summaryrefslogtreecommitdiff
path: root/libs/hwui/SpotShadow.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libs/hwui/SpotShadow.cpp')
-rw-r--r--libs/hwui/SpotShadow.cpp1120
1 files changed, 0 insertions, 1120 deletions
diff --git a/libs/hwui/SpotShadow.cpp b/libs/hwui/SpotShadow.cpp
deleted file mode 100644
index e371ac8da1e5..000000000000
--- a/libs/hwui/SpotShadow.cpp
+++ /dev/null
@@ -1,1120 +0,0 @@
-/*
- * Copyright (C) 2014 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-// The highest z value can't be higher than (CASTER_Z_CAP_RATIO * light.z)
-#define CASTER_Z_CAP_RATIO 0.95f
-
-// When there is no umbra, then just fake the umbra using
-// centroid * (1 - FAKE_UMBRA_SIZE_RATIO) + outline * FAKE_UMBRA_SIZE_RATIO
-#define FAKE_UMBRA_SIZE_RATIO 0.05f
-
-// When the polygon is about 90 vertices, the penumbra + umbra can reach 270 rays.
-// That is consider pretty fine tessllated polygon so far.
-// This is just to prevent using too much some memory when edge slicing is not
-// needed any more.
-#define FINE_TESSELLATED_POLYGON_RAY_NUMBER 270
-/**
- * Extra vertices for the corner for smoother corner.
- * Only for outer loop.
- * Note that we use such extra memory to avoid an extra loop.
- */
-// For half circle, we could add EXTRA_VERTEX_PER_PI vertices.
-// Set to 1 if we don't want to have any.
-#define SPOT_EXTRA_CORNER_VERTEX_PER_PI 18
-
-// For the whole polygon, the sum of all the deltas b/t normals is 2 * M_PI,
-// therefore, the maximum number of extra vertices will be twice bigger.
-#define SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER (2 * SPOT_EXTRA_CORNER_VERTEX_PER_PI)
-
-// For each RADIANS_DIVISOR, we would allocate one more vertex b/t the normals.
-#define SPOT_CORNER_RADIANS_DIVISOR (M_PI / SPOT_EXTRA_CORNER_VERTEX_PER_PI)
-
-#define PENUMBRA_ALPHA 0.0f
-#define UMBRA_ALPHA 1.0f
-
-#include "SpotShadow.h"
-
-#include "ShadowTessellator.h"
-#include "Vertex.h"
-#include "VertexBuffer.h"
-#include "utils/MathUtils.h"
-
-#include <math.h>
-#include <stdlib.h>
-#include <utils/Log.h>
-#include <algorithm>
-
-// TODO: After we settle down the new algorithm, we can remove the old one and
-// its utility functions.
-// Right now, we still need to keep it for comparison purpose and future expansion.
-namespace android {
-namespace uirenderer {
-
-static const float EPSILON = 1e-7;
-
-/**
- * For each polygon's vertex, the light center will project it to the receiver
- * as one of the outline vertex.
- * For each outline vertex, we need to store the position and normal.
- * Normal here is defined against the edge by the current vertex and the next vertex.
- */
-struct OutlineData {
- Vector2 position;
- Vector2 normal;
- float radius;
-};
-
-/**
- * For each vertex, we need to keep track of its angle, whether it is penumbra or
- * umbra, and its corresponding vertex index.
- */
-struct SpotShadow::VertexAngleData {
- // The angle to the vertex from the centroid.
- float mAngle;
- // True is the vertex comes from penumbra, otherwise it comes from umbra.
- bool mIsPenumbra;
- // The index of the vertex described by this data.
- int mVertexIndex;
- void set(float angle, bool isPenumbra, int index) {
- mAngle = angle;
- mIsPenumbra = isPenumbra;
- mVertexIndex = index;
- }
-};
-
-/**
- * Calculate the angle between and x and a y coordinate.
- * The atan2 range from -PI to PI.
- */
-static float angle(const Vector2& point, const Vector2& center) {
- return atan2(point.y - center.y, point.x - center.x);
-}
-
-/**
- * Calculate the intersection of a ray with the line segment defined by two points.
- *
- * Returns a negative value in error conditions.
-
- * @param rayOrigin The start of the ray
- * @param dx The x vector of the ray
- * @param dy The y vector of the ray
- * @param p1 The first point defining the line segment
- * @param p2 The second point defining the line segment
- * @return The distance along the ray if it intersects with the line segment, negative if otherwise
- */
-static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy, const Vector2& p1,
- const Vector2& p2) {
- // The math below is derived from solving this formula, basically the
- // intersection point should stay on both the ray and the edge of (p1, p2).
- // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
-
- float divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
- if (divisor == 0) return -1.0f; // error, invalid divisor
-
-#if DEBUG_SHADOW
- float interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
- if (interpVal < 0 || interpVal > 1) {
- ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
- }
-#endif
-
- float distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
- rayOrigin.x * (p2.y - p1.y)) /
- divisor;
-
- return distance; // may be negative in error cases
-}
-
-/**
- * Sort points by their X coordinates
- *
- * @param points the points as a Vector2 array.
- * @param pointsLength the number of vertices of the polygon.
- */
-void SpotShadow::xsort(Vector2* points, int pointsLength) {
- auto cmp = [](const Vector2& a, const Vector2& b) -> bool { return a.x < b.x; };
- std::sort(points, points + pointsLength, cmp);
-}
-
-/**
- * compute the convex hull of a collection of Points
- *
- * @param points the points as a Vector2 array.
