summaryrefslogtreecommitdiff
path: root/libs/hwui/PathTessellator.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libs/hwui/PathTessellator.cpp')
-rw-r--r--libs/hwui/PathTessellator.cpp1069
1 files changed, 0 insertions, 1069 deletions
diff --git a/libs/hwui/PathTessellator.cpp b/libs/hwui/PathTessellator.cpp
deleted file mode 100644
index 973b1d14b77e..000000000000
--- a/libs/hwui/PathTessellator.cpp
+++ /dev/null
@@ -1,1069 +0,0 @@
-/*
- * Copyright (C) 2012 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#define LOG_NDEBUG 1
-
-#define VERTEX_DEBUG 0
-
-#if VERTEX_DEBUG
-#define DEBUG_DUMP_ALPHA_BUFFER() \
- for (unsigned int i = 0; i < vertexBuffer.getSize(); i++) { \
- ALOGD("point %d at %f %f, alpha %f", i, buffer[i].x, buffer[i].y, buffer[i].alpha); \
- }
-#define DEBUG_DUMP_BUFFER() \
- for (unsigned int i = 0; i < vertexBuffer.getSize(); i++) { \
- ALOGD("point %d at %f %f", i, buffer[i].x, buffer[i].y); \
- }
-#else
-#define DEBUG_DUMP_ALPHA_BUFFER()
-#define DEBUG_DUMP_BUFFER()
-#endif
-
-#include "PathTessellator.h"
-
-#include "Matrix.h"
-#include "Vector.h"
-#include "Vertex.h"
-#include "utils/MathUtils.h"
-
-#include <algorithm>
-
-#include <SkGeometry.h> // WARNING: Internal Skia Header
-#include <SkPaint.h>
-#include <SkPath.h>
-#include <SkPoint.h>
-
-#include <stdint.h>
-#include <stdlib.h>
-#include <sys/types.h>
-
-#include <utils/Log.h>
-#include <utils/Trace.h>
-
-namespace android {
-namespace uirenderer {
-
-#define OUTLINE_REFINE_THRESHOLD 0.5f
-#define ROUND_CAP_THRESH 0.25f
-#define PI 3.1415926535897932f
-#define MAX_DEPTH 15
-
-/**
- * Extracts the x and y scale from the transform as positive values, and clamps them
- */
-void PathTessellator::extractTessellationScales(const Matrix4& transform, float* scaleX,
- float* scaleY) {
- if (CC_LIKELY(transform.isPureTranslate())) {
- *scaleX = 1.0f;
- *scaleY = 1.0f;
- } else {
- float m00 = transform.data[Matrix4::kScaleX];
- float m01 = transform.data[Matrix4::kSkewY];
- float m10 = transform.data[Matrix4::kSkewX];
- float m11 = transform.data[Matrix4::kScaleY];
- *scaleX = MathUtils::clampTessellationScale(sqrt(m00 * m00 + m01 * m01));
- *scaleY = MathUtils::clampTessellationScale(sqrt(m10 * m10 + m11 * m11));
- }
-}
-
-/**
- * Produces a pseudo-normal for a vertex, given the normals of the two incoming lines. If the offset
- * from each vertex in a perimeter is calculated, the resultant lines connecting the offset vertices
- * will be offset by 1.0
- *
- * Note that we can't add and normalize the two vectors, that would result in a rectangle having an
- * offset of (sqrt(2)/2, sqrt(2)/2) at each corner, instead of (1, 1)
- *
- * NOTE: assumes angles between normals 90 degrees or less
- */
-inline static Vector2 totalOffsetFromNormals(const Vector2& normalA, const Vector2& normalB) {
- return (normalA + normalB) / (1 + fabs(normalA.dot(normalB)));
-}
-
-/**
- * Structure used for storing useful information about the SkPaint and scale used for tessellating
- */
-struct PaintInfo {
-public:
- PaintInfo(const SkPaint* paint, const mat4& transform)
- : style(paint->getStyle())
- , cap(paint->getStrokeCap())
- , isAA(paint->isAntiAlias())
- , halfStrokeWidth(paint->getStrokeWidth() * 0.5f)
- , maxAlpha(1.0f) {
- // compute inverse scales
- if (CC_LIKELY(transform.isPureTranslate())) {
- inverseScaleX = 1.0f;
- inverseScaleY = 1.0f;
- } else {
- float scaleX, scaleY;
- PathTessellator::extractTessellationScales(transform, &scaleX, &scaleY);
- inverseScaleX = 1.0f / scaleX;
- inverseScaleY = 1.0f / scaleY;
- }
-
- if (isAA && halfStrokeWidth != 0 && inverseScaleX == inverseScaleY &&
- 2 * halfStrokeWidth < inverseScaleX) {
- // AA, with non-hairline stroke, width < 1 pixel. Scale alpha and treat as hairline.
- maxAlpha *= (2 * halfStrokeWidth) / inverseScaleX;
- halfStrokeWidth = 0.0f;
- }
- }
-
- SkPaint::Style style;
- SkPaint::Cap cap;
- bool isAA;
- float inverseScaleX;
- float inverseScaleY;
- float halfStrokeWidth;
- float maxAlpha;
-
- inline void scaleOffsetForStrokeWidth(Vector2& offset) const {
- if (halfStrokeWidth == 0.0f) {
- // hairline - compensate for scale
- offset.x *= 0.5f * inverseScaleX;
- offset.y *= 0.5f * inverseScaleY;
- } else {
- offset *= halfStrokeWidth;
- }
- }
-
- /**
- * NOTE: the input will not always be a normal, especially for sharp edges - it should be the
- * result of totalOffsetFromNormals (see documentation there)
- */
- inline Vector2 deriveAAOffset(const Vector2& offset) const {
- return (Vector2){offset.x * 0.5f * inverseScaleX, offset.y * 0.5f * inverseScaleY};
- }
-
- /**
- * Returns the number of cap divisions beyond the minimum 2 (kButt_Cap/kSquareCap will return 0)
- * Should only be used when stroking and drawing caps
- */
- inline int capExtraDivisions() const {
- if (cap == SkPaint::kRound_Cap) {
- // always use 2 points for hairline
- if (halfStrokeWidth == 0.0f) return 2;
-
- float threshold = std::min(inverseScaleX, inverseScaleY) * ROUND_CAP_THRESH;
- return MathUtils::divisionsNeededToApproximateArc(halfStrokeWidth, PI, threshold);
- }
- return 0;
- }
-
- /**
- * Outset the bounds of point data (for line endpoints or points) to account for stroke
- * geometry.
