/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define DEBUG false // STOPSHIP if true #include "Log.h" #include "HashableDimensionKey.h" #include "FieldValue.h" namespace android { namespace os { namespace statsd { using std::vector; android::hash_t hashDimension(const HashableDimensionKey& value) { android::hash_t hash = 0; for (const auto& fieldValue : value.getValues()) { hash = android::JenkinsHashMix(hash, android::hash_type((int)fieldValue.mField.getField())); hash = android::JenkinsHashMix(hash, android::hash_type((int)fieldValue.mField.getTag())); hash = android::JenkinsHashMix(hash, android::hash_type((int)fieldValue.mValue.getType())); switch (fieldValue.mValue.getType()) { case INT: hash = android::JenkinsHashMix(hash, android::hash_type(fieldValue.mValue.int_value)); break; case LONG: hash = android::JenkinsHashMix(hash, android::hash_type(fieldValue.mValue.long_value)); break; case STRING: hash = android::JenkinsHashMix(hash, static_cast(std::hash()( fieldValue.mValue.str_value))); break; case FLOAT: { float floatVal = fieldValue.mValue.float_value; hash = android::JenkinsHashMixBytes(hash, (uint8_t*)&floatVal, sizeof(float)); break; } } } return JenkinsHashWhiten(hash); } // Filter fields using the matchers and output the results as a HashableDimensionKey. // Note: HashableDimensionKey is just a wrapper for vector bool filterValues(const vector& matcherFields, const vector& values, vector* output) { output->push_back(HashableDimensionKey()); // Top level is only tag id. Now take the real child matchers int prevAnyMatcherPrefix = 0; size_t prevPrevFanout = 0; size_t prevFanout = 0; // For each matcher get matched results. for (const auto& matcher : matcherFields) { vector matchedResults; for (const auto& value : values) { // TODO: potential optimization here to break early because all fields are naturally // sorted. int32_t filteredField; if (value.mField.matches(matcher)) { matchedResults.push_back(FieldValue( Field(value.mField.getTag(), (value.mField.getField() & matcher.mMask)), value.mValue)); } } if (matchedResults.size() == 0) { VLOG("We can't find a dimension value for matcher (%d)%#x.", matcher.mMatcher.getTag(), matcher.mMatcher.getField()); continue; } if (matchedResults.size() == 1) { for (auto& dimension : *output) { dimension.addValue(matchedResults[0]); } prevAnyMatcherPrefix = 0; prevFanout = 0; continue; } // All the complexity below is because we support ANY in dimension. bool createFanout = true; // createFanout is true when the matcher doesn't need to follow the prev matcher's // order. // e.g., get (uid, tag) from any position in attribution. because we have translated // it as 2 matchers, they need to follow the same ordering, we can't create a cross // product of all uid and tags. // However, if the 2 matchers have different prefix, they will create a cross product // e.g., [any uid] [any some other repeated field], we will create a cross product for them if (prevAnyMatcherPrefix != 0) { int anyMatcherPrefix = 0; bool isAnyMatcher = matcher.hasAnyPositionMatcher(&anyMatcherPrefix); if (isAnyMatcher && anyMatcherPrefix == prevAnyMatcherPrefix) { createFanout = false; } else { prevAnyMatcherPrefix = anyMatcherPrefix; } } // Each matcher should match exact one field, unless position is ANY // When x number of fields matches a matcher, the returned dimension // size is multiplied by x. int oldSize; if (createFanout) { // First create fanout (fanout size is matchedResults.Size which could be one, // which means we do nothing here) oldSize = output->size(); for (size_t i = 1; i < matchedResults.size(); i++) { output->insert(output->end(), output->begin(), output->begin() + oldSize); } prevPrevFanout = oldSize; prevFanout = matchedResults.size(); } else { // If we should not create fanout, e.g., uid tag from same position should be remain // together. oldSize = prevPrevFanout; if (prevFanout != matchedResults.size()) { // sanity check. ALOGE("2 Any matcher result in different output"); return false; } } // now add the matched field value to output for (size_t i = 0; i < matchedResults.size(); i++) { for (int j = 0; j < oldSize; j++) { (*output)[i * oldSize + j].addValue(matchedResults[i]); } } } return output->size() > 0 && (*output)[0].getValues().size() > 0; } void filterGaugeValues(const std::vector& matcherFields, const std::vector& values, std::vector* output) { for (const auto& field : matcherFields) { for (const auto& value : values) { int filteredField; if (value.mField.matches(field)) { output->push_back(value); } } } } void getDimensionForCondition(const LogEvent& event, Metric2Condition links, vector* conditionDimension) { // Get the dimension first by using dimension from what. filterValues(links.metricFields, event.getValues(), conditionDimension); // Then replace the field with the dimension from condition. for (auto& dim : *conditionDimension) { size_t count = dim.getValues().size(); if (count != links.conditionFields.size()) { // ALOGE("WTF condition link is bad"); return; } for (size_t i = 0; i < count; i++) { dim.mutableValue(i)->mField.setField(links.conditionFields[i].mMatcher.getField()); dim.mutableValue(i)->mField.setTag(links.conditionFields[i].mMatcher.getTag()); } } } bool LessThan(const vector& s1, const vector& s2) { if (s1.size() != s2.size()) { return s1.size() < s2.size(); } size_t count = s1.size(); for (size_t i = 0; i < count; i++) { if (s1[i] != s2[i]) { return s1[i] < s2[i]; } } return false; } bool HashableDimensionKey::operator==(const HashableDimensionKey& that) const { if (mValues.size() != that.getValues().size()) { return false; } size_t count = mValues.size(); for (size_t i = 0; i < count; i++) { if (mValues[i] != (that.getValues())[i]) { return false; } } return true; }; bool HashableDimensionKey::operator<(const HashableDimensionKey& that) const { return LessThan(getValues(), that.getValues()); }; bool HashableDimensionKey::contains(const HashableDimensionKey& that) const { if (mValues.size() < that.getValues().size()) { return false; } if (mValues.size() == that.getValues().size()) { return (*this) == that; } for (const auto& value : that.getValues()) { bool found = false; for (const auto& myValue : mValues) { if (value.mField == myValue.mField && value.mValue == myValue.mValue) { found = true; break; } } if (!found) { return false; } } return true; } string HashableDimensionKey::toString() const { std::string output; for (const auto& value : mValues) { output += StringPrintf("(%d)%#x->%s ", value.mField.getTag(), value.mField.getField(), value.mValue.toString().c_str()); } return output; } bool MetricDimensionKey::operator==(const MetricDimensionKey& that) const { return mDimensionKeyInWhat == that.getDimensionKeyInWhat() && mDimensionKeyInCondition == that.getDimensionKeyInCondition(); }; string MetricDimensionKey::toString() const { return mDimensionKeyInWhat.toString() + mDimensionKeyInCondition.toString(); } bool MetricDimensionKey::operator<(const MetricDimensionKey& that) const { if (mDimensionKeyInWhat < that.getDimensionKeyInWhat()) { return true; } else if (that.getDimensionKeyInWhat() < mDimensionKeyInWhat) { return false; } return mDimensionKeyInCondition < that.getDimensionKeyInCondition(); } } // namespace statsd } // namespace os } // namespace android