diff options
Diffstat (limited to 'libs/hwui/PathTessellator.cpp')
-rw-r--r-- | libs/hwui/PathTessellator.cpp | 1069 |
1 files changed, 0 insertions, 1069 deletions
diff --git a/libs/hwui/PathTessellator.cpp b/libs/hwui/PathTessellator.cpp deleted file mode 100644 index 973b1d14b77e..000000000000 --- a/libs/hwui/PathTessellator.cpp +++ /dev/null @@ -1,1069 +0,0 @@ -/* - * Copyright (C) 2012 The Android Open Source Project - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#define LOG_NDEBUG 1 - -#define VERTEX_DEBUG 0 - -#if VERTEX_DEBUG -#define DEBUG_DUMP_ALPHA_BUFFER() \ - for (unsigned int i = 0; i < vertexBuffer.getSize(); i++) { \ - ALOGD("point %d at %f %f, alpha %f", i, buffer[i].x, buffer[i].y, buffer[i].alpha); \ - } -#define DEBUG_DUMP_BUFFER() \ - for (unsigned int i = 0; i < vertexBuffer.getSize(); i++) { \ - ALOGD("point %d at %f %f", i, buffer[i].x, buffer[i].y); \ - } -#else -#define DEBUG_DUMP_ALPHA_BUFFER() -#define DEBUG_DUMP_BUFFER() -#endif - -#include "PathTessellator.h" - -#include "Matrix.h" -#include "Vector.h" -#include "Vertex.h" -#include "utils/MathUtils.h" - -#include <algorithm> - -#include <SkGeometry.h> // WARNING: Internal Skia Header -#include <SkPaint.h> -#include <SkPath.h> -#include <SkPoint.h> - -#include <stdint.h> -#include <stdlib.h> -#include <sys/types.h> - -#include <utils/Log.h> -#include <utils/Trace.h> - -namespace android { -namespace uirenderer { - -#define OUTLINE_REFINE_THRESHOLD 0.5f -#define ROUND_CAP_THRESH 0.25f -#define PI 3.1415926535897932f -#define MAX_DEPTH 15 - -/** - * Extracts the x and y scale from the transform as positive values, and clamps them - */ -void PathTessellator::extractTessellationScales(const Matrix4& transform, float* scaleX, - float* scaleY) { - if (CC_LIKELY(transform.isPureTranslate())) { - *scaleX = 1.0f; - *scaleY = 1.0f; - } else { - float m00 = transform.data[Matrix4::kScaleX]; - float m01 = transform.data[Matrix4::kSkewY]; - float m10 = transform.data[Matrix4::kSkewX]; - float m11 = transform.data[Matrix4::kScaleY]; - *scaleX = MathUtils::clampTessellationScale(sqrt(m00 * m00 + m01 * m01)); - *scaleY = MathUtils::clampTessellationScale(sqrt(m10 * m10 + m11 * m11)); - } -} - -/** - * Produces a pseudo-normal for a vertex, given the normals of the two incoming lines. If the offset - * from each vertex in a perimeter is calculated, the resultant lines connecting the offset vertices - * will be offset by 1.0 - * - * Note that we can't add and normalize the two vectors, that would result in a rectangle having an - * offset of (sqrt(2)/2, sqrt(2)/2) at each corner, instead of (1, 1) - * - * NOTE: assumes angles between normals 90 degrees or less - */ -inline static Vector2 totalOffsetFromNormals(const Vector2& normalA, const Vector2& normalB) { - return (normalA + normalB) / (1 + fabs(normalA.dot(normalB))); -} - -/** - * Structure used for storing useful information about the SkPaint and scale used for tessellating - */ -struct PaintInfo { -public: - PaintInfo(const SkPaint* paint, const mat4& transform) - : style(paint->getStyle()) - , cap(paint->getStrokeCap()) - , isAA(paint->isAntiAlias()) - , halfStrokeWidth(paint->getStrokeWidth() * 0.5f) - , maxAlpha(1.0f) { - // compute inverse scales - if (CC_LIKELY(transform.isPureTranslate())) { - inverseScaleX = 1.0f; - inverseScaleY = 1.0f; - } else { - float scaleX, scaleY; - PathTessellator::extractTessellationScales(transform, &scaleX, &scaleY); - inverseScaleX = 1.0f / scaleX; - inverseScaleY = 1.0f / scaleY; - } - - if (isAA && halfStrokeWidth != 0 && inverseScaleX == inverseScaleY && - 2 * halfStrokeWidth < inverseScaleX) { - // AA, with non-hairline stroke, width < 1 pixel. Scale alpha and treat as hairline. - maxAlpha *= (2 * halfStrokeWidth) / inverseScaleX; - halfStrokeWidth = 0.0f; - } - } - - SkPaint::Style style; - SkPaint::Cap cap; - bool isAA; - float inverseScaleX; - float inverseScaleY; - float halfStrokeWidth; - float maxAlpha; - - inline void scaleOffsetForStrokeWidth(Vector2& offset) const { - if (halfStrokeWidth == 0.0f) { - // hairline - compensate for scale - offset.x *= 0.5f * inverseScaleX; - offset.y *= 