- *
- * bounds are in pre-scaled space.
- */
- void expandBoundsForStroke(Rect* bounds) const {
- if (halfStrokeWidth == 0) {
- // hairline, outset by (0.5f + fudge factor) in post-scaling space
- bounds->outset(fabs(inverseScaleX) * (0.5f + Vertex::GeometryFudgeFactor()),
- fabs(inverseScaleY) * (0.5f + Vertex::GeometryFudgeFactor()));
- } else {
- // non hairline, outset by half stroke width pre-scaled, and fudge factor post scaled
- bounds->outset(halfStrokeWidth + fabs(inverseScaleX) * Vertex::GeometryFudgeFactor(),
- halfStrokeWidth + fabs(inverseScaleY) * Vertex::GeometryFudgeFactor());
- }
- }
-};
-
-void getFillVerticesFromPerimeter(const std::vector<Vertex>& perimeter,
- VertexBuffer& vertexBuffer) {
- Vertex* buffer = vertexBuffer.alloc<Vertex>(perimeter.size());
-
- int currentIndex = 0;
- // zig zag between all previous points on the inside of the hull to create a
- // triangle strip that fills the hull
- int srcAindex = 0;
- int srcBindex = perimeter.size() - 1;
- while (srcAindex <= srcBindex) {
- buffer[currentIndex++] = perimeter[srcAindex];
- if (srcAindex == srcBindex) break;
- buffer[currentIndex++] = perimeter[srcBindex];
- srcAindex++;
- srcBindex--;
- }
-}
-
-/*
- * Fills a vertexBuffer with non-alpha vertices, zig-zagging at each perimeter point to create a
- * tri-strip as wide as the stroke.
- *
- * Uses an additional 2 vertices at the end to wrap around, closing the tri-strip
- * (for a total of perimeter.size() * 2 + 2 vertices)
- */
-void getStrokeVerticesFromPerimeter(const PaintInfo& paintInfo,
- const std::vector<Vertex>& perimeter,
- VertexBuffer& vertexBuffer) {
- Vertex* buffer = vertexBuffer.alloc<Vertex>(perimeter.size() * 2 + 2);
-
- int currentIndex = 0;
- const Vertex* last = &(perimeter[perimeter.size() - 1]);
- const Vertex* current = &(perimeter[0]);
- Vector2 lastNormal = {current->y - last->y, last->x - current->x};
- lastNormal.normalize();
- for (unsigned int i = 0; i < perimeter.size(); i++) {
- const Vertex* next = &(perimeter[i + 1 >= perimeter.size() ? 0 : i + 1]);
- Vector2 nextNormal = {next->y - current->y, current->x - next->x};
- nextNormal.normalize();
-
- Vector2 totalOffset = totalOffsetFromNormals(lastNormal, nextNormal);
- paintInfo.scaleOffsetForStrokeWidth(totalOffset);
-
- Vertex::set(&buffer[currentIndex++], current->x + totalOffset.x,
- current->y + totalOffset.y);
-
- Vertex::set(&buffer[currentIndex++], current->x - totalOffset.x,
- current->y - totalOffset.y);
-
- current = next;
- lastNormal = nextNormal;
- }
-
- // wrap around to beginning
- buffer[currentIndex++] = buffer[0];
- buffer[currentIndex++] = buffer[1];
-
- DEBUG_DUMP_BUFFER();
-}
-
-static inline void storeBeginEnd(const PaintInfo& paintInfo, const Vertex& center,
- const Vector2& normal, Vertex* buffer, int& currentIndex,
- bool begin) {
- Vector2 strokeOffset = normal;
- paintInfo.scaleOffsetForStrokeWidth(strokeOffset);
-
- Vector2 referencePoint = {center.x, center.y};
- if (paintInfo.cap == SkPaint::kSquare_Cap) {
- Vector2 rotated = {-strokeOffset.y, strokeOffset.x};
- referencePoint += rotated * (begin ? -1 : 1);
- }
-
- Vertex::set(&buffer[currentIndex++], referencePoint + strokeOffset);
- Vertex::set(&buffer[currentIndex++], referencePoint - strokeOffset);
-}
-
-/**
- * Fills a vertexBuffer with non-alpha vertices similar to getStrokeVerticesFromPerimeter, except:
- *
- * 1 - Doesn't need to wrap around, since the input vertices are unclosed
- *
- * 2 - can zig-zag across 'extra' vertices at either end, to create round caps
- */
-void getStrokeVerticesFromUnclosedVertices(const PaintInfo& paintInfo,
- const std::vector<Vertex>& vertices,
- VertexBuffer& vertexBuffer) {
- const int extra = paintInfo.capExtraDivisions();
- const int allocSize = (vertices.size() + extra) * 2;
- Vertex* buffer = vertexBuffer.alloc<Vertex>(allocSize);
-
- const int lastIndex = vertices.size() - 1;
- if (extra > 0) {
- // tessellate both round caps
- float beginTheta = atan2(-(vertices[0].x - vertices[1].x), vertices[0].y - vertices[1].y);
- float endTheta = atan2(-(vertices[lastIndex].x - vertices[lastIndex - 1].x),
- vertices[lastIndex].y - vertices[lastIndex - 1].y);
- const float dTheta = PI / (extra + 1);
-
- int capOffset;
- for (int i = 0; i < extra; i++) {
- if (i < extra / 2) {
- capOffset = extra - 2 * i - 1;
- } else {
- capOffset = 2 * i - extra;
- }
-
- beginTheta += dTheta;
- Vector2 beginRadialOffset = {cosf(beginTheta), sinf(beginTheta)};
- paintInfo.scaleOffsetForStrokeWidth(beginRadialOffset);
- Vertex::set(&buffer[capOffset], vertices[0].x + beginRadialOffset.x,
- vertices[0].y + beginRadialOffset.y);
-
- endTheta += dTheta;
- Vector2 endRadialOffset = {cosf(endTheta), sinf(endTheta)};