- * @param pointsLength the number of vertices of the polygon.
- * @param retPoly pre allocated array of floats to put the vertices
- * @return the number of points in the polygon 0 if no intersection
- */
-int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
- xsort(points, pointsLength);
- int n = pointsLength;
- Vector2 lUpper[n];
- lUpper[0] = points[0];
- lUpper[1] = points[1];
-
- int lUpperSize = 2;
-
- for (int i = 2; i < n; i++) {
- lUpper[lUpperSize] = points[i];
- lUpperSize++;
-
- while (lUpperSize > 2 &&
- !ccw(lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y, lUpper[lUpperSize - 2].x,
- lUpper[lUpperSize - 2].y, lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
- // Remove the middle point of the three last
- lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
- lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
- lUpperSize--;
- }
- }
-
- Vector2 lLower[n];
- lLower[0] = points[n - 1];
- lLower[1] = points[n - 2];
-
- int lLowerSize = 2;
-
- for (int i = n - 3; i >= 0; i--) {
- lLower[lLowerSize] = points[i];
- lLowerSize++;
-
- while (lLowerSize > 2 &&
- !ccw(lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y, lLower[lLowerSize - 2].x,
- lLower[lLowerSize - 2].y, lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
- // Remove the middle point of the three last
- lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
- lLowerSize--;
- }
- }
-
- // output points in CW ordering
- const int total = lUpperSize + lLowerSize - 2;
- int outIndex = total - 1;
- for (int i = 0; i < lUpperSize; i++) {
- retPoly[outIndex] = lUpper[i];
- outIndex--;
- }
-
- for (int i = 1; i < lLowerSize - 1; i++) {
- retPoly[outIndex] = lLower[i];
- outIndex--;
- }
- // TODO: Add test harness which verify that all the points are inside the hull.
- return total;
-}
-
-/**
- * Test whether the 3 points form a counter clockwise turn.
- *
- * @return true if a right hand turn
- */
-bool SpotShadow::ccw(float ax, float ay, float bx, float by, float cx, float cy) {
- return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
-}
-
-/**
- * Sort points about a center point
- *
- * @param poly The in and out polyogon as a Vector2 array.
- * @param polyLength The number of vertices of the polygon.
- * @param center the center ctr[0] = x , ctr[1] = y to sort around.
- */
-void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
- quicksortCirc(poly, 0, polyLength - 1, center);
-}
-
-/**
- * Swap points pointed to by i and j
- */
-void SpotShadow::swap(Vector2* points, int i, int j) {
- Vector2 temp = points[i];
- points[i] = points[j];
- points[j] = temp;
-}
-
-/**
- * quick sort implementation about the center.
- */
-void SpotShadow::quicksortCirc(Vector2* points, int low, int high, const Vector2& center) {
- int i = low, j = high;
- int p = low + (high - low) / 2;
- float pivot = angle(points[p], center);
- while (i <= j) {
- while (angle(points[i], center) > pivot) {
- i++;
- }
- while (angle(points[j], center) < pivot) {
- j--;
- }
-
- if (i <= j) {
- swap(points, i, j);
- i++;
- j--;
- }
- }
- if (low < j) quicksortCirc(points, low, j, center);
- if (i < high) quicksortCirc(points, i, high, center);
-}
-
-/**
- * Test whether a point is inside the polygon.
- *
- * @param testPoint the point to test
- * @param poly the polygon
- * @return true if the testPoint is inside the poly.
- */
-bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint, const Vector2* poly, int len) {
- bool c = false;
- float testx = testPoint.x;
- float testy = testPoint.y;
- for (int i = 0, j = len - 1; i < len; j = i++) {
- float startX = poly[j].x;
- float startY = poly[j].y;
- float endX = poly[i].x;
- float endY = poly[i].y;
-
- if (((endY > testy) != (startY > testy)) &&
- (testx < (startX - endX) * (testy - endY) / (startY - endY) + endX)) {
- c = !c;
- }
- }
- return c;
-}
-
-/**
- * Reverse the polygon
- *
- * @param polygon the polygon as a Vector2 array
- * @param len the number of points of the polygon
- */
-void SpotShadow::reverse(Vector2* polygon, int len) {
- int n = len / 2;
- for (int i = 0; i < n; i++) {
- Vector2 tmp = polygon[i];
- int k = len - 1 - i;
- polygon[i] = polygon[k];
- polygon[k] = tmp;
- }
-}
-
-/**
- * Compute a horizontal circular polygon about point (x , y , height) of radius
- * (size)
- *
- * @param points number of the points of the output polygon.
- * @param lightCenter the center of the light.
- * @param size the light size.
- * @param ret result polygon.
- */
-void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter, float size,
- Vector3* ret) {
- // TODO: Caching all the sin / cos values and store them in a look up table.
- for (int i = 0; i < points; i++) {
- float angle = 2 * i * M_PI / points;
- ret[i].x = cosf(angle) * size + lightCenter.x;
- ret[i].y = sinf(angle) * size + lightCenter.y;
- ret[i].z = lightCenter.z;
- }
-}
-
-/**
- * From light center, project one vertex to the z=0 surface and get the outline.
- *
- * @param outline The result which is the outline position.
- * @param lightCenter The center of light.
