() -> nn::GeneralResult<std::pair<nn::Timing, nn::Timing>> {
+ ErrorStatus errorStatus;
+ Timing timingLaunched;
+ Timing timingFenced;
+ const auto ret = callback->getExecutionInfo(&timingLaunched, &timingFenced, &errorStatus);
+ HANDLE_ASTATUS(ret) << "fenced execution callback getExecutionInfo failed";
+ return convertFencedExecutionResults(errorStatus, timingLaunched, timingFenced);
+ };
+
+ return std::make_pair(std::move(resultSyncFence), std::move(resultCallback));
+}
+
} // namespace
nn::GeneralResult<std::shared_ptr<const PreparedModel>> PreparedModel::create(
- std::shared_ptr<aidl_hal::IPreparedModel> preparedModel) {
+ std::shared_ptr<aidl_hal::IPreparedModel> preparedModel, nn::Version featureLevel) {
if (preparedModel == nullptr) {
return NN_ERROR()
<< "aidl_hal::utils::PreparedModel::create must have non-null preparedModel";
}
- return std::make_shared<const PreparedModel>(PrivateConstructorTag{}, std::move(preparedModel));
+ return std::make_shared<const PreparedModel>(PrivateConstructorTag{}, std::move(preparedModel),
+ featureLevel);
}
PreparedModel::PreparedModel(PrivateConstructorTag /*tag*/,
- std::shared_ptr<aidl_hal::IPreparedModel> preparedModel)
- : kPreparedModel(std::move(preparedModel)) {}
+ std::shared_ptr<aidl_hal::IPreparedModel> preparedModel,
+ nn::Version featureLevel)
+ : kPreparedModel(std::move(preparedModel)), kFeatureLevel(featureLevel) {}
nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>> PreparedModel::execute(
const nn::Request& request, nn::MeasureTiming measure,
- const nn::OptionalTimePoint& deadline,
- const nn::OptionalDuration& loopTimeoutDuration) const {
+ const nn::OptionalTimePoint& deadline, const nn::OptionalDuration& loopTimeoutDuration,
+ const std::vector<nn::TokenValuePair>& hints,
+ const std::vector<nn::ExtensionNameAndPrefix>& extensionNameToPrefix) const {
// Ensure that request is ready for IPC.
std::optional<nn::Request> maybeRequestInShared;
hal::utils::RequestRelocation relocation;
- const nn::Request& requestInShared =
- NN_TRY(hal::utils::makeExecutionFailure(hal::utils::convertRequestFromPointerToShared(
- &request, nn::kDefaultRequestMemoryAlignment, nn::kDefaultRequestMemoryPadding,
- &maybeRequestInShared, &relocation)));
-
- const auto aidlRequest = NN_TRY(hal::utils::makeExecutionFailure(convert(requestInShared)));
- const auto aidlMeasure = NN_TRY(hal::utils::makeExecutionFailure(convert(measure)));
- const auto aidlDeadline = NN_TRY(hal::utils::makeExecutionFailure(convert(deadline)));
- const auto aidlLoopTimeoutDuration =
- NN_TRY(hal::utils::makeExecutionFailure(convert(loopTimeoutDuration)));
- return executeInternal(aidlRequest, aidlMeasure, aidlDeadline, aidlLoopTimeoutDuration,
- relocation);
+ const nn::Request& requestInShared = NN_TRY(hal::utils::convertRequestFromPointerToShared(
+ &request, nn::kDefaultRequestMemoryAlignment, nn::kDefaultRequestMemoryPadding,
+ &maybeRequestInShared, &relocation));
+
+ const auto aidlRequest = NN_TRY(convert(requestInShared));
+ const auto aidlMeasure = NN_TRY(convert(measure));
