diff options
Diffstat (limited to 'libs/hwui/SpotShadow.cpp')
-rw-r--r-- | libs/hwui/SpotShadow.cpp | 931 |
1 files changed, 931 insertions, 0 deletions
diff --git a/libs/hwui/SpotShadow.cpp b/libs/hwui/SpotShadow.cpp new file mode 100644 index 000000000000..3ebe7b4f34e7 --- /dev/null +++ b/libs/hwui/SpotShadow.cpp @@ -0,0 +1,931 @@ +/* + * Copyright (C) 2014 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#define LOG_TAG "OpenGLRenderer" + +#define SHADOW_SHRINK_SCALE 0.1f + +#include <math.h> +#include <stdlib.h> +#include <utils/Log.h> + +#include "ShadowTessellator.h" +#include "SpotShadow.h" +#include "Vertex.h" + +namespace android { +namespace uirenderer { + +static const double EPSILON = 1e-7; + +/** + * Calculate the angle between and x and a y coordinate. + * The atan2 range from -PI to PI. + */ +static float angle(const Vector2& point, const Vector2& center) { + return atan2(point.y - center.y, point.x - center.x); +} + +/** + * Calculate the intersection of a ray with the line segment defined by two points. + * + * Returns a negative value in error conditions. + + * @param rayOrigin The start of the ray + * @param dx The x vector of the ray + * @param dy The y vector of the ray + * @param p1 The first point defining the line segment + * @param p2 The second point defining the line segment + * @return The distance along the ray if it intersects with the line segment, negative if otherwise + */ +static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy, + const Vector2& p1, const Vector2& p2) { + // The math below is derived from solving this formula, basically the + // intersection point should stay on both the ray and the edge of (p1, p2). + // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]); + + double divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x); + if (divisor == 0) return -1.0f; // error, invalid divisor + +#if DEBUG_SHADOW + double interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor; + if (interpVal < 0 || interpVal > 1) { + ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal); + } +#endif + + double distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) + + rayOrigin.x * (p2.y - p1.y)) / divisor; + + return distance; // may be negative in error cases +} + +/** + * Sort points by their X coordinates + * + * @param points the points as a Vector2 array. + * @param pointsLength the number of vertices of the polygon. + */ +void SpotShadow::xsort(Vector2* points, int pointsLength) { + quicksortX(points, 0, pointsLength - 1); +} + +/** + * compute the convex hull of a collection of Points + * + * @param points the points as a Vector2 array. + * @param pointsLength the number of vertices of the polygon. + * @param retPoly pre allocated array of floats to put the vertices + * @return the number of points in the polygon 0 if no intersection + */ +int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) { + xsort(points, pointsLength); + int n = pointsLength; + Vector2 lUpper[n]; + lUpper[0] = points[0]; + lUpper[1] = points[1]; + + int lUpperSize = 2; + + for (int i = 2; i < n; i++) { + lUpper[lUpperSize] = points[i]; + lUpperSize++; + + while (lUpperSize > 2 && !ccw( + lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y, + lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y, + lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) { + // Remove the middle point of the three last + lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x; + lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y; + lUpperSize--; + } + } + + Vector2 lLower[n]; + lLower[0] = points[n - 1]; + lLower[1] = points[n - 2]; + + int lLowerSize = 2; + + for (int i = n - 3; i >= 0; i--) { + lLower[lLowerSize] = points[i]; + lLowerSize++; + + while (lLowerSize > 2 && !ccw( + lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y, + lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y, + lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) { + // Remove the middle point of the three last + lLower[lLowerSize - 2] = lLower[lLowerSize - 1]; + lLowerSize--; + } + } + + // output points in CW ordering + const int total = lUpperSize + lLowerSize - 2; + int outIndex = total - 1; + for (int i = 0; i < lUpperSize; i++) { + retPoly[outIndex] = lUpper[i]; + outIndex--; + } + + for (int i = 1; i < lLowerSize - 1; i++) { + retPoly[outIndex] = lLower[i]; + outIndex--; + } + // TODO: Add test harness which verify that all the points are inside the hull. + return total; +} + +/** + * Test whether the 3 points form a counter clockwise turn. + * + * @return true if a right hand turn + */ +bool SpotShadow::ccw(double ax, double ay, double bx, double by, + double cx, double cy) { + return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON; +} + +/** + * Calculates the intersection of poly1 with poly2 and put in poly2. + * Note that both poly1 and poly2 must be in CW order already! + * + * @param poly1 The 1st polygon, as a Vector2 array. + * @param poly1Length The number of vertices of 1st polygon. + * @param poly2 The 2nd and output polygon, as a Vector2 array. + * @param poly2Length The number of vertices of 2nd polygon. + * @return number of vertices in output polygon as poly2. + */ +int SpotShadow::intersection(const Vector2* poly1, int poly1Length, + Vector2* poly2, int poly2Length) { +#if DEBUG_SHADOW + if (!ShadowTessellator::isClockwise(poly1, poly1Length)) { + ALOGW("Poly1 is not clockwise! Intersection is wrong!"); + } + if (!ShadowTessellator::isClockwise(poly2, poly2Length)) { + ALOGW("Poly2 is not clockwise! Intersection is wrong!"); + } +#endif + Vector2 poly[poly1Length * poly2Length + 2]; + int count = 0; + int pcount = 0; + + // If one vertex from one polygon sits inside another polygon, add it and + // count them. + for (int i = 0; i < poly1Length; i++) { + if (testPointInsidePolygon(poly1[i], poly2, poly2Length)) { + poly[count] = poly1[i]; + count++; + pcount++; + + } + } + + int insidePoly2 = pcount; + for (int i = 0; i < poly2Length; i++) { + if (testPointInsidePolygon(poly2[i], poly1, poly1Length)) { + poly[count] = poly2[i]; + count++; + } + } + + int insidePoly1 = count - insidePoly2; + // If all vertices from poly1 are inside poly2, then just return poly1. + if (insidePoly2 == poly1Length) { + memcpy(poly2, poly1, poly1Length * sizeof(Vector2)); + return poly1Length; + } + + // If all vertices from poly2 are inside poly1, then just return poly2. + if (insidePoly1 == poly2Length) { + return poly2Length; + } + + // Since neither polygon fully contain the other one, we need to add all the + // intersection points. + Vector2 intersection; + for (int i = 0; i < poly2Length; i++) { + for (int j = 0; j < poly1Length; j++) { + int poly2LineStart = i; + int poly2LineEnd = ((i + 1) % poly2Length); + int poly1LineStart = j; + int poly1LineEnd = ((j + 1) % poly1Length); + bool found = lineIntersection( + poly2[poly2LineStart].x, poly2[poly2LineStart].y, + poly2[poly2LineEnd].x, poly2[poly2LineEnd].y, + poly1[poly1LineStart].x, poly1[poly1LineStart].y, + poly1[poly1LineEnd].x, poly1[poly1LineEnd].y, + intersection); + if (found) { + poly[count].x = intersection.x; + poly[count].y = intersection.y; + count++; + } else { + Vector2 delta = poly2[i] - poly1[j]; + if (delta.lengthSquared() < EPSILON) { + poly[count] = poly2[i]; + count++; + } + } + } + } + + if (count == 0) { + return 0; + } + + // Sort the result polygon around the center. + Vector2 center(0.0f, 0.0f); + for (int i = 0; i < count; i++) { + center += poly[i]; + } + center /= count; + sort(poly, count, center); + +#if DEBUG_SHADOW + // Since poly2 is overwritten as the result, we need to save a copy to do + // our verification. + Vector2 oldPoly2[poly2Length]; + int oldPoly2Length = poly2Length; + memcpy(oldPoly2, poly2, sizeof(Vector2) * poly2Length); +#endif + + // Filter the result out from poly and put it into poly2. + poly2[0] = poly[0]; + int lastOutputIndex = 0; + for (int i = 1; i < count; i++) { + Vector2 delta = poly[i] - poly2[lastOutputIndex]; + if (delta.lengthSquared() >= EPSILON) { + poly2[++lastOutputIndex] = poly[i]; + } else { + // If the vertices are too close, pick the inner one, because the + // inner one is more likely to be an intersection point. + Vector2 delta1 = poly[i] - center; + Vector2 delta2 = poly2[lastOutputIndex] - center; + if (delta1.lengthSquared() < delta2.lengthSquared()) { + poly2[lastOutputIndex] = poly[i]; + } + } + } + int resultLength = lastOutputIndex + 1; + +#if DEBUG_SHADOW + testConvex(poly2, resultLength, "intersection"); + testConvex(poly1, poly1Length, "input poly1"); + testConvex(oldPoly2, oldPoly2Length, "input poly2"); + + testIntersection(poly1, poly1Length, oldPoly2, oldPoly2Length, poly2, resultLength); +#endif + + return resultLength; +} + +/** + * Sort points about a center point + * + * @param poly The in and out polyogon as a Vector2 array. + * @param polyLength The number of vertices of the polygon. + * @param center the center ctr[0] = x , ctr[1] = y to sort around. + */ +void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) { + quicksortCirc(poly, 0, polyLength - 1, center); +} + +/** + * Swap points pointed to by i and j + */ +void SpotShadow::swap(Vector2* points, int i, int j) { + Vector2 temp = points[i]; + points[i] = points[j]; + points[j] = temp; +} + +/** + * quick sort implementation about the center. + */ +void SpotShadow::quicksortCirc(Vector2* points, int low, int high, + const Vector2& center) { + int i = low, j = high; + int p = low + (high - low) / 2; + float pivot = angle(points[p], center); + while (i <= j) { + while (angle(points[i], center) > pivot) { + i++; + } + while (angle(points[j], center) < pivot) { + j--; + } + + if (i <= j) { + swap(points, i, j); + i++; + j--; + } + } + if (low < j) quicksortCirc(points, low, j, center); + if (i < high) quicksortCirc(points, i, high, center); +} + +/** + * Sort points by x axis + * + * @param points points to sort + * @param low start index + * @param high end index + */ +void SpotShadow::quicksortX(Vector2* points, int low, int high) { + int i = low, j = high; + int p = low + (high - low) / 2; + float pivot = points[p].x; + while (i <= j) { + while (points[i].x < pivot) { + i++; + } + while (points[j].x > pivot) { + j--; + } + + if (i <= j) { + swap(points, i, j); + i++; + j--; + } + } + if (low < j) quicksortX(points, low, j); + if (i < high) quicksortX(points, i, high); +} + +/** + * Test whether a point is inside the polygon. + * + * @param testPoint the point to test + * @param poly the polygon + * @return true if the testPoint is inside the poly. + */ +bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint, + const Vector2* poly, int len) { + bool c = false; + double testx = testPoint.x; + double testy = testPoint.y; + for (int i = 0, j = len - 1; i < len; j = i++) { + double startX = poly[j].x; + double startY = poly[j].y; + double endX = poly[i].x; + double endY = poly[i].y; + + if (((endY > testy) != (startY > testy)) && + (testx < (startX - endX) * (testy - endY) + / (startY - endY) + endX)) { + c = !c; + } + } + return c; +} + +/** + * Make the polygon turn clockwise. + * + * @param polygon the polygon as a Vector2 array. + * @param len the number of points of the polygon + */ +void SpotShadow::makeClockwise(Vector2* polygon, int len) { + if (polygon == 0 || len == 0) { + return; + } + if (!ShadowTessellator::isClockwise(polygon, len)) { + reverse(polygon, len); + } +} + +/** + * Reverse the polygon + * + * @param polygon the polygon as a Vector2 array + * @param len the number of points of the polygon + */ +void SpotShadow::reverse(Vector2* polygon, int len) { + int n = len / 2; + for (int i = 0; i < n; i++) { + Vector2 tmp = polygon[i]; + int k = len - 1 - i; + polygon[i] = polygon[k]; + polygon[k] = tmp; + } +} + +/** + * Intersects two lines in parametric form. This function is called in a tight + * loop, and we need double precision to get things right. + * + * @param x1 the x coordinate point 1 of line 1 + * @param y1 the y coordinate point 1 of line 1 + * @param x2 the x coordinate point 2 of line 1 + * @param y2 the y coordinate point 2 of line 1 + * @param x3 the x coordinate point 1 of line 2 + * @param y3 the y coordinate point 1 of line 2 + * @param x4 the x coordinate point 2 of line 2 + * @param y4 the y coordinate point 2 of line 2 + * @param ret the x,y location of the intersection + * @return true if it found an intersection + */ +inline bool