- * @param polyVertex The input polygon's vertex.
- *
- * @return float The ratio of (polygon.z / light.z - polygon.z)
- */
-float SpotShadow::projectCasterToOutline(Vector2& outline, const Vector3& lightCenter,
- const Vector3& polyVertex) {
- float lightToPolyZ = lightCenter.z - polyVertex.z;
- float ratioZ = CASTER_Z_CAP_RATIO;
- if (lightToPolyZ != 0) {
- // If any caster's vertex is almost above the light, we just keep it as 95%
- // of the height of the light.
- ratioZ = MathUtils::clamp(polyVertex.z / lightToPolyZ, 0.0f, CASTER_Z_CAP_RATIO);
- }
-
- outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x);
- outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y);
- return ratioZ;
-}
-
-/**
- * Generate the shadow spot light of shape lightPoly and a object poly
- *
- * @param isCasterOpaque whether the caster is opaque
- * @param lightCenter the center of the light
- * @param lightSize the radius of the light
- * @param poly x,y,z vertexes of a convex polygon that occludes the light source
- * @param polyLength number of vertexes of the occluding polygon
- * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
- * empty strip if error.
- */
-void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter, float lightSize,
- const Vector3* poly, int polyLength, const Vector3& polyCentroid,
- VertexBuffer& shadowTriangleStrip) {
- if (CC_UNLIKELY(lightCenter.z <= 0)) {
- ALOGW("Relative Light Z is not positive. No spot shadow!");
- return;
- }
- if (CC_UNLIKELY(polyLength < 3)) {
-#if DEBUG_SHADOW
- ALOGW("Invalid polygon length. No spot shadow!");
-#endif
- return;
- }
- OutlineData outlineData[polyLength];
- Vector2 outlineCentroid;
- // Calculate the projected outline for each polygon's vertices from the light center.
- //
- // O Light
- // /
- // /
- // . Polygon vertex
- // /
- // /
- // O Outline vertices
- //
- // Ratio = (Poly - Outline) / (Light - Poly)
- // Outline.x = Poly.x - Ratio * (Light.x - Poly.x)
- // Outline's radius / Light's radius = Ratio
-
- // Compute the last outline vertex to make sure we can get the normal and outline
- // in one single loop.
- projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter, poly[polyLength - 1]);
-
- // Take the outline's polygon, calculate the normal for each outline edge.
- int currentNormalIndex = polyLength - 1;
- int nextNormalIndex = 0;
-
- for (int i = 0; i < polyLength; i++) {
- float ratioZ = projectCasterToOutline(outlineData[i].position, lightCenter, poly[i]);
- outlineData[i].radius = ratioZ * lightSize;
-
- outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal(
- outlineData[currentNormalIndex].position, outlineData[nextNormalIndex].position);
- currentNormalIndex = (currentNormalIndex + 1) % polyLength;
- nextNormalIndex++;
- }
-
- projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid);
-
- int penumbraIndex = 0;
- // Then each polygon's vertex produce at minmal 2 penumbra vertices.
- // Since the size can be dynamic here, we keep track of the size and update
- // the real size at the end.
- int allocatedPenumbraLength = 2 * polyLength + SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER;
- Vector2 penumbra[allocatedPenumbraLength];
- int totalExtraCornerSliceNumber = 0;
-
- Vector2 umbra[polyLength];
-
- // When centroid is covered by all circles from outline, then we consider
- // the umbra is invalid, and we will tune down the shadow strength.
- bool hasValidUmbra = true;
- // We need the minimal of RaitoVI to decrease the spot shadow strength accordingly.
- float minRaitoVI = FLT_MAX;
-
- for (int i = 0; i < polyLength; i++) {
- // Generate all the penumbra's vertices only using the (outline vertex + normal * radius)
- // There is no guarantee that the penumbra is still convex, but for
- // each outline vertex, it will connect to all its corresponding penumbra vertices as
- // triangle fans. And for neighber penumbra vertex, it will be a trapezoid.
- //
- // Penumbra Vertices marked as Pi
- // Outline Vertices marked as Vi
- // (P3)
- // (P2) | ' (P4)
- // (P1)' | | '
- // ' | | '
- // (P0) ------------------------------------------------(P5)
- // | (V0) |(V1)
- // | |
- // | |
- // | |
- // | |
- // | |
- // | |
- // | |
- // | |
- // (V3)-----------------------------------(V2)
- int preNormalIndex = (i + polyLength - 1) % polyLength;
-
- const Vector2& previousNormal = outlineData[preNormalIndex].normal;
- const Vector2& currentNormal = outlineData[i].normal;
-
- // Depending on how roundness we want for each corner, we can subdivide
- // further here and/or introduce some heuristic to decide how much the
- // subdivision should be.