0.5f * inverseScaleY; - } else { - offset *= halfStrokeWidth; - } - } - - /** - * NOTE: the input will not always be a normal, especially for sharp edges - it should be the - * result of totalOffsetFromNormals (see documentation there) - */ - inline Vector2 deriveAAOffset(const Vector2& offset) const { - return (Vector2){offset.x * 0.5f * inverseScaleX, offset.y * 0.5f * inverseScaleY}; - } - - /** - * Returns the number of cap divisions beyond the minimum 2 (kButt_Cap/kSquareCap will return 0) - * Should only be used when stroking and drawing caps - */ - inline int capExtraDivisions() const { - if (cap == SkPaint::kRound_Cap) { - // always use 2 points for hairline - if (halfStrokeWidth == 0.0f) return 2; - - float threshold = std::min(inverseScaleX, inverseScaleY) * ROUND_CAP_THRESH; - return MathUtils::divisionsNeededToApproximateArc(halfStrokeWidth, PI, threshold); - } - return 0; - } - - /** - * Outset the bounds of point data (for line endpoints or points) to account for stroke - * geometry. - * - * bounds are in pre-scaled space. - */ - void expandBoundsForStroke(Rect* bounds) const { - if (halfStrokeWidth == 0) { - // hairline, outset by (0.5f + fudge factor) in post-scaling space - bounds->outset(fabs(inverseScaleX) * (0.5f + Vertex::GeometryFudgeFactor()), - fabs(inverseScaleY) * (0.5f + Vertex::GeometryFudgeFactor())); - } else { - // non hairline, outset by half stroke width pre-scaled, and fudge factor post scaled - bounds->outset(halfStrokeWidth + fabs(inverseScaleX) * Vertex::GeometryFudgeFactor(), - halfStrokeWidth + fabs(inverseScaleY) * Vertex::GeometryFudgeFactor()); - } - } -}; - -void getFillVerticesFromPerimeter(const std::vector<Vertex>& perimeter, - VertexBuffer& vertexBuffer) { - Vertex* buffer = vertexBuffer.alloc<Vertex>(perimeter.size()); - - int currentIndex = 0; - // zig zag between all previous points on the inside of the hull to create a - // triangle strip that fills the hull - int srcAindex = 0; - int srcBindex = perimeter.size() - 1; - while (srcAindex <= srcBindex) { - buffer[currentIndex++] = perimeter[srcAindex]; - if (srcAindex == srcBindex) break; - buffer[currentIndex++] = perimeter[srcBindex]; - srcAindex++; - srcBindex--; - } -} - -/* - * Fills a vertexBuffer with non-alpha vertices, zig-zagging at each perimeter point to create a - * tri-strip as wide as the stroke. - * - * Uses an additional 2 vertices at the end to wrap around, closing the tri-strip - * (for a total of perimeter.size() * 2 + 2 vertices) - */ -void getStrokeVerticesFromPerimeter(const PaintInfo& paintInfo, - const std::vector<Vertex>& perimeter, - VertexBuffer& vertexBuffer) { - Vertex* buffer = vertexBuffer.alloc<Vertex>(perimeter.size() * 2 + 2); - - int currentIndex = 0; - const Vertex* last = &(perimeter[perimeter.size() - 1]); - const Vertex* current = &(perimeter[0]); - Vector2 lastNormal = {current->y - last->y, last->x - current->x}; - lastNormal.normalize(); - for (unsigned int i = 0; i < perimeter.size(); i++) { - const Vertex* next = &(perimeter[i + 1 >= perimeter.size() ? 0 : i + 1]); - Vector2 nextNormal = {next->y - current->y, current->x - next->x}; - nextNormal.normalize(); - - Vector2 totalOffset = totalOffsetFromNormals(lastNormal, nextNormal); - paintInfo.scaleOffsetForStrokeWidth(totalOffset); - - Vertex::set(&buffer[currentIndex++], current->x + totalOffset.x, - current->y + totalOffset.y); - - Vertex::set(&buffer[currentIndex++], current->x - totalOffset.x, - current->y - totalOffset.y); - - current = next; - lastNormal = nextNormal; - } - - // wrap around to beginning - buffer[currentIndex++] = buffer[0]; - buffer[currentIndex++] = buffer[1]; - - DEBUG_DUMP_BUFFER(); -} - -static inline void storeBeginEnd(const PaintInfo& paintInfo, const Vertex& center, - const Vector2& normal, Vertex* buffer, int& currentIndex, - bool begin) { - Vector2 strokeOffset = normal; - paintInfo.scaleOffsetForStrokeWidth(strokeOffset); - - Vector2 referencePoint = {center.x, center.y}; - if (paintInfo.cap == SkPaint::kSquare_Cap) { - Vector2 rotated = {-strokeOffset.y, strokeOffset.x}; - referencePoint += rotated * (begin ? -1 : 