SpotShadow::lineIntersection(double x1, double y1, double x2, double y2, + double x3, double y3, double x4, double y4, Vector2& ret) { + double d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4); + if (d == 0.0) return false; + + double dx = (x1 * y2 - y1 * x2); + double dy = (x3 * y4 - y3 * x4); + double x = (dx * (x3 - x4) - (x1 - x2) * dy) / d; + double y = (dx * (y3 - y4) - (y1 - y2) * dy) / d; + + // The intersection should be in the middle of the point 1 and point 2, + // likewise point 3 and point 4. + if (((x - x1) * (x - x2) > EPSILON) + || ((x - x3) * (x - x4) > EPSILON) + || ((y - y1) * (y - y2) > EPSILON) + || ((y - y3) * (y - y4) > EPSILON)) { + // Not interesected + return false; + } + ret.x = x; + ret.y = y; + return true; + +} + +/** + * Compute a horizontal circular polygon about point (x , y , height) of radius + * (size) + * + * @param points number of the points of the output polygon. + * @param lightCenter the center of the light. + * @param size the light size. + * @param ret result polygon. + */ +void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter, + float size, Vector3* ret) { + // TODO: Caching all the sin / cos values and store them in a look up table. + for (int i = 0; i < points; i++) { + double angle = 2 * i * M_PI / points; + ret[i].x = cosf(angle) * size + lightCenter.x; + ret[i].y = sinf(angle) * size + lightCenter.y; + ret[i].z = lightCenter.z; + } +} + +/** +* Generate the shadow from a spot light. +* +* @param poly x,y,z vertexes of a convex polygon that occludes the light source +* @param polyLength number of vertexes of the occluding polygon +* @param lightCenter the center of the light +* @param lightSize the radius of the light source +* @param lightVertexCount the vertex counter for the light polygon +* @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return +* empty strip if error. +* +*/ +VertexBufferMode SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3* poly, + int polyLength, const Vector3& lightCenter, float lightSize, + int lightVertexCount, VertexBuffer& retStrips) { + Vector3 light[lightVertexCount * 3]; + computeLightPolygon(lightVertexCount, lightCenter, lightSize, light); + computeSpotShadow(isCasterOpaque, light, lightVertexCount, lightCenter, poly, + polyLength, retStrips); + return kVertexBufferMode_TwoPolyRingShadow; +} + +/** + * Generate the shadow spot light of shape lightPoly and a object poly + * + * @param lightPoly x,y,z vertex of a convex polygon that is the light source + * @param lightPolyLength number of vertexes of the light source polygon + * @param poly x,y,z vertexes of a convex polygon that occludes the light source + * @param polyLength number of vertexes of the occluding polygon + * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return + * empty strip if error. + */ +void SpotShadow::computeSpotShadow(bool isCasterOpaque, const Vector3* lightPoly, + int lightPolyLength, const Vector3& lightCenter, const Vector3* poly, + int polyLength, VertexBuffer& shadowTriangleStrip) { + // Point clouds for all the shadowed vertices + Vector2 shadowRegion[lightPolyLength * polyLength]; + // Shadow polygon from one point light. + Vector2 outline[polyLength]; + Vector2 umbraMem[polyLength * lightPolyLength]; + Vector2* umbra = umbraMem; + + int umbraLength = 0; + + // Validate input, receiver is always at z = 0 plane. + bool inputPolyPositionValid = true; + for (int i = 0; i < polyLength; i++) { + if (poly[i].z >= lightPoly[0].z) { + inputPolyPositionValid = false; + ALOGW("polygon above the light"); + break; + } + } + + // If the caster's position is invalid, don't draw anything. + if (!inputPolyPositionValid) { + return; + } + + // Calculate the umbra polygon based on intersections of all outlines + int k = 0; + for (int j = 0; j < lightPolyLength; j++) { + int m = 0; + for (int i = 0; i < polyLength; i++) { + // After validating the input, deltaZ is guaranteed to be positive. + float deltaZ = lightPoly[j].z - poly[i].z; + float ratioZ = lightPoly[j].z / deltaZ; + float x = lightPoly[j].x - ratioZ * (lightPoly[j].x - poly[i].x); + float y = lightPoly[j].y - ratioZ * (lightPoly[j].y - poly[i].y); + + Vector2 