- paintInfo.scaleOffsetForStrokeWidth(endRadialOffset);
- Vertex::set(&buffer[allocSize - 1 - capOffset],
- vertices[lastIndex].x + endRadialOffset.x,
- vertices[lastIndex].y + endRadialOffset.y);
- }
- }
-
- int currentIndex = extra;
- const Vertex* last = &(vertices[0]);
- const Vertex* current = &(vertices[1]);
- Vector2 lastNormal = {current->y - last->y, last->x - current->x};
- lastNormal.normalize();
-
- storeBeginEnd(paintInfo, vertices[0], lastNormal, buffer, currentIndex, true);
-
- for (unsigned int i = 1; i < vertices.size() - 1; i++) {
- const Vertex* next = &(vertices[i + 1]);
- Vector2 nextNormal = {next->y - current->y, current->x - next->x};
- nextNormal.normalize();
-
- Vector2 strokeOffset = totalOffsetFromNormals(lastNormal, nextNormal);
- paintInfo.scaleOffsetForStrokeWidth(strokeOffset);
-
- Vector2 center = {current->x, current->y};
- Vertex::set(&buffer[currentIndex++], center + strokeOffset);
- Vertex::set(&buffer[currentIndex++], center - strokeOffset);
-
- current = next;
- lastNormal = nextNormal;
- }
-
- storeBeginEnd(paintInfo, vertices[lastIndex], lastNormal, buffer, currentIndex, false);
-
- DEBUG_DUMP_BUFFER();
-}
-
-/**
- * Populates a vertexBuffer with AlphaVertices to create an anti-aliased fill shape tessellation
- *
- * 1 - create the AA perimeter of unit width, by zig-zagging at each point around the perimeter of
- * the shape (using 2 * perimeter.size() vertices)
- *
- * 2 - wrap around to the beginning to complete the perimeter (2 vertices)
- *
- * 3 - zig zag back and forth inside the shape to fill it (using perimeter.size() vertices)
- */
-void getFillVerticesFromPerimeterAA(const PaintInfo& paintInfo,
- const std::vector<Vertex>& perimeter,
- VertexBuffer& vertexBuffer, float maxAlpha = 1.0f) {
- AlphaVertex* buffer = vertexBuffer.alloc<AlphaVertex>(perimeter.size() * 3 + 2);
-
- // generate alpha points - fill Alpha vertex gaps in between each point with
- // alpha 0 vertex, offset by a scaled normal.
- int currentIndex = 0;
- const Vertex* last = &(perimeter[perimeter.size() - 1]);
- const Vertex* current = &(perimeter[0]);
- Vector2 lastNormal = {current->y - last->y, last->x - current->x};
- lastNormal.normalize();
- for (unsigned int i = 0; i < perimeter.size(); i++) {
- const Vertex* next = &(perimeter[i + 1 >= perimeter.size() ? 0 : i + 1]);
- Vector2 nextNormal = {next->y - current->y, current->x - next->x};
- nextNormal.normalize();
-
- // AA point offset from original point is that point's normal, such that each side is offset
- // by .5 pixels
- Vector2 totalOffset =
- paintInfo.deriveAAOffset(totalOffsetFromNormals(lastNormal, nextNormal));
-
- AlphaVertex::set(&buffer[currentIndex++], current->x + totalOffset.x,
- current->y + totalOffset.y, 0.0f);
- AlphaVertex::set(&buffer[currentIndex++], current->x - totalOffset.x,
- current->y - totalOffset.y, maxAlpha);
-
- current = next;
- lastNormal = nextNormal;
- }
-
- // wrap around to beginning
- buffer[currentIndex++] = buffer[0];
- buffer[currentIndex++] = buffer[1];
-
- // zig zag between all previous points on the inside of the hull to create a
- // triangle strip that fills the hull, repeating the first inner point to
- // create degenerate tris to start inside path
- int srcAindex = 0;
- int srcBindex = perimeter.size() - 1;
- while (srcAindex <= srcBindex) {
- buffer[currentIndex++] = buffer[srcAindex * 2 + 1];
- if (srcAindex == srcBindex) break;
- buffer[currentIndex++] = buffer[srcBindex * 2 + 1];
- srcAindex++;
- srcBindex--;
- }
-
- DEBUG_DUMP_BUFFER();
-}
-
-/**
- * Stores geometry for a single, AA-perimeter (potentially rounded) cap
- *
- * For explanation of constants and general methodoloyg, see comments for
- * getStrokeVerticesFromUnclosedVerticesAA() below.
- */
-inline static void storeCapAA(const PaintInfo& paintInfo, const std::vector<Vertex>& vertices,
- AlphaVertex* buffer, bool isFirst, Vector2 normal, int offset) {
- const int extra = paintInfo.capExtraDivisions();
- const int extraOffset = (extra + 1) / 2;
- const int capIndex =
- isFirst ? 2 * offset + 6 + 2 * (extra + extraOffset) : offset + 2 + 2 * extraOffset;
- if (isFirst) normal *= -1;
-
- // TODO: this normal should be scaled by radialScale if extra != 0, see totalOffsetFromNormals()
- Vector2 AAOffset = paintInfo.deriveAAOffset(normal);
-
- Vector2 strokeOffset = normal;
- paintInfo.scaleOffsetForStrokeWidth(strokeOffset);
- Vector2 outerOffset = strokeOffset + AAOffset;
- Vector2 innerOffset = strokeOffset - AAOffset;
-
- Vector2 capAAOffset = {0, 0};
- if (paintInfo.cap != SkPaint::kRound_Cap) {
- // if the cap is square or butt, the inside primary cap vertices will be inset in two
- // directions - both normal to the stroke, and parallel to it.