+ const auto aidlDeadline = NN_TRY(convert(deadline));
+ const auto aidlLoopTimeoutDuration = NN_TRY(convert(loopTimeoutDuration));
+ return executeInternal(aidlRequest, aidlMeasure, aidlDeadline, aidlLoopTimeoutDuration, hints,
+ extensionNameToPrefix, relocation);
}
nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>>
PreparedModel::executeInternal(const Request& request, bool measure, int64_t deadline,
int64_t loopTimeoutDuration,
+ const std::vector<nn::TokenValuePair>& hints,
+ const std::vector<nn::ExtensionNameAndPrefix>& extensionNameToPrefix,
const hal::utils::RequestRelocation& relocation) const {
if (relocation.input) {
relocation.input->flush();
}
ExecutionResult executionResult;
- const auto ret = kPreparedModel->executeSynchronously(request, measure, deadline,
- loopTimeoutDuration, &executionResult);
- HANDLE_ASTATUS(ret) << "executeSynchronously failed";
- if (!executionResult.outputSufficientSize) {
- auto canonicalOutputShapes =
- nn::convert(executionResult.outputShapes).value_or(std::vector<nn::OutputShape>{});
- return NN_ERROR(nn::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE, std::move(canonicalOutputShapes))
- << "execution failed with " << nn::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE;
- }
- auto [outputShapes, timing] = NN_TRY(hal::utils::makeExecutionFailure(
- convertExecutionResults(executionResult.outputShapes, executionResult.timing)));
-
- if (relocation.output) {
- relocation.output->flush();
+ if (kFeatureLevel.level >= nn::Version::Level::FEATURE_LEVEL_8) {
+ auto aidlHints = NN_TRY(convert(hints));
+ auto aidlExtensionPrefix = NN_TRY(convert(extensionNameToPrefix));
+ const auto ret = kPreparedModel->executeSynchronouslyWithConfig(
+ request,
+ {measure, loopTimeoutDuration, std::move(aidlHints),
+ std::move(aidlExtensionPrefix)},
+ deadline, &executionResult);
+ HANDLE_ASTATUS(ret) << "executeSynchronouslyWithConfig failed";
+ } else {
+ const auto ret = kPreparedModel->executeSynchronously(
+ request, measure, deadline, loopTimeoutDuration, &executionResult);
+ HANDLE_ASTATUS(ret) << "executeSynchronously failed";
}
- return std::make_pair(std::move(outputShapes), timing);
+ return handleExecutionResult(executionResult, relocation);
}
nn::GeneralResult<std::pair<nn::SyncFence, nn::ExecuteFencedInfoCallback>>
-PreparedModel::executeFenced(const nn::Request& request, const std::vector<nn::SyncFence>& waitFor,
- nn::MeasureTiming measure, const nn::OptionalTimePoint& deadline,
- const nn::OptionalDuration& loopTimeoutDuration,
- const nn::OptionalDuration& timeoutDurationAfterFence) const {
+PreparedModel::executeFenced(
+ const nn::Request& request, const std::vector<nn::SyncFence>& waitFor,
+ nn::MeasureTiming measure, const nn::OptionalTimePoint& deadline,
+ const nn::OptionalDuration& loopTimeoutDuration,
+ const nn::OptionalDuration& timeoutDurationAfterFence,
+ const std::vector<nn::TokenValuePair>& hints,
+ const std::vector<nn::ExtensionNameAndPrefix>& extensionNameToPrefix) const {
// Ensure that request is ready for IPC.