1); - } - - Vertex::set(&buffer[currentIndex++], referencePoint + strokeOffset); - Vertex::set(&buffer[currentIndex++], referencePoint - strokeOffset); -} - -/** - * Fills a vertexBuffer with non-alpha vertices similar to getStrokeVerticesFromPerimeter, except: - * - * 1 - Doesn't need to wrap around, since the input vertices are unclosed - * - * 2 - can zig-zag across 'extra' vertices at either end, to create round caps - */ -void getStrokeVerticesFromUnclosedVertices(const PaintInfo& paintInfo, - const std::vector<Vertex>& vertices, - VertexBuffer& vertexBuffer) { - const int extra = paintInfo.capExtraDivisions(); - const int allocSize = (vertices.size() + extra) * 2; - Vertex* buffer = vertexBuffer.alloc<Vertex>(allocSize); - - const int lastIndex = vertices.size() - 1; - if (extra > 0) { - // tessellate both round caps - float beginTheta = atan2(-(vertices[0].x - vertices[1].x), vertices[0].y - vertices[1].y); - float endTheta = atan2(-(vertices[lastIndex].x - vertices[lastIndex - 1].x), - vertices[lastIndex].y - vertices[lastIndex - 1].y); - const float dTheta = PI / (extra + 1); - - int capOffset; - for (int i = 0; i < extra; i++) { - if (i < extra / 2) { - capOffset = extra - 2 * i - 1; - } else { - capOffset = 2 * i - extra; - } - - beginTheta += dTheta; - Vector2 beginRadialOffset = {cosf(beginTheta), sinf(beginTheta)}; - paintInfo.scaleOffsetForStrokeWidth(beginRadialOffset); - Vertex::set(&buffer[capOffset], vertices[0].x + beginRadialOffset.x, - vertices[0].y + beginRadialOffset.y); - - endTheta += dTheta; - Vector2 endRadialOffset = {cosf(endTheta), sinf(endTheta)}; - paintInfo.scaleOffsetForStrokeWidth(endRadialOffset); - Vertex::set(&buffer[allocSize - 1 - capOffset], - vertices[lastIndex].x + endRadialOffset.x, - vertices[lastIndex].y + endRadialOffset.y); - } - } - - int currentIndex = extra; - const Vertex* last = &(vertices[0]); - const Vertex* current = &(vertices[1]); - Vector2 lastNormal = {current->y - last->y, last->x - current->x}; - lastNormal.normalize(); - - storeBeginEnd(paintInfo, vertices[0], lastNormal, buffer, currentIndex, true); - - for (unsigned int i = 1; i < vertices.size() - 1; i++) { - const Vertex* next = &(vertices[i + 1]); - Vector2 nextNormal = {next->y - current->y, current->x - next->x}; - nextNormal.normalize(); - - Vector2 strokeOffset = totalOffsetFromNormals(lastNormal, nextNormal); - paintInfo.scaleOffsetForStrokeWidth(strokeOffset); - - Vector2 center = {current->x, current->y}; - Vertex::set(&buffer[currentIndex++], center + strokeOffset); - Vertex::set(&buffer[currentIndex++], center - strokeOffset); - - current = next; - lastNormal = nextNormal; - } - - storeBeginEnd(paintInfo, vertices[lastIndex], lastNormal, buffer, currentIndex, false); - - DEBUG_DUMP_BUFFER(); -} - -/** - * Populates a vertexBuffer with AlphaVertices to create an anti-aliased fill shape tessellation - * - * 1 - create the AA perimeter of unit width, by zig-zagging at each point around the perimeter of - * the shape (using 2 * perimeter.size() vertices) - * - * 2 - wrap around to the beginning to complete the perimeter (2 vertices) - * - * 3 - zig zag back and forth inside the shape to fill it (using perimeter.size() vertices) - */ -void getFillVerticesFromPerimeterAA(const PaintInfo& paintInfo, - const std::vector<Vertex>& perimeter, - VertexBuffer& vertexBuffer, float maxAlpha = 1.0f) { - AlphaVertex* buffer = vertexBuffer.alloc<AlphaVertex>(perimeter.size() * 3 + 2); - - // generate alpha points - fill Alpha vertex gaps in between each point with - // alpha 0 vertex, offset by a scaled normal. - int currentIndex = 0; - const Vertex* last = &(perimeter[perimeter.size() - 1]); - const Vertex* current = &(perimeter[0]); - Vector2 lastNormal = {current->y - last->y, last->x - current->x}; - lastNormal.normalize(); - for (unsigned int i = 0; i < perimeter.size(); i++) { - const Vertex* next = &(perimeter[i + 1 >= perimeter.size() ? 