- capAAOffset = (Vector2){-AAOffset.y, AAOffset.x};
- }
-
- // determine referencePoint, the center point for the 4 primary cap vertices
- const Vertex& point = isFirst ? vertices.front() : vertices.back();
- Vector2 referencePoint = {point.x, point.y};
- if (paintInfo.cap == SkPaint::kSquare_Cap) {
- // To account for square cap, move the primary cap vertices (that create the AA edge) by the
- // stroke offset vector (rotated to be parallel to the stroke)
- Vector2 rotated = {-strokeOffset.y, strokeOffset.x};
- referencePoint += rotated;
- }
-
- AlphaVertex::set(&buffer[capIndex + 0], referencePoint.x + outerOffset.x + capAAOffset.x,
- referencePoint.y + outerOffset.y + capAAOffset.y, 0.0f);
- AlphaVertex::set(&buffer[capIndex + 1], referencePoint.x + innerOffset.x - capAAOffset.x,
- referencePoint.y + innerOffset.y - capAAOffset.y, paintInfo.maxAlpha);
-
- bool isRound = paintInfo.cap == SkPaint::kRound_Cap;
-
- const int postCapIndex = (isRound && isFirst) ? (2 * extraOffset - 2) : capIndex + (2 * extra);
- AlphaVertex::set(&buffer[postCapIndex + 2], referencePoint.x - outerOffset.x + capAAOffset.x,
- referencePoint.y - outerOffset.y + capAAOffset.y, 0.0f);
- AlphaVertex::set(&buffer[postCapIndex + 3], referencePoint.x - innerOffset.x - capAAOffset.x,
- referencePoint.y - innerOffset.y - capAAOffset.y, paintInfo.maxAlpha);
-
- if (isRound) {
- const float dTheta = PI / (extra + 1);
- const float radialScale = 2.0f / (1 + cos(dTheta));
- float theta = atan2(normal.y, normal.x);
- int capPerimIndex = capIndex + 2;
-
- for (int i = 0; i < extra; i++) {
- theta += dTheta;
-
- Vector2 radialOffset = {cosf(theta), sinf(theta)};
-
- // scale to compensate for pinching at sharp angles, see totalOffsetFromNormals()
- radialOffset *= radialScale;
-
- AAOffset = paintInfo.deriveAAOffset(radialOffset);
- paintInfo.scaleOffsetForStrokeWidth(radialOffset);
- AlphaVertex::set(&buffer[capPerimIndex++],
- referencePoint.x + radialOffset.x + AAOffset.x,
- referencePoint.y + radialOffset.y + AAOffset.y, 0.0f);
- AlphaVertex::set(&buffer[capPerimIndex++],
- referencePoint.x + radialOffset.x - AAOffset.x,
- referencePoint.y + radialOffset.y - AAOffset.y, paintInfo.maxAlpha);
-
- if (isFirst && i == extra - extraOffset) {
- // copy most recent two points to first two points
- buffer[0] = buffer[capPerimIndex - 2];
- buffer[1] = buffer[capPerimIndex - 1];
-
- capPerimIndex = 2; // start writing the rest of the round cap at index 2
- }
- }
-
- if (isFirst) {
- const int startCapFillIndex = capIndex + 2 * (extra - extraOffset) + 4;
- int capFillIndex = startCapFillIndex;
- for (int i = 0; i < extra + 2; i += 2) {
- buffer[capFillIndex++] = buffer[1 + i];
- // TODO: to support odd numbers of divisions, break here on the last iteration
- buffer[capFillIndex++] = buffer[startCapFillIndex - 3 - i];
- }
- } else {
- int capFillIndex = 6 * vertices.size() + 2 + 6 * extra - (extra + 2);
- for (int i = 0; i < extra + 2; i += 2) {
- buffer[capFillIndex++] = buffer[capIndex + 1 + i];
- // TODO: to support odd numbers of divisions, break here on the last iteration
- buffer[capFillIndex++] = buffer[capIndex + 3 + 2 * extra - i];
- }
- }
- return;
- }
- if (isFirst) {
- buffer[0] = buffer[postCapIndex + 2];
- buffer[1] = buffer[postCapIndex + 3];
- buffer[postCapIndex + 4] = buffer[1]; // degenerate tris (the only two!)
- buffer[postCapIndex + 5] = buffer[postCapIndex + 1];
- } else {
- buffer[6 * vertices.size()] = buffer[postCapIndex + 1];
- buffer[6 * vertices.size() + 1] = buffer[postCapIndex + 3];
- }
-}
-
-/*
-the geometry for an aa, capped stroke consists of the following:
-
- # vertices | function
-----------------------------------------------------------------------
-a) 2 | Start AA perimeter
-b) 2, 2 * roundDivOff | First half of begin cap's perimeter
- |
- 2 * middlePts | 'Outer' or 'Top' AA perimeter half (between caps)
- |
-a) 4 | End cap's
-b) 2, 2 * roundDivs, 2 | AA perimeter
- |
- 2 * middlePts | 'Inner' or 'bottom' AA perimeter half
- |
-a) 6 | Begin cap's perimeter
-b) 2, 2*(rD - rDO + 1), | Last half of begin cap's perimeter
- roundDivs, 2 |
- |
- 2 * middlePts | Stroke's full opacity center strip
- |
-a) 2 | end stroke
-b) 2, roundDivs | (and end cap fill, for round)
-
-Notes:
-* rows starting with 'a)' denote the Butt or Square cap vertex use, 'b)' denote Round
-
-* 'middlePts' is (number of points in the unclosed input vertex list, minus 2) times two
-
-* 'roundDivs' or 'rD' is the number of extra vertices (beyond the minimum of 2) that define the
- round cap's shape, and is at least two. This will increase with cap size to sufficiently
- define the cap's level of tessellation.
-
-* 'roundDivOffset' or 'rDO' is the point about halfway along the start cap's round perimeter, where
- the stream of vertices for the AA perimeter starts. By starting and ending the perimeter at
- this offset, the fill of the stroke is drawn from this point with minimal extra vertices.