- int currentExtraSliceNumber = ShadowTessellator::getExtraVertexNumber(
- previousNormal, currentNormal, SPOT_CORNER_RADIANS_DIVISOR);
-
- int currentCornerSliceNumber = 1 + currentExtraSliceNumber;
- totalExtraCornerSliceNumber += currentExtraSliceNumber;
-#if DEBUG_SHADOW
- ALOGD("currentExtraSliceNumber should be %d", currentExtraSliceNumber);
- ALOGD("currentCornerSliceNumber should be %d", currentCornerSliceNumber);
- ALOGD("totalCornerSliceNumber is %d", totalExtraCornerSliceNumber);
-#endif
- if (CC_UNLIKELY(totalExtraCornerSliceNumber > SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER)) {
- currentCornerSliceNumber = 1;
- }
- for (int k = 0; k <= currentCornerSliceNumber; k++) {
- Vector2 avgNormal =
- (previousNormal * (currentCornerSliceNumber - k) + currentNormal * k) /
- currentCornerSliceNumber;
- avgNormal.normalize();
- penumbra[penumbraIndex++] = outlineData[i].position + avgNormal * outlineData[i].radius;
- }
-
- // Compute the umbra by the intersection from the outline's centroid!
- //
- // (V) ------------------------------------
- // | ' |
- // | ' |
- // | ' (I) |
- // | ' |
- // | ' (C) |
- // | |
- // | |
- // | |
- // | |
- // ------------------------------------
- //
- // Connect a line b/t the outline vertex (V) and the centroid (C), it will
- // intersect with the outline vertex's circle at point (I).
- // Now, ratioVI = VI / VC, ratioIC = IC / VC
- // Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI;
- //
- // When all of the outline circles cover the the outline centroid, (like I is
- // on the other side of C), there is no real umbra any more, so we just fake
- // a small area around the centroid as the umbra, and tune down the spot
- // shadow's umbra strength to simulate the effect the whole shadow will
- // become lighter in this case.
- // The ratio can be simulated by using the inverse of maximum of ratioVI for
- // all (V).
- float distOutline = (outlineData[i].position - outlineCentroid).length();
- if (CC_UNLIKELY(distOutline == 0)) {
- // If the outline has 0 area, then there is no spot shadow anyway.
- ALOGW("Outline has 0 area, no spot shadow!");
- return;
- }
-
- float ratioVI = outlineData[i].radius / distOutline;
- minRaitoVI = std::min(minRaitoVI, ratioVI);
- if (ratioVI >= (1 - FAKE_UMBRA_SIZE_RATIO)) {
- ratioVI = (1 - FAKE_UMBRA_SIZE_RATIO);
- }
- // When we know we don't have valid umbra, don't bother to compute the
- // values below. But we can't skip the loop yet since we want to know the
- // maximum ratio.
- float ratioIC = 1 - ratioVI;
- umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI;
- }
-
- hasValidUmbra = (minRaitoVI <= 1.0);
- float shadowStrengthScale = 1.0;
- if (!hasValidUmbra) {
-#if DEBUG_SHADOW
- ALOGW("The object is too close to the light or too small, no real umbra!");
-#endif
- for (int i = 0; i < polyLength; i++) {
- umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO +
- outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO);
- }
- shadowStrengthScale = 1.0 / minRaitoVI;
- }
-
- int penumbraLength = penumbraIndex;
- int umbraLength = polyLength;
-
-#if DEBUG_SHADOW
- ALOGD("penumbraLength is %d , allocatedPenumbraLength %d", penumbraLength,
- allocatedPenumbraLength);
- dumpPolygon(poly, polyLength, "input poly");
- dumpPolygon(penumbra, penumbraLength, "penumbra");
- dumpPolygon(umbra, umbraLength, "umbra");
- ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale);
-#endif
-
- // The penumbra and umbra needs to be in convex shape to keep consistency
- // and quality.
- // Since we are still shooting rays to penumbra, it needs to be convex.
- // Umbra can be represented as a fan from the centroid, but visually umbra
- // looks nicer when it is convex.
- Vector2 finalUmbra[umbraLength];
- Vector2 finalPenumbra[penumbraLength];
- int finalUmbraLength = hull(umbra, umbraLength, finalUmbra);
- int finalPenumbraLength = hull(penumbra, penumbraLength, finalPenumbra);
-
- generateTriangleStrip(isCasterOpaque, shadowStrengthScale, finalPenumbra, finalPenumbraLength,
- finalUmbra, finalUmbraLength, poly, polyLength, shadowTriangleStrip,
- outlineCentroid);
-}
-
-/**
- * This is only for experimental purpose.
- * After intersections are calculated, we could smooth the polygon if needed.
- * So far, we don't think it is more appealing yet.
- *
- * @param level The level of smoothness.
- * @param rays The total number of rays.
- * @param rayDist (In and Out) The distance for each ray.
- *
- */
-void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
- for (int k = 0; k < level; k++) {
- for (int i = 0; i < rays; i++) {
- float p1 = rayDist[(rays - 1 + i) % rays];
- float p2 = rayDist[i];
- float p3 = rayDist[(i + 1) % rays];
- rayDist[i] = (p1 + p2 * 2 + p3) / 4;
- }
- }
-}
-
-// Index pair is meant for storing the tessellation information for the penumbra
-// area. One index must come from exterior tangent of the circles, the other one
-// must come from the interior tangent of the circles.
-struct IndexPair {
- int outerIndex;
- int innerIndex;
-};
-
-// For one penumbra vertex, find the cloest umbra vertex and return its index.
-inline int getClosestUmbraIndex(const Vector2& pivot, const Vector2* polygon, int polygonLength) {
- float minLengthSquared = FLT_MAX;
- int resultIndex = -1;
- bool hasDecreased = false;
- // Starting with some negative offset, assuming both umbra and penumbra are starting
- // at the same angle, this can help to find the result faster.
- // Normally, loop 3 times, we can find the closest point.