std::optional<nn::Request> maybeRequestInShared;
hal::utils::RequestRelocation relocation;
@@ -138,63 +196,45 @@ PreparedModel::executeFenced(const nn::Request& request, const std::vector<nn::S
const auto aidlLoopTimeoutDuration = NN_TRY(convert(loopTimeoutDuration));
const auto aidlTimeoutDurationAfterFence = NN_TRY(convert(timeoutDurationAfterFence));
return executeFencedInternal(aidlRequest, aidlWaitFor, aidlMeasure, aidlDeadline,
- aidlLoopTimeoutDuration, aidlTimeoutDurationAfterFence,
- relocation);
+ aidlLoopTimeoutDuration, aidlTimeoutDurationAfterFence, hints,
+ extensionNameToPrefix, relocation);
}
nn::GeneralResult<std::pair<nn::SyncFence, nn::ExecuteFencedInfoCallback>>
-PreparedModel::executeFencedInternal(const Request& request,
- const std::vector<ndk::ScopedFileDescriptor>& waitFor,
- bool measure, int64_t deadline, int64_t loopTimeoutDuration,
- int64_t timeoutDurationAfterFence,
- const hal::utils::RequestRelocation& relocation) const {
+PreparedModel::executeFencedInternal(
+ const Request& request, const std::vector<ndk::ScopedFileDescriptor>& waitFor, bool measure,
+ int64_t deadline, int64_t loopTimeoutDuration, int64_t timeoutDurationAfterFence,
+ const std::vector<nn::TokenValuePair>& hints,
+ const std::vector<nn::ExtensionNameAndPrefix>& extensionNameToPrefix,
+ const hal::utils::RequestRelocation& relocation) const {
if (relocation.input) {
relocation.input->flush();
}
FencedExecutionResult result;
- const auto ret =
- kPreparedModel->executeFenced(request, waitFor, measure, deadline, loopTimeoutDuration,
- timeoutDurationAfterFence, &result);
- HANDLE_ASTATUS(ret) << "executeFenced failed";
-
- auto resultSyncFence = nn::SyncFence::createAsSignaled();
- if (result.syncFence.get() != -1) {
- resultSyncFence = NN_TRY(nn::convert(result.syncFence));
+ if (kFeatureLevel.level >= nn::Version::Level::FEATURE_LEVEL_8) {
+ auto aidlHints = NN_TRY(convert(hints));
+ auto aidlExtensionPrefix = NN_TRY(convert(extensionNameToPrefix));
+ const auto ret = kPreparedModel->executeFencedWithConfig(
+ request, waitFor,
+ {measure, loopTimeoutDuration, std::move(aidlHints),
+ std::move(aidlExtensionPrefix)},
+ deadline, timeoutDurationAfterFence, &result);
+ HANDLE_ASTATUS(ret) << "executeFencedWithConfig failed";
+ } else {
+ const auto ret = kPreparedModel->executeFenced(request, waitFor, measure, deadline,
+ loopTimeoutDuration,
+ timeoutDurationAfterFence, &result);
+ HANDLE_ASTATUS(ret) << "executeFenced failed";
}
-
- auto callback = result.callback;
- if (callback == nullptr) {
- return NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE) << "callback is null";
- }
-
- // If executeFenced required the request memory to be moved into shared memory, block here until
- // the fenced execution has completed and flush the memory back.
- if (relocation.output) {
- const auto state = resultSyncFence.syncWait({});
- if (state != nn::SyncFence::FenceState::SIGNALED) {
- return NN_ERROR() << "syncWait failed with " << state;
- }
- relocation.output->flush();
- }
-
- // Create callback which can be used to retrieve the execution error status and timings.
- nn::ExecuteFencedInfoCallback resultCallback =
- [callback]() -> nn::GeneralResult<std::pair<nn::Timing, nn::Timing>> {
- ErrorStatus errorStatus;
- Timing timingLaunched;
- Timing timingFenced;
- const auto ret = callback->getExecutionInfo(&timingLaunched, &timingFenced, &errorStatus);
- HANDLE_ASTATUS(ret) << "fenced execution callback getExecutionInfo failed";
- return convertFencedExecutionResults(errorStatus, timingLaunched, timingFenced);
- };
-
- return std::make_pair(std::move(resultSyncFence), std::move(resultCallback));
+ return handleFencedExecutionResult(result, relocation);
}
nn::GeneralResult<nn::SharedExecution> PreparedModel::createReusableExecution(
const nn::Request& request, nn::MeasureTiming measure,
- const nn::OptionalDuration& loopTimeoutDuration) const {
+ const nn::OptionalDuration& loopTimeoutDuration,
+ const std::vector<nn::TokenValuePair>& hints,
+ const std::vector<nn::ExtensionNameAndPrefix>& extensionNameToPrefix) const {
// Ensure that request is ready for IPC.