-
-This means the outer perimeter starts at:
- outerIndex = (2) OR (2 + 2 * roundDivOff)
-the inner perimeter (since it is filled in reverse) starts at:
- innerIndex = outerIndex + (4 * middlePts) + ((4) OR (4 + 2 * roundDivs)) - 1
-the stroke starts at:
- strokeIndex = innerIndex + 1 + ((6) OR (6 + 3 * roundDivs - 2 * roundDivOffset))
-
-The total needed allocated space is either:
- 2 + 4 + 6 + 2 + 3 * (2 * middlePts) = 14 + 6 * middlePts = 2 + 6 * pts
-or, for rounded caps:
- (2 + 2 * rDO) + (4 + 2 * rD) + (2 * (rD - rDO + 1)
- + roundDivs + 4) + (2 + roundDivs) + 3 * (2 * middlePts)
- = 14 + 6 * middlePts + 6 * roundDivs
- = 2 + 6 * pts + 6 * roundDivs
- */
-void getStrokeVerticesFromUnclosedVerticesAA(const PaintInfo& paintInfo,
- const std::vector<Vertex>& vertices,
- VertexBuffer& vertexBuffer) {
- const int extra = paintInfo.capExtraDivisions();
- const int allocSize = 6 * vertices.size() + 2 + 6 * extra;
-
- AlphaVertex* buffer = vertexBuffer.alloc<AlphaVertex>(allocSize);
-
- const int extraOffset = (extra + 1) / 2;
- int offset = 2 * (vertices.size() - 2);
- // there is no outer/inner here, using them for consistency with below approach
- int currentAAOuterIndex = 2 + 2 * extraOffset;
- int currentAAInnerIndex = currentAAOuterIndex + (2 * offset) + 3 + (2 * extra);
- int currentStrokeIndex = currentAAInnerIndex + 7 + (3 * extra - 2 * extraOffset);
-
- const Vertex* last = &(vertices[0]);
- const Vertex* current = &(vertices[1]);
- Vector2 lastNormal = {current->y - last->y, last->x - current->x};
- lastNormal.normalize();
-
- // TODO: use normal from bezier traversal for cap, instead of from vertices
- storeCapAA(paintInfo, vertices, buffer, true, lastNormal, offset);
-
- for (unsigned int i = 1; i < vertices.size() - 1; i++) {
- const Vertex* next = &(vertices[i + 1]);
- Vector2 nextNormal = {next->y - current->y, current->x - next->x};
- nextNormal.normalize();
-
- Vector2 totalOffset = totalOffsetFromNormals(lastNormal, nextNormal);
- Vector2 AAOffset = paintInfo.deriveAAOffset(totalOffset);
-
- Vector2 innerOffset = totalOffset;
- paintInfo.scaleOffsetForStrokeWidth(innerOffset);
- Vector2 outerOffset = innerOffset + AAOffset;
- innerOffset -= AAOffset;
-
- AlphaVertex::set(&buffer[currentAAOuterIndex++], current->x + outerOffset.x,
- current->y + outerOffset.y, 0.0f);
- AlphaVertex::set(&buffer[currentAAOuterIndex++], current->x + innerOffset.x,
- current->y + innerOffset.y, paintInfo.maxAlpha);
-
- AlphaVertex::set(&buffer[currentStrokeIndex++], current->x + innerOffset.x,
- current->y + innerOffset.y, paintInfo.maxAlpha);
- AlphaVertex::set(&buffer[currentStrokeIndex++], current->x - innerOffset.x,
- current->y - innerOffset.y, paintInfo.maxAlpha);
-
- AlphaVertex::set(&buffer[currentAAInnerIndex--], current->x - innerOffset.x,
- current->y - innerOffset.y, paintInfo.maxAlpha);
- AlphaVertex::set(&buffer[currentAAInnerIndex--], current->x - outerOffset.x,
- current->y - outerOffset.y, 0.0f);
-
- current = next;
- lastNormal = nextNormal;
- }
-
- // TODO: use normal from bezier traversal for cap, instead of from vertices
- storeCapAA(paintInfo, vertices, buffer, false, lastNormal, offset);
-
- DEBUG_DUMP_ALPHA_BUFFER();
-}
-
-void getStrokeVerticesFromPerimeterAA(const PaintInfo& paintInfo,
- const std::vector<Vertex>& perimeter,
- VertexBuffer& vertexBuffer) {
- AlphaVertex* buffer = vertexBuffer.alloc<AlphaVertex>(6 * perimeter.size() + 8);
-
- int offset = 2 * perimeter.size() + 3;
- int currentAAOuterIndex = 0;
- int currentStrokeIndex = offset;
- int currentAAInnerIndex = offset * 2;
-
- const Vertex* last = &(perimeter[perimeter.size() - 1]);
- const Vertex* current = &(perimeter[0]);
- Vector2 lastNormal = {current->y - last->y, last->x - current->x};
- lastNormal.normalize();
- for (unsigned int i = 0; i < perimeter.size(); i++) {
- const Vertex* next = &(perimeter[i + 1 >= perimeter.size() ? 0 : i + 1]);
- Vector2 nextNormal = {next->y - current->y, current->x - next->x};
- nextNormal.normalize();
-
- Vector2 totalOffset = totalOffsetFromNormals(lastNormal, nextNormal);
- Vector2 AAOffset = paintInfo.deriveAAOffset(totalOffset);
-
- Vector2 innerOffset = totalOffset;
- paintInfo.scaleOffsetForStrokeWidth(innerOffset);
- Vector2 outerOffset = innerOffset + AAOffset;
- innerOffset -= AAOffset;
-
- AlphaVertex::set(&buffer[currentAAOuterIndex++], current->x + outerOffset.x,
- current->y + outerOffset.y, 0.0f);
- AlphaVertex::set(&buffer[currentAAOuterIndex++], current->x + innerOffset.x,
- current->y + innerOffset.y, paintInfo.maxAlpha);
-