- int offset = polygonLength - 2;
- for (int i = 0; i < polygonLength; i++) {
- int currentIndex = (i + offset) % polygonLength;
- float currentLengthSquared = (pivot - polygon[currentIndex]).lengthSquared();
- if (currentLengthSquared < minLengthSquared) {
- if (minLengthSquared != FLT_MAX) {
- hasDecreased = true;
- }
- minLengthSquared = currentLengthSquared;
- resultIndex = currentIndex;
- } else if (currentLengthSquared > minLengthSquared && hasDecreased) {
- // Early break b/c we have found the closet one and now the length
- // is increasing again.
- break;
- }
- }
- if (resultIndex == -1) {
- ALOGE("resultIndex is -1, the polygon must be invalid!");
- resultIndex = 0;
- }
- return resultIndex;
-}
-
-// Allow some epsilon here since the later ray intersection did allow for some small
-// floating point error, when the intersection point is slightly outside the segment.
-inline bool sameDirections(bool isPositiveCross, float a, float b) {
- if (isPositiveCross) {
- return a >= -EPSILON && b >= -EPSILON;
- } else {
- return a <= EPSILON && b <= EPSILON;
- }
-}
-
-// Find the right polygon edge to shoot the ray at.
-inline int findPolyIndex(bool isPositiveCross, int startPolyIndex, const Vector2& umbraDir,
- const Vector2* polyToCentroid, int polyLength) {
- // Make sure we loop with a bound.
- for (int i = 0; i < polyLength; i++) {
- int currentIndex = (i + startPolyIndex) % polyLength;
- const Vector2& currentToCentroid = polyToCentroid[currentIndex];
- const Vector2& nextToCentroid = polyToCentroid[(currentIndex + 1) % polyLength];
-
- float currentCrossUmbra = currentToCentroid.cross(umbraDir);
- float umbraCrossNext = umbraDir.cross(nextToCentroid);
- if (sameDirections(isPositiveCross, currentCrossUmbra, umbraCrossNext)) {
-#if DEBUG_SHADOW
- ALOGD("findPolyIndex loop %d times , index %d", i, currentIndex);
-#endif
- return currentIndex;
- }
- }
- LOG_ALWAYS_FATAL("Can't find the right polygon's edge from startPolyIndex %d", startPolyIndex);
- return -1;
-}
-
-// Generate the index pair for penumbra / umbra vertices, and more penumbra vertices
-// if needed.
-inline void genNewPenumbraAndPairWithUmbra(const Vector2* penumbra, int penumbraLength,
- const Vector2* umbra, int umbraLength,
- Vector2* newPenumbra, int& newPenumbraIndex,
- IndexPair* verticesPair, int& verticesPairIndex) {
- // In order to keep everything in just one loop, we need to pre-compute the
- // closest umbra vertex for the last penumbra vertex.
- int previousClosestUmbraIndex =
- getClosestUmbraIndex(penumbra[penumbraLength - 1], umbra, umbraLength);
- for (int i = 0; i < penumbraLength; i++) {
- const Vector2& currentPenumbraVertex = penumbra[i];
- // For current penumbra vertex, starting from previousClosestUmbraIndex,
- // then check the next one until the distance increase.
- // The last one before the increase is the umbra vertex we need to pair with.
- float currentLengthSquared =
- (currentPenumbraVertex - umbra[previousClosestUmbraIndex]).lengthSquared();
- int currentClosestUmbraIndex = previousClosestUmbraIndex;
- int indexDelta = 0;
- for (int j = 1; j < umbraLength; j++) {
- int newUmbraIndex = (previousClosestUmbraIndex + j) % umbraLength;
- float newLengthSquared = (currentPenumbraVertex - umbra[newUmbraIndex]).lengthSquared();
- if (newLengthSquared > currentLengthSquared) {
- // currentClosestUmbraIndex is the umbra vertex's index which has
- // currently found smallest distance, so we can simply break here.
- break;
- } else {
- currentLengthSquared = newLengthSquared;
- indexDelta++;
- currentClosestUmbraIndex = newUmbraIndex;
- }
- }
-
- if (indexDelta > 1) {
- // For those umbra don't have penumbra, generate new penumbra vertices by
- // interpolation.
- //
- // Assuming Pi for penumbra vertices, and Ui for umbra vertices.
- // In the case like below P1 paired with U1 and P2 paired with U5.
- // U2 to U4 are unpaired umbra vertices.
- //
- // P1 P2
- // | |
- // U1 U2 U3 U4 U5
- //
- // We will need to generate 3 more penumbra vertices P1.1, P1.2, P1.3
- // to pair with U2 to U4.
- //
- // P1 P1.1 P1.2 P1.3 P2
- // | | | | |
- // U1 U2 U3 U4 U5
- //
- // That distance ratio b/t Ui to U1 and Ui to U5 decides its paired penumbra
- // vertex's location.
- int newPenumbraNumber = indexDelta - 1;
-
- float accumulatedDeltaLength[indexDelta];
- float totalDeltaLength = 0;
-
- // To save time, cache the previous umbra vertex info outside the loop
- // and update each loop.
- Vector2 previousClosestUmbra = umbra[previousClosestUmbraIndex];
- Vector2 skippedUmbra;
- // Use umbra data to precompute the length b/t unpaired umbra vertices,
- // and its ratio against the total length.