0 : i + 1]); - Vector2 nextNormal = {next->y - current->y, current->x - next->x}; - nextNormal.normalize(); - - // AA point offset from original point is that point's normal, such that each side is offset - // by .5 pixels - Vector2 totalOffset = - paintInfo.deriveAAOffset(totalOffsetFromNormals(lastNormal, nextNormal)); - - AlphaVertex::set(&buffer[currentIndex++], current->x + totalOffset.x, - current->y + totalOffset.y, 0.0f); - AlphaVertex::set(&buffer[currentIndex++], current->x - totalOffset.x, - current->y - totalOffset.y, maxAlpha); - - current = next; - lastNormal = nextNormal; - } - - // wrap around to beginning - buffer[currentIndex++] = buffer[0]; - buffer[currentIndex++] = buffer[1]; - - // zig zag between all previous points on the inside of the hull to create a - // triangle strip that fills the hull, repeating the first inner point to - // create degenerate tris to start inside path - int srcAindex = 0; - int srcBindex = perimeter.size() - 1; - while (srcAindex <= srcBindex) { - buffer[currentIndex++] = buffer[srcAindex * 2 + 1]; - if (srcAindex == srcBindex) break; - buffer[currentIndex++] = buffer[srcBindex * 2 + 1]; - srcAindex++; - srcBindex--; - } - - DEBUG_DUMP_BUFFER(); -} - -/** - * Stores geometry for a single, AA-perimeter (potentially rounded) cap - * - * For explanation of constants and general methodoloyg, see comments for - * getStrokeVerticesFromUnclosedVerticesAA() below. - */ -inline static void storeCapAA(const PaintInfo& paintInfo, const std::vector<Vertex>& vertices, - AlphaVertex* buffer, bool isFirst, Vector2 normal, int offset) { - const int extra = paintInfo.capExtraDivisions(); - const int extraOffset = (extra + 1) / 2; - const int capIndex = - isFirst ? 2 * offset + 6 + 2 * (extra + extraOffset) : offset + 2 + 2 * extraOffset; - if (isFirst) normal *= -1; - - // TODO: this normal should be scaled by radialScale if extra != 0, see totalOffsetFromNormals() - Vector2 AAOffset = paintInfo.deriveAAOffset(normal); - - Vector2 strokeOffset = normal; - paintInfo.scaleOffsetForStrokeWidth(strokeOffset); - Vector2 outerOffset = strokeOffset + AAOffset; - Vector2 innerOffset = strokeOffset - AAOffset; - - Vector2 capAAOffset = {0, 0}; - if (paintInfo.cap != SkPaint::kRound_Cap) { - // if the cap is square or butt, the inside primary cap vertices will be inset in two - // directions - both normal to the stroke, and parallel to it. - capAAOffset = (Vector2){-AAOffset.y, AAOffset.x}; - } - - // determine referencePoint, the center point for the 4 primary cap vertices - const Vertex& point = isFirst ? vertices.front() : vertices.back(); - Vector2 referencePoint = {point.x, point.y}; - if (paintInfo.cap == SkPaint::kSquare_Cap) { - // To account for square cap, move the primary cap vertices (that create the AA edge) by the - // stroke offset vector (rotated to be parallel to the stroke) - Vector2 rotated = {-strokeOffset.y, strokeOffset.x}; - referencePoint += rotated; - } - - AlphaVertex::set(&buffer[capIndex + 0], referencePoint.x + outerOffset.x + capAAOffset.x, - referencePoint.y + outerOffset.y + capAAOffset.y, 0.0f); - AlphaVertex::set(&buffer[capIndex + 1], referencePoint.x + innerOffset.x - capAAOffset.x, - referencePoint.y + innerOffset.y - capAAOffset.y, paintInfo.maxAlpha); - - bool isRound = paintInfo.cap == SkPaint::kRound_Cap; - - const int postCapIndex = (isRound && isFirst) ? (2 * extraOffset - 2) : capIndex + (2 * extra); - AlphaVertex::set(&buffer[postCapIndex + 2], referencePoint.x - outerOffset.x + capAAOffset.x, - referencePoint.y - outerOffset.y + capAAOffset.y, 0.0f); - AlphaVertex::set(&buffer[postCapIndex + 3], referencePoint.x - innerOffset.x - capAAOffset.x, - referencePoint.y - innerOffset.y - capAAOffset.y, paintInfo.maxAlpha); - - if (isRound) { - const float dTheta = PI / (extra + 1); - const float radialScale = 2.0f / (1 + cos(dTheta)); - float theta = atan2(normal.y, normal.x); - int capPerimIndex = capIndex + 2; - - for (int i = 0; i < extra; i++) { - theta += dTheta; - - Vector2 radialOffset = {cosf(theta), sinf(theta)}; - - // scale to compensate for pinching at sharp angles, see totalOffsetFromNormals() - radialOffset *= radialScale; - - AAOffset = paintInfo.deriveAAOffset(radialOffset); - paintInfo.scaleOffsetForStrokeWidth(radialOffset); - AlphaVertex::set(&buffer[capPerimIndex++], - referencePoint.x + radialOffset.x + AAOffset.x, - referencePoint.y + radialOffset.y + AAOffset.y, 0.0f); - AlphaVertex::set(&buffer[capPerimIndex++], - referencePoint.x + radialOffset.x - AAOffset.x, - referencePoint.y + radialOffset.y - AAOffset.y, paintInfo.maxAlpha); - - if (isFirst && i == extra - extraOffset) { - // copy most recent two points to first two points - buffer[0] = buffer[capPerimIndex - 2]; - buffer[1] = buffer[capPerimIndex - 1]; - - capPerimIndex = 2; // start writing the rest of the round cap at index 2 - } - } - - if (isFirst) { - const int startCapFillIndex = capIndex + 2 * (extra - extraOffset) + 4; - int capFillIndex = startCapFillIndex; - for (int i = 0; i < extra + 2; i += 2) { - buffer[capFillIndex++] = buffer[1 + i]; - // TODO: to support odd numbers of divisions, break here on the last iteration - buffer[capFillIndex++] = buffer[startCapFillIndex - 3 - i]; - } - } else { - int capFillIndex = 6 * vertices.size() + 2 + 6 * extra - (extra + 2); - for (int i = 0; i < extra + 2; i += 2) { - buffer[capFillIndex++] = buffer[capIndex + 1 + i]; - // TODO: to support odd numbers of divisions, break here on the last iteration - buffer[capFillIndex++] = buffer[capIndex + 3 + 2 * extra - i]; - } - } - return; - } - if (isFirst) { - buffer[0] = buffer[postCapIndex + 2]; - buffer[1] = buffer[postCapIndex + 3]; - buffer[postCapIndex + 4] = buffer[1]; // degenerate tris (the only two!) - buffer[postCapIndex + 5] = buffer[postCapIndex + 1]; - } else { - buffer[6 * vertices.size()] = buffer[postCapIndex + 1]; - buffer[6 * vertices.size() + 1] = buffer[postCapIndex + 3]; - } -} - -/* -the geometry for an aa, capped stroke consists of the following: - - # vertices | function ----------------------------------------------------------------------- -a) 2 | Start AA perimeter -b) 2, 2 * roundDivOff | First half of begin cap's perimeter - | - 2 * middlePts | 'Outer' or 'Top' AA perimeter half (between caps) - | -a) 4 | End cap's -b) 2, 2 * roundDivs, 2 | AA perimeter - | - 2 * middlePts | 'Inner' or 'bottom' AA perimeter half - | -a) 6 | Begin cap's perimeter -b) 2, 2*(rD - rDO + 1), | Last half of begin cap's perimeter - roundDivs, 2 | - | - 2 * middlePts | Stroke's full opacity center strip - | -a) 2 | end stroke -b) 2, roundDivs | (and end cap fill, for round) - -Notes: -* rows starting with 'a)' denote the Butt or Square cap vertex use, 'b)' denote Round - -* 'middlePts' is (number of points in the unclosed input vertex list, minus 2) times two - -* 'roundDivs' or 'rD' is the number of extra vertices (beyond the minimum of 2) that define the - round cap's shape, and is at least two. This will increase with cap size to sufficiently - define the cap's level of tessellation. - -* 'roundDivOffset' or 'rDO' is the point about halfway along the start cap's round perimeter, where - the stream of vertices for the AA perimeter starts. By starting and ending the perimeter at - this offset, the fill of the stroke is drawn from this point with minimal extra vertices. - -This means the outer perimeter starts at: - outerIndex = (2) OR (2 + 2 * roundDivOff) -the inner perimeter (since it is filled in reverse) starts at: - innerIndex = outerIndex + (4 * middlePts) + ((4) OR (4 + 2 * roundDivs)) - 1 -the stroke starts at: - strokeIndex = innerIndex + 1 + ((6) OR (6 + 3 * roundDivs - 2 * roundDivOffset)) - -The total needed allocated space is either: - 2 + 4 + 6 + 2 + 3 * (2 * middlePts) = 14 + 6 * middlePts = 2 + 6 * pts -or, for rounded caps: - (2 + 2 * rDO) + (4 + 2 * rD) + (2 * (rD - rDO + 1) - + roundDivs + 4) + (2 + roundDivs) + 3 * (2 * middlePts) - = 14 + 6 * middlePts + 6 * roundDivs - = 2 + 6 * pts + 6 * roundDivs - */ -void getStrokeVerticesFromUnclosedVerticesAA(const PaintInfo& paintInfo, - const std::vector<Vertex>& vertices, - VertexBuffer& vertexBuffer) { - const int extra = paintInfo.capExtraDivisions(); - const int allocSize = 6 * vertices.size() + 2 + 6 * extra; - - AlphaVertex* buffer = vertexBuffer.alloc<AlphaVertex>(allocSize); - - const int extraOffset = (extra + 1) / 2; - int offset = 2 * (vertices.size() - 2); - // there is no outer/inner here, using them for consistency with below