- AlphaVertex::set(&buffer[currentStrokeIndex++], current->x + innerOffset.x,
- current->y + innerOffset.y, paintInfo.maxAlpha);
- AlphaVertex::set(&buffer[currentStrokeIndex++], current->x - innerOffset.x,
- current->y - innerOffset.y, paintInfo.maxAlpha);
-
- AlphaVertex::set(&buffer[currentAAInnerIndex++], current->x - innerOffset.x,
- current->y - innerOffset.y, paintInfo.maxAlpha);
- AlphaVertex::set(&buffer[currentAAInnerIndex++], current->x - outerOffset.x,
- current->y - outerOffset.y, 0.0f);
-
- current = next;
- lastNormal = nextNormal;
- }
-
- // wrap each strip around to beginning, creating degenerate tris to bridge strips
- buffer[currentAAOuterIndex++] = buffer[0];
- buffer[currentAAOuterIndex++] = buffer[1];
- buffer[currentAAOuterIndex++] = buffer[1];
-
- buffer[currentStrokeIndex++] = buffer[offset];
- buffer[currentStrokeIndex++] = buffer[offset + 1];
- buffer[currentStrokeIndex++] = buffer[offset + 1];
-
- buffer[currentAAInnerIndex++] = buffer[2 * offset];
- buffer[currentAAInnerIndex++] = buffer[2 * offset + 1];
- // don't need to create last degenerate tri
-
- DEBUG_DUMP_ALPHA_BUFFER();
-}
-
-void PathTessellator::tessellatePath(const SkPath& path, const SkPaint* paint,
- const mat4& transform, VertexBuffer& vertexBuffer) {
- ATRACE_CALL();
-
- const PaintInfo paintInfo(paint, transform);
-
- std::vector<Vertex> tempVertices;
- float threshInvScaleX = paintInfo.inverseScaleX;
- float threshInvScaleY = paintInfo.inverseScaleY;
- if (paintInfo.style == SkPaint::kStroke_Style) {
- // alter the bezier recursion threshold values we calculate in order to compensate for
- // expansion done after the path vertices are found
- SkRect bounds = path.getBounds();
- if (!bounds.isEmpty()) {
- threshInvScaleX *= bounds.width() / (bounds.width() + paint->getStrokeWidth());
- threshInvScaleY *= bounds.height() / (bounds.height() + paint->getStrokeWidth());
- }
- }
-
- // force close if we're filling the path, since fill path expects closed perimeter.
- bool forceClose = paintInfo.style != SkPaint::kStroke_Style;
- PathApproximationInfo approximationInfo(threshInvScaleX, threshInvScaleY,
- OUTLINE_REFINE_THRESHOLD);
- bool wasClosed =
- approximatePathOutlineVertices(path, forceClose, approximationInfo, tempVertices);
-
- if (!tempVertices.size()) {
- // path was empty, return without allocating vertex buffer
- return;
- }
-
-#if VERTEX_DEBUG
- for (unsigned int i = 0; i < tempVertices.size(); i++) {
- ALOGD("orig path: point at %f %f", tempVertices[i].x, tempVertices[i].y);
- }
-#endif
-
- if (paintInfo.style == SkPaint::kStroke_Style) {
- if (!paintInfo.isAA) {
- if (wasClosed) {
- getStrokeVerticesFromPerimeter(paintInfo, tempVertices, vertexBuffer);
- } else {
- getStrokeVerticesFromUnclosedVertices(paintInfo, tempVertices, vertexBuffer);
- }
-
- } else {
- if (wasClosed) {
- getStrokeVerticesFromPerimeterAA(paintInfo, tempVertices, vertexBuffer);
- } else {
- getStrokeVerticesFromUnclosedVerticesAA(paintInfo, tempVertices, vertexBuffer);
- }
- }
- } else {
- // For kStrokeAndFill style, the path should be adjusted externally.
- // It will be treated as a fill here.
- if (!paintInfo.isAA) {
- getFillVerticesFromPerimeter(tempVertices, vertexBuffer);
- } else {
- getFillVerticesFromPerimeterAA(paintInfo, tempVertices, vertexBuffer);
- }
- }
-
- Rect bounds(path.getBounds());
- paintInfo.expandBoundsForStroke(&bounds);
- vertexBuffer.setBounds(bounds);
- vertexBuffer.setMeshFeatureFlags(paintInfo.isAA ? VertexBuffer::kAlpha : VertexBuffer::kNone);
-}
-
-template <class TYPE>
-static void instanceVertices(VertexBuffer& srcBuffer, VertexBuffer& dstBuffer, const float* points,
- int count, Rect& bounds) {
- bounds.set(points[0], points[1], points[0], points[1]);
-
- int numPoints = count / 2;
- int verticesPerPoint = srcBuffer.getVertexCount();
- dstBuffer.alloc<TYPE>(numPoints * verticesPerPoint + (numPoints - 1) * 2);
-
- for (int i = 0; i < count; i += 2) {
- bounds.expandToCover(points[i + 0], points[i + 1]);
- dstBuffer.copyInto<TYPE>(srcBuffer, points[i + 0], points[i + 1]);
- }
- dstBuffer.createDegenerateSeparators<TYPE>(verticesPerPoint);
-}
-
-void PathTessellator::tessellatePoints(const float* points, int count, const SkPaint* paint,
- const mat4& transform, VertexBuffer& vertexBuffer) {
- const PaintInfo paintInfo(paint, transform);
-
- // determine point shape
- SkPath path;
- float radius = paintInfo.halfStrokeWidth;
- if (radius == 0.0f) radius = 0.5f;
-
- if (paintInfo.cap == SkPaint::kRound_Cap) {
- path.addCircle(0, 0, radius);
- } else {