- for (int k = 0; k < indexDelta; k++) {
- int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
- skippedUmbra = umbra[skippedUmbraIndex];
- float currentDeltaLength = (skippedUmbra - previousClosestUmbra).length();
-
- totalDeltaLength += currentDeltaLength;
- accumulatedDeltaLength[k] = totalDeltaLength;
-
- previousClosestUmbra = skippedUmbra;
- }
-
- const Vector2& previousPenumbra = penumbra[(i + penumbraLength - 1) % penumbraLength];
- // Then for each unpaired umbra vertex, create a new penumbra by the ratio,
- // and pair them togehter.
- for (int k = 0; k < newPenumbraNumber; k++) {
- float weightForCurrentPenumbra = 1.0f;
- if (totalDeltaLength != 0.0f) {
- weightForCurrentPenumbra = accumulatedDeltaLength[k] / totalDeltaLength;
- }
- float weightForPreviousPenumbra = 1.0f - weightForCurrentPenumbra;
-
- Vector2 interpolatedPenumbra = currentPenumbraVertex * weightForCurrentPenumbra +
- previousPenumbra * weightForPreviousPenumbra;
-
- int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
- verticesPair[verticesPairIndex].outerIndex = newPenumbraIndex;
- verticesPair[verticesPairIndex].innerIndex = skippedUmbraIndex;
- verticesPairIndex++;
- newPenumbra[newPenumbraIndex++] = interpolatedPenumbra;
- }
- }
- verticesPair[verticesPairIndex].outerIndex = newPenumbraIndex;
- verticesPair[verticesPairIndex].innerIndex = currentClosestUmbraIndex;
- verticesPairIndex++;
- newPenumbra[newPenumbraIndex++] = currentPenumbraVertex;
-
- previousClosestUmbraIndex = currentClosestUmbraIndex;
- }
-}
-
-// Precompute all the polygon's vector, return true if the reference cross product is positive.
-inline bool genPolyToCentroid(const Vector2* poly2d, int polyLength, const Vector2& centroid,
- Vector2* polyToCentroid) {
- for (int j = 0; j < polyLength; j++) {
- polyToCentroid[j] = poly2d[j] - centroid;
- // Normalize these vectors such that we can use epsilon comparison after
- // computing their cross products with another normalized vector.
- polyToCentroid[j].normalize();
- }
- float refCrossProduct = 0;
- for (int j = 0; j < polyLength; j++) {
- refCrossProduct = polyToCentroid[j].cross(polyToCentroid[(j + 1) % polyLength]);
- if (refCrossProduct != 0) {
- break;
- }
- }
-
- return refCrossProduct > 0;
-}
-
-// For one umbra vertex, shoot an ray from centroid to it.
-// If the ray hit the polygon first, then return the intersection point as the
-// closer vertex.
-inline Vector2 getCloserVertex(const Vector2& umbraVertex, const Vector2& centroid,
- const Vector2* poly2d, int polyLength, const Vector2* polyToCentroid,
- bool isPositiveCross, int& previousPolyIndex) {
- Vector2 umbraToCentroid = umbraVertex - centroid;
- float distanceToUmbra = umbraToCentroid.length();
- umbraToCentroid = umbraToCentroid / distanceToUmbra;
-
- // previousPolyIndex is updated for each item such that we can minimize the
- // looping inside findPolyIndex();
- previousPolyIndex = findPolyIndex(isPositiveCross, previousPolyIndex, umbraToCentroid,
- polyToCentroid, polyLength);
-
- float dx = umbraToCentroid.x;
- float dy = umbraToCentroid.y;
- float distanceToIntersectPoly =
- rayIntersectPoints(centroid, dx, dy, poly2d[previousPolyIndex],
- poly2d[(previousPolyIndex + 1) % polyLength]);
- if (distanceToIntersectPoly < 0) {
- distanceToIntersectPoly = 0;
- }
-
- // Pick the closer one as the occluded area vertex.
- Vector2 closerVertex;
- if (distanceToIntersectPoly < distanceToUmbra) {
- closerVertex.x = centroid.x + dx * distanceToIntersectPoly;
- closerVertex.y = centroid.y + dy * distanceToIntersectPoly;
- } else {
- closerVertex = umbraVertex;
- }
-
- return closerVertex;
-}
-
-/**
- * Generate a triangle strip given two convex polygon
-**/
-void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
- Vector2* penumbra, int penumbraLength, Vector2* umbra,
- int umbraLength, const Vector3* poly, int polyLength,
- VertexBuffer& shadowTriangleStrip, const Vector2& centroid) {
- bool hasOccludedUmbraArea = false;
- Vector2 poly2d[polyLength];
-
- if (isCasterOpaque) {
- for (int i = 0; i < polyLength; i++) {
- poly2d[i].x = poly[i].x;
- poly2d[i].y = poly[i].y;
- }
- // Make sure the centroid is inside the umbra, otherwise, fall back to the
- // approach as if there is no occluded umbra area.
- if (testPointInsidePolygon(centroid, poly2d, polyLength)) {
- hasOccludedUmbraArea = true;
- }
- }
-
- // For each penumbra vertex, find its corresponding closest umbra vertex index.