newPoint = Vector2(x, y); + shadowRegion[k] = newPoint; + outline[m] = newPoint; + + k++; + m++; + } + + // For the first light polygon's vertex, use the outline as the umbra. + // Later on, use the intersection of the outline and existing umbra. + if (umbraLength == 0) { + for (int i = 0; i < polyLength; i++) { + umbra[i] = outline[i]; + } + umbraLength = polyLength; + } else { + int col = ((j * 255) / lightPolyLength); + umbraLength = intersection(outline, polyLength, umbra, umbraLength); + if (umbraLength == 0) { + break; + } + } + } + + // Generate the penumbra area using the hull of all shadow regions. + int shadowRegionLength = k; + Vector2 penumbra[k]; + int penumbraLength = hull(shadowRegion, shadowRegionLength, penumbra); + + Vector2 fakeUmbra[polyLength]; + if (umbraLength < 3) { + // If there is no real umbra, make a fake one. + for (int i = 0; i < polyLength; i++) { + float deltaZ = lightCenter.z - poly[i].z; + float ratioZ = lightCenter.z / deltaZ; + float x = lightCenter.x - ratioZ * (lightCenter.x - poly[i].x); + float y = lightCenter.y - ratioZ * (lightCenter.y - poly[i].y); + + fakeUmbra[i].x = x; + fakeUmbra[i].y = y; + } + + // Shrink the centroid's shadow by 10%. + // TODO: Study the magic number of 10%. + Vector2 shadowCentroid = + ShadowTessellator::centroid2d(fakeUmbra, polyLength); + for (int i = 0; i < polyLength; i++) { + fakeUmbra[i] = shadowCentroid * (1.0f - SHADOW_SHRINK_SCALE) + + fakeUmbra[i] * SHADOW_SHRINK_SCALE; + } +#if DEBUG_SHADOW + ALOGD("No real umbra make a fake one, centroid2d = %f , %f", + shadowCentroid.x, shadowCentroid.y); +#endif + // Set the fake umbra, whose size is the same as the original polygon. + umbra = fakeUmbra; + umbraLength = polyLength; + } + + generateTriangleStrip(isCasterOpaque, penumbra, penumbraLength, umbra, + umbraLength, poly, polyLength, shadowTriangleStrip); +} + +/** + * Converts a polygon specified with CW vertices into an array of distance-from-centroid values. + * + * Returns false in error conditions + * + * @param poly Array of vertices. Note that these *must* be CW. + * @param polyLength The number of vertices in the polygon. + * @param polyCentroid The centroid of the polygon, from which rays will be cast + * @param rayDist The output array for the calculated distances, must be SHADOW_RAY_COUNT in size + */ +bool convertPolyToRayDist(const Vector2* poly, int polyLength, const Vector2& polyCentroid, + float* rayDist) { + const int rays = SHADOW_RAY_COUNT; + const float step = M_PI * 2 / rays; + + const Vector2* lastVertex = &(poly[polyLength - 1]); + float startAngle = angle(*lastVertex, polyCentroid); + + // Start with the ray that's closest to and less than startAngle + int rayIndex = floor((startAngle - EPSILON) / step); + rayIndex = (rayIndex + rays) % rays; // ensure positive + + for (int polyIndex = 0; polyIndex < polyLength; polyIndex++) { + /* + * For a given pair of vertices on the polygon, poly[i-1] and poly[i], the rays that + * intersect these will be those that are between the two angles from the centroid that the + * vertices define. + * + * Because the polygon vertices are stored clockwise, the closest ray with an angle + * *smaller* than that defined by angle(poly[i], centroid) will be the first ray that does + * not intersect with poly[i-1], poly[i]. + */ + float currentAngle = angle(poly[polyIndex], polyCentroid); + + // find first ray that will not intersect the line segment poly[i-1] & poly[i] + int firstRayIndexOnNextSegment = floor((currentAngle - EPSILON) / step); + firstRayIndexOnNextSegment = (firstRayIndexOnNextSegment + rays) % rays; // ensure positive + + // Iterate through all rays that intersect with poly[i-1], poly[i] line segment. + // This may be 0 rays. + while (rayIndex != firstRayIndexOnNextSegment) { + float distanceToIntersect = rayIntersectPoints(polyCentroid, + cos(rayIndex * step), + sin(rayIndex * step), + *lastVertex, poly[polyIndex]); + if (distanceToIntersect < 0) { +#if DEBUG_SHADOW + ALOGW("ERROR: convertPolyToRayDist failed"); +#endif + return false; // error case, abort + } + + rayDist[rayIndex] = distanceToIntersect; + + rayIndex = (rayIndex - 1 + rays) % rays; + } + lastVertex = &poly[polyIndex]; + } + + return true; +} + +int SpotShadow::calculateOccludedUmbra(const Vector2* umbra, int umbraLength, + const Vector3* poly, int polyLength, Vector2* occludedUmbra) { + // Occluded umbra area is computed as the intersection of the projected 2D + // poly and umbra. + for (int i = 0; i < polyLength; i++) { + occludedUmbra[i].x = poly[i].x; + occludedUmbra[i].y = poly[i].y; + } + + // Both umbra and incoming polygon are guaranteed to be CW, so we can call + // intersection() directly. + return intersection(umbra, umbraLength, + occludedUmbra, polyLength); +} + +#define OCLLUDED_UMBRA_SHRINK_FACTOR 0.95f +/** + * Generate a triangle strip given two convex polygons + * + * @param penumbra The outer polygon x,y vertexes + * @param penumbraLength The number of vertexes in the outer polygon + * @param umbra The inner outer polygon x,y vertexes + * @param umbraLength The number of vertexes in the inner polygon + * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return + * empty strip if error. +**/ +void SpotShadow::generateTriangleStrip(bool isCasterOpaque, const Vector2* penumbra, + int penumbraLength, const Vector2* umbra, int umbraLength, + const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip) { + const int rays = SHADOW_RAY_COUNT; + const int size = 2 * rays; + const float step = M_PI * 2 / rays; + // Centroid of the umbra. + Vector2 centroid = ShadowTessellator::centroid2d(umbra, umbraLength); +#if DEBUG_SHADOW + ALOGD("centroid2d = %f , %f", centroid.x, centroid.y); +#endif + // Intersection to the penumbra. + float penumbraDistPerRay[rays]; + // Intersection to the umbra. + float umbraDistPerRay[rays]; + // Intersection to the occluded umbra area. + float occludedUmbraDistPerRay[rays]; + + // convert CW polygons to ray distance encoding, aborting on conversion failure + if (!convertPolyToRayDist(umbra, umbraLength, centroid, umbraDistPerRay)) return; + if (!convertPolyToRayDist(penumbra, penumbraLength, centroid, penumbraDistPerRay)) return; + + bool hasOccludedUmbraArea = false; + if (isCasterOpaque) { + Vector2 occludedUmbra[polyLength + umbraLength]; + int occludedUmbraLength = calculateOccludedUmbra(umbra, umbraLength, poly, polyLength, + occludedUmbra); + // Make sure the centroid is inside the umbra, otherwise, fall back to the + // approach as if there is no occluded umbra area. + if (testPointInsidePolygon(centroid, occludedUmbra, occludedUmbraLength)) { + hasOccludedUmbraArea = true; + // Shrink the occluded umbra area to avoid pixel level artifacts. + for (int i = 0; i < occludedUmbraLength; i ++) { + occludedUmbra[i] = centroid + (occludedUmbra[i] - centroid) * + OCLLUDED_UMBRA_SHRINK_FACTOR; + } + if (!convertPolyToRayDist(occludedUmbra, occludedUmbraLength, centroid, + occludedUmbraDistPerRay)) { + return; + } + } + } + + AlphaVertex* shadowVertices = + shadowTriangleStrip.alloc<AlphaVertex>(SHADOW_VERTEX_COUNT); + + // Calculate the vertices (x, y, alpha) in the shadow area. + AlphaVertex centroidXYA; + AlphaVertex::set(¢roidXYA, centroid.x, centroid.y, 1.0f); + for (int rayIndex = 0; rayIndex < rays; rayIndex++) { + float dx = cosf(step * rayIndex); + float dy = sinf(step * rayIndex); + + // penumbra ring + float penumbraDistance = penumbraDistPerRay[rayIndex]; + AlphaVertex::set(&shadowVertices[rayIndex], + dx * penumbraDistance + centroid.x, + dy * penumbraDistance + centroid.y, 0.0f); + + // umbra ring + float umbraDistance = umbraDistPerRay[rayIndex]; + AlphaVertex::set(&shadowVertices[rays + rayIndex], + dx * umbraDistance + centroid.x, dy * umbraDistance + centroid.y, 1.0f); + + // occluded umbra ring + if (hasOccludedUmbraArea) { + float occludedUmbraDistance = occludedUmbraDistPerRay[rayIndex]; + AlphaVertex::set(&shadowVertices[2 * rays + rayIndex], + dx * occludedUmbraDistance + centroid.x, + dy * occludedUmbraDistance + centroid.y, 1.0f); + } else { + // Put all vertices of the occluded umbra ring at the centroid. + shadowVertices[2 * rays + rayIndex] = centroidXYA; + } + } +} + +/** + * This is only for experimental purpose. + * After intersections are calculated, we could smooth