- path.addRect(-radius, -radius, radius, radius);
- }
-
- // calculate outline
- std::vector<Vertex> outlineVertices;
- PathApproximationInfo approximationInfo(paintInfo.inverseScaleX, paintInfo.inverseScaleY,
- OUTLINE_REFINE_THRESHOLD);
- approximatePathOutlineVertices(path, true, approximationInfo, outlineVertices);
-
- if (!outlineVertices.size()) return;
-
- Rect bounds;
- // tessellate, then duplicate outline across points
- VertexBuffer tempBuffer;
- if (!paintInfo.isAA) {
- getFillVerticesFromPerimeter(outlineVertices, tempBuffer);
- instanceVertices<Vertex>(tempBuffer, vertexBuffer, points, count, bounds);
- } else {
- // note: pass maxAlpha directly, since we want fill to be alpha modulated
- getFillVerticesFromPerimeterAA(paintInfo, outlineVertices, tempBuffer, paintInfo.maxAlpha);
- instanceVertices<AlphaVertex>(tempBuffer, vertexBuffer, points, count, bounds);
- }
-
- // expand bounds from vertex coords to pixel data
- paintInfo.expandBoundsForStroke(&bounds);
- vertexBuffer.setBounds(bounds);
- vertexBuffer.setMeshFeatureFlags(paintInfo.isAA ? VertexBuffer::kAlpha : VertexBuffer::kNone);
-}
-
-void PathTessellator::tessellateLines(const float* points, int count, const SkPaint* paint,
- const mat4& transform, VertexBuffer& vertexBuffer) {
- ATRACE_CALL();
- const PaintInfo paintInfo(paint, transform);
-
- const int extra = paintInfo.capExtraDivisions();
- int numLines = count / 4;
- int lineAllocSize;
- // pre-allocate space for lines in the buffer, and degenerate tris in between
- if (paintInfo.isAA) {
- lineAllocSize = 6 * (2) + 2 + 6 * extra;
- vertexBuffer.alloc<AlphaVertex>(numLines * lineAllocSize + (numLines - 1) * 2);
- } else {
- lineAllocSize = 2 * ((2) + extra);
- vertexBuffer.alloc<Vertex>(numLines * lineAllocSize + (numLines - 1) * 2);
- }
-
- std::vector<Vertex> tempVertices(2);
- Vertex* tempVerticesData = &tempVertices.front();
- Rect bounds;
- bounds.set(points[0], points[1], points[0], points[1]);
- for (int i = 0; i < count; i += 4) {
- Vertex::set(&(tempVerticesData[0]), points[i + 0], points[i + 1]);
- Vertex::set(&(tempVerticesData[1]), points[i + 2], points[i + 3]);
-
- if (paintInfo.isAA) {
- getStrokeVerticesFromUnclosedVerticesAA(paintInfo, tempVertices, vertexBuffer);
- } else {
- getStrokeVerticesFromUnclosedVertices(paintInfo, tempVertices, vertexBuffer);
- }
-
- // calculate bounds
- bounds.expandToCover(tempVerticesData[0].x, tempVerticesData[0].y);
- bounds.expandToCover(tempVerticesData[1].x, tempVerticesData[1].y);
- }
-
- // since multiple objects tessellated into buffer, separate them with degen tris
- if (paintInfo.isAA) {
- vertexBuffer.createDegenerateSeparators<AlphaVertex>(lineAllocSize);
- } else {
- vertexBuffer.createDegenerateSeparators<Vertex>(lineAllocSize);
- }
-
- // expand bounds from vertex coords to pixel data
- paintInfo.expandBoundsForStroke(&bounds);
- vertexBuffer.setBounds(bounds);
- vertexBuffer.setMeshFeatureFlags(paintInfo.isAA ? VertexBuffer::kAlpha : VertexBuffer::kNone);
-}
-
-///////////////////////////////////////////////////////////////////////////////
-// Simple path line approximation
-///////////////////////////////////////////////////////////////////////////////
-
-bool PathTessellator::approximatePathOutlineVertices(const SkPath& path, float threshold,
- std::vector<Vertex>& outputVertices) {
- PathApproximationInfo approximationInfo(1.0f, 1.0f, threshold);
- return approximatePathOutlineVertices(path, true, approximationInfo, outputVertices);
-}
-
-class ClockwiseEnforcer {
-public:
- void addPoint(const SkPoint& point) {
- double x = point.x();
- double y = point.y();
-
- if (initialized) {
- sum += (x + lastX) * (y - lastY);
- } else {
- initialized = true;
- }
-
- lastX = x;
- lastY = y;
- }
- void reverseVectorIfNotClockwise(std::vector<Vertex>& vertices) {
- if (sum < 0) {
- // negative sum implies CounterClockwise
- const int size = vertices.size();
- for (int i = 0; i < size / 2; i++) {
- Vertex tmp = vertices[i];
- int k = size - 1 - i;
- vertices[i] = vertices[k];
- vertices[k] = tmp;
- }
- }
- }
-
-private:
- bool initialized = false;
- double lastX = 0;
- double lastY = 0;
- double sum = 0;
-};
-
-bool PathTessellator::approximatePathOutlineVertices(const SkPath& path, bool forceClose,
- const PathApproximationInfo& approximationInfo,
- std::vector<Vertex>& outputVertices) {
- ATRACE_CALL();
-
- // TODO: to support joins other than sharp miter, join vertices should be labelled in the
- // perimeter, or resolved into more vertices. Reconsider forceClose-ing in that case.