- //
- // Penumbra Vertices marked as Pi
- // Umbra Vertices marked as Ui
- // (P3)
- // (P2) | ' (P4)
- // (P1)' | | '
- // ' | | '
- // (P0) ------------------------------------------------(P5)
- // | (U0) |(U1)
- // | |
- // | |(U2) (P5.1)
- // | |
- // | |
- // | |
- // | |
- // | |
- // | |
- // (U4)-----------------------------------(U3) (P6)
- //
- // At least, like P0, P1, P2, they will find the matching umbra as U0.
- // If we jump over some umbra vertex without matching penumbra vertex, then
- // we will generate some new penumbra vertex by interpolation. Like P6 is
- // matching U3, but U2 is not matched with any penumbra vertex.
- // So interpolate P5.1 out and match U2.
- // In this way, every umbra vertex will have a matching penumbra vertex.
- //
- // The total pair number can be as high as umbraLength + penumbraLength.
- const int maxNewPenumbraLength = umbraLength + penumbraLength;
- IndexPair verticesPair[maxNewPenumbraLength];
- int verticesPairIndex = 0;
-
- // Cache all the existing penumbra vertices and newly interpolated vertices into a
- // a new array.
- Vector2 newPenumbra[maxNewPenumbraLength];
- int newPenumbraIndex = 0;
-
- // For each penumbra vertex, find its closet umbra vertex by comparing the
- // neighbor umbra vertices.
- genNewPenumbraAndPairWithUmbra(penumbra, penumbraLength, umbra, umbraLength, newPenumbra,
- newPenumbraIndex, verticesPair, verticesPairIndex);
- ShadowTessellator::checkOverflow(verticesPairIndex, maxNewPenumbraLength, "Spot pair");
- ShadowTessellator::checkOverflow(newPenumbraIndex, maxNewPenumbraLength, "Spot new penumbra");
-#if DEBUG_SHADOW
- for (int i = 0; i < umbraLength; i++) {
- ALOGD("umbra i %d, [%f, %f]", i, umbra[i].x, umbra[i].y);
- }
- for (int i = 0; i < newPenumbraIndex; i++) {
- ALOGD("new penumbra i %d, [%f, %f]", i, newPenumbra[i].x, newPenumbra[i].y);
- }
- for (int i = 0; i < verticesPairIndex; i++) {
- ALOGD("index i %d, [%d, %d]", i, verticesPair[i].outerIndex, verticesPair[i].innerIndex);
- }
-#endif
-
- // For the size of vertex buffer, we need 3 rings, one has newPenumbraSize,
- // one has umbraLength, the last one has at most umbraLength.
- //
- // For the size of index buffer, the umbra area needs (2 * umbraLength + 2).
- // The penumbra one can vary a bit, but it is bounded by (2 * verticesPairIndex + 2).
- // And 2 more for jumping between penumbra to umbra.
- const int newPenumbraLength = newPenumbraIndex;
- const int totalVertexCount = newPenumbraLength + umbraLength * 2;
- const int totalIndexCount = 2 * umbraLength + 2 * verticesPairIndex + 6;
- AlphaVertex* shadowVertices = shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount);
- uint16_t* indexBuffer = shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount);
- int vertexBufferIndex = 0;
- int indexBufferIndex = 0;
-
- // Fill the IB and VB for the penumbra area.
- for (int i = 0; i < newPenumbraLength; i++) {
- AlphaVertex::set(&shadowVertices[vertexBufferIndex++], newPenumbra[i].x, newPenumbra[i].y,
- PENUMBRA_ALPHA);
- }
- // Since the umbra can be a faked one when the occluder is too high, the umbra should be lighter
- // in this case.
- float scaledUmbraAlpha = UMBRA_ALPHA * shadowStrengthScale;
-
- for (int i = 0; i < umbraLength; i++) {
- AlphaVertex::set(&shadowVertices[vertexBufferIndex++], umbra[i].x, umbra[i].y,
- scaledUmbraAlpha);
- }
-
- for (int i = 0; i < verticesPairIndex; i++) {
- indexBuffer[indexBufferIndex++] = verticesPair[i].outerIndex;
- // All umbra index need to be offseted by newPenumbraSize.
- indexBuffer[indexBufferIndex++] = verticesPair[i].innerIndex + newPenumbraLength;
- }
- indexBuffer[indexBufferIndex++] = verticesPair[0].outerIndex;
- indexBuffer[indexBufferIndex++] = verticesPair[0].innerIndex + newPenumbraLength;
-
- // Now fill the IB and VB for the umbra area.
- // First duplicated the index from previous strip and the first one for the
- // degenerated triangles.
- indexBuffer[indexBufferIndex] = indexBuffer[indexBufferIndex - 1];
- indexBufferIndex++;
- indexBuffer[indexBufferIndex++] = newPenumbraLength + 0;
- // Save the first VB index for umbra area in order to close the loop.
- int savedStartIndex = vertexBufferIndex;
-
- if (hasOccludedUmbraArea) {
- // Precompute all the polygon's vector, and the reference cross product,
- // in order to find the right polygon edge for the ray to intersect.
- Vector2 polyToCentroid[polyLength];
- bool isPositiveCross = genPolyToCentroid(poly2d, polyLength, centroid, polyToCentroid);
-
- // Because both the umbra and polygon are going in the same direction,
- // we can save the previous polygon index to make sure we have less polygon
- // vertex to compute for each ray.
- int previousPolyIndex = 0;
- for (int i = 0; i < umbraLength; i++) {
- // Shoot a ray from centroid to each umbra vertices and pick the one with
- // shorter distance to the centroid, b/t the umbra vertex or the intersection point.