std::optional<nn::Request> maybeRequestInShared;
hal::utils::RequestRelocation relocation;
@@ -205,15 +245,31 @@ nn::GeneralResult<nn::SharedExecution> PreparedModel::createReusableExecution(
auto aidlRequest = NN_TRY(convert(requestInShared));
auto aidlMeasure = NN_TRY(convert(measure));
auto aidlLoopTimeoutDuration = NN_TRY(convert(loopTimeoutDuration));
- return Execution::create(shared_from_this(), std::move(aidlRequest), std::move(relocation),
- aidlMeasure, aidlLoopTimeoutDuration);
+
+ if (kFeatureLevel.level >= nn::Version::Level::FEATURE_LEVEL_8) {
+ std::shared_ptr<IExecution> execution;
+ auto aidlHints = NN_TRY(convert(hints));
+ auto aidlExtensionPrefix = NN_TRY(convert(extensionNameToPrefix));
+
+ const auto ret = kPreparedModel->createReusableExecution(
+ aidlRequest,
+ {aidlMeasure, aidlLoopTimeoutDuration, std::move(aidlHints),
+ std::move(aidlExtensionPrefix)},
+ &execution);
+ HANDLE_ASTATUS(ret) << "createReusableExecution failed";
+ return Execution::create(std::move(execution), std::move(relocation));
+ }
+
+ return ExecutionWithCachedRequest::create(shared_from_this(), std::move(aidlRequest),
+ std::move(relocation), aidlMeasure,
+ aidlLoopTimeoutDuration);
}
nn::GeneralResult<nn::SharedBurst> PreparedModel::configureExecutionBurst() const {
std::shared_ptr<IBurst> burst;
const auto ret = kPreparedModel->configureExecutionBurst(&burst);
HANDLE_ASTATUS(ret) << "configureExecutionBurst failed";
- return Burst::create(std::move(burst));
+ return Burst::create(std::move(burst), kFeatureLevel);
}
std::any PreparedModel::getUnderlyingResource() const {
@@ -221,4 +277,36 @@ std::any PreparedModel::getUnderlyingResource() const {
return resource;
}
+nn::ExecutionResult<std::pair<std::vector<nn::OutputShape>, nn::Timing>> Execution::compute(
+ const nn::OptionalTimePoint& deadline) const {
+ const auto aidlDeadline = NN_TRY(convert(deadline));
+
+ if (kRelocation.input) {
+ kRelocation.input->flush();
+ }
+
+ ExecutionResult executionResult;
+ auto ret = kExecution->executeSynchronously(aidlDeadline, &executionResult);
+ HANDLE_ASTATUS(ret) << "executeSynchronously failed";
+ return handleExecutionResult(executionResult, kRelocation);
+}
+
+nn::GeneralResult<std::pair<nn::SyncFence, nn::ExecuteFencedInfoCallback>> Execution::computeFenced(
+ const std::vector<nn::SyncFence>& waitFor, const nn::OptionalTimePoint& deadline,
+ const nn::OptionalDuration& timeoutDurationAfterFence) const {
+ const auto aidlWaitFor = NN_TRY(convert(waitFor));
+ const auto aidlDeadline = NN_TRY(convert(deadline));
+ const auto aidlTimeoutDurationAfterFence = NN_TRY(convert(timeoutDurationAfterFence));
+
+ if (kRelocation.input) {
+ kRelocation.input->flush();
+ }
+
+ FencedExecutionResult result;
+ const auto ret = kExecution->executeFenced(aidlWaitFor, aidlDeadline,
+ aidlTimeoutDurationAfterFence, &result);
+ HANDLE_ASTATUS(ret) << "executeFenced failed";
+ return handleFencedExecutionResult(result, kRelocation);
+}
+
} // namespace aidl::android::hardware::neuralnetworks::utils