- SkPath::Iter iter(path, forceClose);
- SkPoint pts[4];
- SkPath::Verb v;
- ClockwiseEnforcer clockwiseEnforcer;
- while (SkPath::kDone_Verb != (v = iter.next(pts))) {
- switch (v) {
- case SkPath::kMove_Verb:
- outputVertices.push_back(Vertex{pts[0].x(), pts[0].y()});
- ALOGV("Move to pos %f %f", pts[0].x(), pts[0].y());
- clockwiseEnforcer.addPoint(pts[0]);
- break;
- case SkPath::kClose_Verb:
- ALOGV("Close at pos %f %f", pts[0].x(), pts[0].y());
- clockwiseEnforcer.addPoint(pts[0]);
- break;
- case SkPath::kLine_Verb:
- ALOGV("kLine_Verb %f %f -> %f %f", pts[0].x(), pts[0].y(), pts[1].x(), pts[1].y());
- outputVertices.push_back(Vertex{pts[1].x(), pts[1].y()});
- clockwiseEnforcer.addPoint(pts[1]);
- break;
- case SkPath::kQuad_Verb:
- ALOGV("kQuad_Verb");
- recursiveQuadraticBezierVertices(pts[0].x(), pts[0].y(), pts[2].x(), pts[2].y(),
- pts[1].x(), pts[1].y(), approximationInfo,
- outputVertices);
- clockwiseEnforcer.addPoint(pts[1]);
- clockwiseEnforcer.addPoint(pts[2]);
- break;
- case SkPath::kCubic_Verb:
- ALOGV("kCubic_Verb");
- recursiveCubicBezierVertices(pts[0].x(), pts[0].y(), pts[1].x(), pts[1].y(),
- pts[3].x(), pts[3].y(), pts[2].x(), pts[2].y(),
- approximationInfo, outputVertices);
- clockwiseEnforcer.addPoint(pts[1]);
- clockwiseEnforcer.addPoint(pts[2]);
- clockwiseEnforcer.addPoint(pts[3]);
- break;
- case SkPath::kConic_Verb: {
- ALOGV("kConic_Verb");
- SkAutoConicToQuads converter;
- const SkPoint* quads = converter.computeQuads(
- pts, iter.conicWeight(), approximationInfo.thresholdForConicQuads);
- for (int i = 0; i < converter.countQuads(); ++i) {
- const int offset = 2 * i;
- recursiveQuadraticBezierVertices(quads[offset].x(), quads[offset].y(),
- quads[offset + 2].x(), quads[offset + 2].y(),
- quads[offset + 1].x(), quads[offset + 1].y(),
- approximationInfo, outputVertices);
- }
- clockwiseEnforcer.addPoint(pts[1]);
- clockwiseEnforcer.addPoint(pts[2]);
- break;
- }
- default:
- static_assert(SkPath::kMove_Verb == 0 && SkPath::kLine_Verb == 1 &&
- SkPath::kQuad_Verb == 2 && SkPath::kConic_Verb == 3 &&
- SkPath::kCubic_Verb == 4 && SkPath::kClose_Verb == 5 &&
- SkPath::kDone_Verb == 6,
- "Path enum changed, new types may have been added");
- break;
- }
- }
-
- bool wasClosed = false;
- int size = outputVertices.size();
- if (size >= 2 && outputVertices[0].x == outputVertices[size - 1].x &&
- outputVertices[0].y == outputVertices[size - 1].y) {
- outputVertices.pop_back();
- wasClosed = true;
- }
-
- // ensure output vector is clockwise
- clockwiseEnforcer.reverseVectorIfNotClockwise(outputVertices);
- return wasClosed;
-}
-
-///////////////////////////////////////////////////////////////////////////////
-// Bezier approximation
-//
-// All the inputs and outputs here are in path coordinates.
-// We convert the error threshold from screen coordinates into path coordinates.
-///////////////////////////////////////////////////////////////////////////////
-
-// Get a threshold in path coordinates, by scaling the thresholdSquared from screen coordinates.
-// TODO: Document the math behind this algorithm.
-static inline float getThreshold(const PathApproximationInfo& info, float dx, float dy) {
- // multiplying by sqrInvScaleY/X equivalent to multiplying in dimensional scale factors
- float scale = (dx * dx * info.sqrInvScaleY + dy * dy * info.sqrInvScaleX);
- return info.thresholdSquared * scale;
-}
-
-void PathTessellator::recursiveCubicBezierVertices(float p1x, float p1y, float c1x, float c1y,
- float p2x, float p2y, float c2x, float c2y,
- const PathApproximationInfo& approximationInfo,
- std::vector<Vertex>& outputVertices, int depth) {
- float dx = p2x - p1x;
- float dy = p2y - p1y;
- float d1 = fabs((c1x - p2x) * dy - (c1y - p2y) * dx);
- float d2 = fabs((c2x - p2x) * dy - (c2y - p2y) * dx);
- float d = d1 + d2;
-
- if (depth >= MAX_DEPTH || d * d <= getThreshold(approximationInfo, dx, dy)) {
- // below thresh, draw line by adding endpoint
- outputVertices.push_back(Vertex{p2x, p2y});
- } else {
- float p1c1x = (p1x + c1x) * 0.5f;
- float p1c1y = (p1y + c1y) * 0.5f;
- float p2c2x = (p2x + c2x) * 0.5f;
- float p2c2y = (p2y + c2y) * 0.5f;
-
- float c1c2x = (c1x + c2x) * 0.5f;
- float c1c2y = (c1y + c2y) * 0.5f;
-
- float p1c1c2x = (p1c1x + c1c2x) * 0.5f;
- float p1c1c2y = (p1c1y + c1c2y) * 0.5f;
-
- float p2c1c2x = (p2c2x + c1c2x) * 0.5f;
- float p2c1c2y = (p2c2y + c1c2y) * 0.5f;
-
- float mx = (p1c1c2x + p2c1c2x) * 0.5f;
- float my = (p1c1c2y + p2c1c2y) * 0.5f;
-
- recursiveCubicBezierVertices(p1x, p1y, p1c1x, p1c1y, mx, my, p1c1c2x, p1c1c2y,
- approximationInfo, outputVertices, depth + 1);
- recursiveCubicBezierVertices(mx, my, p2c1c2x, p2c1c2y, p2x, p2y, p2c2x, p2c2y,
- approximationInfo, outputVertices, depth + 1);
- }
-}
-
-void PathTessellator::recursiveQuadraticBezierVertices(
- float ax, float ay, float bx, float by, float cx, float cy,
- const PathApproximationInfo& approximationInfo, std::vector<Vertex>& outputVertices,
- int depth) {
- float dx = bx - ax;
- float dy = by - ay;
- // d is the cross product of vector (B-A) and (C-B).
- float d = (cx - bx) * dy - (cy - by) * dx;
-
- if (depth >= MAX_DEPTH || d * d <= getThreshold(approximationInfo, dx, dy)) {
- // below thresh, draw line by adding endpoint
- outputVertices.push_back(Vertex{bx, by});
- } else {
- float acx = (ax + cx) * 0.5f;
- float bcx = (bx + cx) * 0.5f;
- float acy = (ay + cy) * 0.5f;
- float bcy = (by + cy) * 0.5f;
-
- // midpoint
- float mx = (acx + bcx) * 0.5f;
- float my = (acy + bcy) * 0.5f;
-
- recursiveQuadraticBezierVertices(ax, ay, mx, my, acx, acy, approximationInfo,
- outputVertices, depth + 1);
- recursiveQuadraticBezierVertices(mx, my, bx, by, bcx, bcy, approximationInfo,
- outputVertices, depth + 1);
- }
-}
-
-}; // namespace uirenderer
-}; // namespace android