- Vector2 closerVertex =
- getCloserVertex(umbra[i], centroid, poly2d, polyLength, polyToCentroid,
- isPositiveCross, previousPolyIndex);
-
- // We already stored the umbra vertices, just need to add the occlued umbra's ones.
- indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
- indexBuffer[indexBufferIndex++] = vertexBufferIndex;
- AlphaVertex::set(&shadowVertices[vertexBufferIndex++], closerVertex.x, closerVertex.y,
- scaledUmbraAlpha);
- }
- } else {
- // If there is no occluded umbra at all, then draw the triangle fan
- // starting from the centroid to all umbra vertices.
- int lastCentroidIndex = vertexBufferIndex;
- AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x, centroid.y,
- scaledUmbraAlpha);
- for (int i = 0; i < umbraLength; i++) {
- indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
- indexBuffer[indexBufferIndex++] = lastCentroidIndex;
- }
- }
- // Closing the umbra area triangle's loop here.
- indexBuffer[indexBufferIndex++] = newPenumbraLength;
- indexBuffer[indexBufferIndex++] = savedStartIndex;
-
- // At the end, update the real index and vertex buffer size.
- shadowTriangleStrip.updateVertexCount(vertexBufferIndex);
- shadowTriangleStrip.updateIndexCount(indexBufferIndex);
- ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Spot Vertex Buffer");
- ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Spot Index Buffer");
-
- shadowTriangleStrip.setMeshFeatureFlags(VertexBuffer::kAlpha | VertexBuffer::kIndices);
- shadowTriangleStrip.computeBounds<AlphaVertex>();
-}
-
-#if DEBUG_SHADOW
-
-#define TEST_POINT_NUMBER 128
-/**
- * Calculate the bounds for generating random test points.
- */
-void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound, Vector2& upperBound) {
- if (inVector.x < lowerBound.x) {
- lowerBound.x = inVector.x;
- }
-
- if (inVector.y < lowerBound.y) {
- lowerBound.y = inVector.y;
- }
-
- if (inVector.x > upperBound.x) {
- upperBound.x = inVector.x;
- }
-
- if (inVector.y > upperBound.y) {
- upperBound.y = inVector.y;
- }
-}
-
-/**
- * For debug purpose, when things go wrong, dump the whole polygon data.
- */
-void SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
- for (int i = 0; i < polyLength; i++) {
- ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
- }
-}
-
-/**
- * For debug purpose, when things go wrong, dump the whole polygon data.
- */
-void SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) {
- for (int i = 0; i < polyLength; i++) {
- ALOGD("polygon %s i %d x %f y %f z %f", polyName, i, poly[i].x, poly[i].y, poly[i].z);
- }
-}
-
-/**
- * Test whether the polygon is convex.
- */
-bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength, const char* name) {
- bool isConvex = true;
- for (int i = 0; i < polygonLength; i++) {
- Vector2 start = polygon[i];
- Vector2 middle = polygon[(i + 1) % polygonLength];
- Vector2 end = polygon[(i + 2) % polygonLength];
-
- float delta = (float(middle.x) - start.x) * (float(end.y) - start.y) -
- (float(middle.y) - start.y) * (float(end.x) - start.x);
- bool isCCWOrCoLinear = (delta >= EPSILON);
-
- if (isCCWOrCoLinear) {
- ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
- "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
- name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
- isConvex = false;
- break;
- }
- }
- return isConvex;
-}
-
-/**
- * Test whether or not the polygon (intersection) is within the 2 input polygons.
- * Using Marte Carlo method, we generate a random point, and if it is inside the
- * intersection, then it must be inside both source polygons.
- */
-void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length, const Vector2* poly2,
- int poly2Length, const Vector2* intersection,
- int intersectionLength) {
- // Find the min and max of x and y.
- Vector2 lowerBound = {FLT_MAX, FLT_MAX};
- Vector2 upperBound = {-FLT_MAX, -FLT_MAX};
- for (int i = 0; i < poly1Length; i++) {
- updateBound(poly1[i], lowerBound, upperBound);
- }
- for (int i = 0; i < poly2Length; i++) {
- updateBound(poly2[i], lowerBound, upperBound);
- }
-
- bool dumpPoly = false;
- for (int k = 0; k < TEST_POINT_NUMBER; k++) {
- // Generate a random point between minX, minY and maxX, maxY.
- float randomX = rand() / float(RAND_MAX);
- float randomY = rand() / float(RAND_MAX);
-
- Vector2 testPoint;
- testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
- testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
-
- // If the random point is in both poly 1 and 2, then it must be intersection.
- if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
- if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
- dumpPoly = true;
- ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
- " not in the poly1",
- testPoint.x, testPoint.y);
- }
-
- if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
- dumpPoly = true;
- ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
- " not in the poly2",
- testPoint.x, testPoint.y);
- }
- }
- }
-
- if (dumpPoly) {
- dumpPolygon(intersection, intersectionLength, "intersection");
- for (int i = 1; i < intersectionLength; i++) {
- Vector2 delta = intersection[i] - intersection[i - 1];
- ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
- }
-
- dumpPolygon(poly1, poly1Length, "poly 1");
- dumpPolygon(poly2, poly2Length, "poly 2");
- }
-}
-#endif
-
-}; // namespace uirenderer
-}; // namespace android