the polygon if needed. + * So far, we don't think it is more appealing yet. + * + * @param level The level of smoothness. + * @param rays The total number of rays. + * @param rayDist (In and Out) The distance for each ray. + * + */ +void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) { + for (int k = 0; k < level; k++) { + for (int i = 0; i < rays; i++) { + float p1 = rayDist[(rays - 1 + i) % rays]; + float p2 = rayDist[i]; + float p3 = rayDist[(i + 1) % rays]; + rayDist[i] = (p1 + p2 * 2 + p3) / 4; + } + } +} + +#if DEBUG_SHADOW + +#define TEST_POINT_NUMBER 128 + +/** + * Calculate the bounds for generating random test points. + */ +void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound, + Vector2& upperBound ) { + if (inVector.x < lowerBound.x) { + lowerBound.x = inVector.x; + } + + if (inVector.y < lowerBound.y) { + lowerBound.y = inVector.y; + } + + if (inVector.x > upperBound.x) { + upperBound.x = inVector.x; + } + + if (inVector.y > upperBound.y) { + upperBound.y = inVector.y; + } +} + +/** + * For debug purpose, when things go wrong, dump the whole polygon data. + */ +static void dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) { + for (int i = 0; i < polyLength; i++) { + ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y); + } +} + +/** + * Test whether the polygon is convex. + */ +bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength, + const char* name) { + bool isConvex = true; + for (int i = 0; i < polygonLength; i++) { + Vector2 start = polygon[i]; + Vector2 middle = polygon[(i + 1) % polygonLength]; + Vector2 end = polygon[(i + 2) % polygonLength]; + + double delta = (double(middle.x) - start.x) * (double(end.y) - start.y) - + (double(middle.y) - start.y) * (double(end.x) - start.x); + bool isCCWOrCoLinear = (delta >= EPSILON); + + if (isCCWOrCoLinear) { + ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f)," + "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!", + name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta); + isConvex = false; + break; + } + } + return isConvex; +} + +/** + * Test whether or not the polygon (intersection) is within the 2 input polygons. + * Using Marte Carlo method, we generate a random point, and if it is inside the + * intersection, then it must be inside both source polygons. + */ +void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length, + const Vector2* poly2, int poly2Length, + const Vector2* intersection, int intersectionLength) { + // Find the min and max of x and y. + Vector2 lowerBound(FLT_MAX, FLT_MAX); + Vector2 upperBound(-FLT_MAX, -FLT_MAX); + for (int i = 0; i < poly1Length; i++) { + updateBound(poly1[i], lowerBound, upperBound); + } + for (int i = 0; i < poly2Length; i++) { + updateBound(poly2[i], lowerBound, upperBound); + } + + bool dumpPoly = false; + for (int k = 0; k < TEST_POINT_NUMBER; k++) { + // Generate a random point between minX, minY and maxX, maxY. + double randomX = rand() / double(RAND_MAX); + double randomY = rand() / double(RAND_MAX); + + Vector2 testPoint; + testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x); + testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y); + + // If the random point is in both poly 1 and 2, then it must be intersection. + if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) { + if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) { + dumpPoly = true; + ALOGW("(Error Type 1): one point (%f, %f) in the intersection is" + " not in the poly1", + testPoint.x, testPoint.y); + } + + if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) { + dumpPoly = true; + ALOGW("(Error Type 1): one point (%f, %f) in the intersection is" + " not in the poly2", + testPoint.x, testPoint.y); + } + } + } + + if (dumpPoly) { + dumpPolygon(intersection, intersectionLength, "intersection"); + for (int i = 1; i < intersectionLength; i++) { + Vector2 delta = intersection[i] - intersection[i - 1]; + ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared()); + } + + dumpPolygon(poly1, poly1Length, "poly 1"); + dumpPolygon(poly2, poly2Length, "poly 2"); + } +} +#endif + +}; // namespace uirenderer +}; // namespace android |