approach - int currentAAOuterIndex = 2 + 2 * extraOffset; - int currentAAInnerIndex = currentAAOuterIndex + (2 * offset) + 3 + (2 * extra); - int currentStrokeIndex = currentAAInnerIndex + 7 + (3 * extra - 2 * extraOffset); - - const Vertex* last = &(vertices[0]); - const Vertex* current = &(vertices[1]); - Vector2 lastNormal = {current->y - last->y, last->x - current->x}; - lastNormal.normalize(); - - // TODO: use normal from bezier traversal for cap, instead of from vertices - storeCapAA(paintInfo, vertices, buffer, true, lastNormal, offset); - - for (unsigned int i = 1; i < vertices.size() - 1; i++) { - const Vertex* next = &(vertices[i + 1]); - Vector2 nextNormal = {next->y - current->y, current->x - next->x}; - nextNormal.normalize(); - - Vector2 totalOffset = totalOffsetFromNormals(lastNormal, nextNormal); - Vector2 AAOffset = paintInfo.deriveAAOffset(totalOffset); - - Vector2 innerOffset = totalOffset; - paintInfo.scaleOffsetForStrokeWidth(innerOffset); - Vector2 outerOffset = innerOffset + AAOffset; - innerOffset -= AAOffset; - - AlphaVertex::set(&buffer[currentAAOuterIndex++], current->x + outerOffset.x, - current->y + outerOffset.y, 0.0f); - AlphaVertex::set(&buffer[currentAAOuterIndex++], current->x + innerOffset.x, - current->y + innerOffset.y, paintInfo.maxAlpha); - - AlphaVertex::set(&buffer[currentStrokeIndex++], current->x + innerOffset.x, - current->y + innerOffset.y, paintInfo.maxAlpha); - AlphaVertex::set(&buffer[currentStrokeIndex++], current->x - innerOffset.x, - current->y - innerOffset.y, paintInfo.maxAlpha); - - AlphaVertex::set(&buffer[currentAAInnerIndex--], current->x - innerOffset.x, - current->y - innerOffset.y, paintInfo.maxAlpha); - AlphaVertex::set(&buffer[currentAAInnerIndex--], current->x - outerOffset.x, - current->y - outerOffset.y, 0.0f); - - current = next; - lastNormal = nextNormal; - } - - // TODO: use normal from bezier traversal for cap, instead of from vertices - storeCapAA(paintInfo, vertices, buffer, false, lastNormal, offset); - - DEBUG_DUMP_ALPHA_BUFFER(); -} - -void getStrokeVerticesFromPerimeterAA(const PaintInfo& paintInfo, - const std::vector<Vertex>& perimeter, - VertexBuffer& vertexBuffer) { - AlphaVertex* buffer = vertexBuffer.alloc<AlphaVertex>(6 * perimeter.size() + 8); - - int offset = 2 * perimeter.size() + 3; - int currentAAOuterIndex = 0; - int currentStrokeIndex = offset; - int currentAAInnerIndex = offset * 2; - - const Vertex* last = &(perimeter[perimeter.size() - 1]); - const Vertex* current = &(perimeter[0]); - Vector2 lastNormal = {current->y - last->y, last->x - current->x}; - lastNormal.normalize(); - for (unsigned int i = 0; i < perimeter.size(); i++) { - const Vertex* next = &(perimeter[i + 1 >= perimeter.size() ? 0 : i + 1]); - Vector2 nextNormal = {next->y - current->y, current->x - next->x}; - nextNormal.normalize(); - - Vector2 totalOffset = totalOffsetFromNormals(lastNormal, nextNormal); - Vector2 AAOffset = paintInfo.deriveAAOffset(totalOffset); - - Vector2 innerOffset = totalOffset; - paintInfo.scaleOffsetForStrokeWidth(innerOffset); - Vector2 outerOffset = innerOffset + AAOffset; - innerOffset -= AAOffset; - - AlphaVertex::set(&buffer[currentAAOuterIndex++], current->x + outerOffset.x, - current->y + outerOffset.y, 0.0f); - AlphaVertex::set(&buffer[currentAAOuterIndex++], current->x + innerOffset.x, - current->y + innerOffset.y, paintInfo.maxAlpha); - - AlphaVertex::set(&buffer[currentStrokeIndex++], current->x + innerOffset.x, - current->y + innerOffset.y, paintInfo.maxAlpha); - AlphaVertex::set(&buffer[currentStrokeIndex++], current->x - innerOffset.x, - current->y - innerOffset.y, paintInfo.maxAlpha); - - AlphaVertex::set(&buffer[currentAAInnerIndex++], current->x - innerOffset.x, - current->y - innerOffset.y, paintInfo.maxAlpha); - AlphaVertex::set(&buffer[currentAAInnerIndex++], current->x - outerOffset.x, - current->y - outerOffset.y, 0.0f); - - current = next; - lastNormal = nextNormal; - } - - // wrap each strip around to beginning, creating degenerate tris to bridge strips - buffer[currentAAOuterIndex++] = buffer[0]; - buffer[currentAAOuterIndex++] = buffer[1]; - buffer[currentAAOuterIndex++] = buffer[1]; - - buffer[currentStrokeIndex++] = buffer[offset]; - buffer[currentStrokeIndex++] = buffer[offset + 1]; - buffer[currentStrokeIndex++] = buffer[offset + 1]; - - buffer[currentAAInnerIndex++] = buffer[2 * offset]; - buffer[currentAAInnerIndex++] = buffer[2 * offset + 1]; - // don't need to create last degenerate tri - - DEBUG_DUMP_ALPHA_BUFFER(); -} - -void PathTessellator::tessellatePath(const SkPath& path, const SkPaint* paint, - const mat4& transform, VertexBuffer& vertexBuffer) { - ATRACE_CALL(); - - const PaintInfo paintInfo(paint, transform); - - std::vector<Vertex> tempVertices; - float threshInvScaleX = paintInfo.inverseScaleX; - float threshInvScaleY = paintInfo.inverseScaleY; - if (paintInfo.style == SkPaint::kStroke_Style) { - // alter the bezier recursion threshold values we calculate in order to compensate for - // expansion done after the path vertices are found - SkRect bounds = path.getBounds(); - if (!bounds.isEmpty()) { - threshInvScaleX *= bounds.width() / (bounds.width() + paint->getStrokeWidth()); - threshInvScaleY *= bounds.height() / (bounds.height() + paint->getStrokeWidth()); - } - } - - // force close if we're filling the path, since fill path expects closed perimeter. - bool forceClose = paintInfo.style != SkPaint::kStroke_Style; - PathApproximationInfo approximationInfo(threshInvScaleX, threshInvScaleY, - OUTLINE_REFINE_THRESHOLD); - bool wasClosed = - approximatePathOutlineVertices(path, forceClose, approximationInfo, tempVertices); - - if (!tempVertices.size()) { - // path was empty, return without allocating vertex buffer - return; - } - -#if VERTEX_DEBUG - for (unsigned int i = 0; i < tempVertices.size(); i++) { - ALOGD("orig path: point at %f %f", tempVertices[i].x, tempVertices[i].y); - } -#endif - - if (paintInfo.style == SkPaint::kStroke_Style) { - if (!paintInfo.isAA) { - if (wasClosed) { - getStrokeVerticesFromPerimeter(paintInfo, tempVertices, vertexBuffer); - } else { - getStrokeVerticesFromUnclosedVertices(paintInfo, tempVertices, vertexBuffer); - } - - } else { - if (wasClosed) { - getStrokeVerticesFromPerimeterAA(paintInfo, tempVertices, vertexBuffer); - } else { - getStrokeVerticesFromUnclosedVerticesAA(paintInfo, tempVertices, vertexBuffer); - } - } - } else { - // For kStrokeAndFill style, the path should be adjusted externally. - // It will be treated as a fill here. - if (!paintInfo.isAA) { - getFillVerticesFromPerimeter(tempVertices, vertexBuffer); - } else { - getFillVerticesFromPerimeterAA(paintInfo, tempVertices, vertexBuffer); - } - } - - Rect bounds(path.getBounds()); - paintInfo.expandBoundsForStroke(&bounds); - vertexBuffer.setBounds(bounds); - vertexBuffer.setMeshFeatureFlags(paintInfo.isAA ? VertexBuffer::kAlpha : VertexBuffer::kNone); -} - -template <class TYPE> -static void instanceVertices(VertexBuffer& srcBuffer, VertexBuffer& dstBuffer, const float* points, - int count, Rect& bounds) { - bounds.set(points[0], points[1], points[0], points[1]); - - int numPoints = count / 2; - int verticesPerPoint = srcBuffer.getVertexCount(); - dstBuffer.alloc<TYPE>(numPoints * verticesPerPoint + (numPoints - 1) * 2); - - for (int i = 0; i < count; i += 2) { - bounds.expandToCover(points[i + 0], points[i + 1]); - dstBuffer.copyInto<TYPE>(srcBuffer, points[i + 0], points[i + 1]); - } - dstBuffer.createDegenerateSeparators<TYPE>(verticesPerPoint); -} - -void PathTessellator::tessellatePoints(const float* points, int count, const SkPaint* paint, - const mat4& transform, VertexBuffer& vertexBuffer) { - const PaintInfo paintInfo(paint, transform); - - // determine point shape - SkPath path; - float radius = paintInfo.halfStrokeWidth; - if (radius == 0.0f) radius = 0.5f; - - if (paintInfo.cap == SkPaint::kRound_Cap) { - path.addCircle(0, 0, radius); - } else { - path.addRect(-radius, -radius, radius, radius); - } - - // calculate outline - std::vector<Vertex> outlineVertices; - PathApproximationInfo approximationInfo(paintInfo.inverseScaleX, paintInfo.inverseScaleY, - OUTLINE_REFINE_THRESHOLD); - approximatePathOutlineVertices(path, true, approximationInfo, outlineVertices); - - if (!outlineVertices.size()) return; - - Rect bounds; - // tessellate, then duplicate outline across points - VertexBuffer tempBuffer; - if (!paintInfo.isAA) { - getFillVerticesFromPerimeter(outlineVertices, tempBuffer); - instanceVertices<Vertex>(tempBuffer, vertexBuffer, points, count, bounds); - } else { - // note: pass maxAlpha directly, since we want fill to be alpha modulated - getFillVerticesFromPerimeterAA(paintInfo, outlineVertices, tempBuffer, paintInfo.maxAlpha); - instanceVertices<AlphaVertex>(tempBuffer, vertexBuffer, points, count, bounds); - } - - // expand bounds from vertex coords to pixel data - paintInfo.expandBoundsForStroke(&bounds); - vertexBuffer.setBounds(bounds); - vertexBuffer.setMeshFeatureFlags(paintInfo.isAA ? VertexBuffer::kAlpha : VertexBuffer::kNone); -} - -void PathTessellator::tessellateLines(const float* points, int count, const SkPaint* paint, - const mat4& transform, VertexBuffer& vertexBuffer) { - ATRACE_CALL(); - const PaintInfo paintInfo(paint, transform); - - const int extra = paintInfo.capExtraDivisions(); - int numLines = count / 4; - int lineAllocSize; - // pre-allocate space for lines in the buffer, and degenerate tris in between - if (paintInfo.isAA) { - lineAllocSize = 6 * (2) + 2 + 6 * extra; - vertexBuffer.alloc<AlphaVertex>(numLines * lineAllocSize + (numLines - 1) * 2); - } else { - lineAllocSize = 2 * ((2) + extra); - vertexBuffer.alloc<Vertex>(numLines * lineAllocSize + (numLines - 1) * 2); - } - - std::vector<Vertex> tempVertices(2); - Vertex* tempVerticesData = &tempVertices.front(); - Rect bounds; - bounds.set(points[0], points[1], points[0], points[1]); - for (int i = 0; i < count; i += 4) { - Vertex::set(&(tempVerticesData[0]), points[i + 0], points[i + 1]); - Vertex::set(&(tempVerticesData[1]), points[i + 2], points[i + 3]); - - if (paintInfo.isAA) { - getStrokeVerticesFromUnclosedVerticesAA(paintInfo, tempVertices, vertexBuffer); - } else { - getStrokeVerticesFromUnclosedVertices(paintInfo, tempVertices, vertexBuffer); - } - - // calculate bounds - bounds.expandToCover(tempVerticesData[0].x, tempVerticesData[0].y); - bounds.expandToCover(tempVerticesData[1].x, tempVerticesData[1].y); - } - - // since multiple objects tessellated into buffer, separate them with degen tris - if (paintInfo.isAA) { - vertexBuffer.createDegenerateSeparators<AlphaVertex>(lineAllocSize); - } else { - vertexBuffer.createDegenerateSeparators<Vertex>(lineAllocSize); - } - - // expand bounds from vertex coords to pixel data - paintInfo.expandBoundsForStroke(&bounds); - vertexBuffer.setBounds(bounds); - vertexBuffer.setMeshFeatureFlags(paintInfo.isAA ? VertexBuffer::kAlpha : VertexBuffer::kNone); -} - -/////////////////////////////////////////////////////////////////////////////// -// Simple path line approximation -/////////////////////////////////////////////////////////////////////////////// - -bool PathTessellator::approximatePathOutlineVertices(const SkPath& path, float threshold, - std::vector<Vertex>& outputVertices) { - PathApproximationInfo approximationInfo(1.0f, 1.0f, threshold); - return approximatePathOutlineVertices(path, true, approximationInfo, outputVertices); -} - -class ClockwiseEnforcer { -public: - void addPoint(const SkPoint& point) { - double x = point.x(); - double y = point.y(); - - if (initialized) { - sum += (x + lastX) * (y - lastY); - } else { - initialized = true; - } - - lastX = x; - lastY = y; - } - void reverseVectorIfNotClockwise(std::vector<Vertex>& vertices) { - if (sum < 0) { - // negative sum implies CounterClockwise - const int size = vertices.size(); - for (int i = 0; i < size / 2; i++) { - Vertex tmp = vertices[i]; - int k = size - 1 - i; - vertices[i] = vertices[k]; - vertices[k] = tmp; - } - } - } - -private: - bool initialized = false; - double lastX = 0; - double lastY = 0; - double sum = 0; -}; - -bool PathTessellator::approximatePathOutlineVertices(const SkPath& path, bool forceClose, - const PathApproximationInfo& approximationInfo, - std::vector<Vertex>& outputVertices) { - ATRACE_CALL(); - - // TODO: to support joins other than sharp miter, join vertices should be labelled in the - // perimeter, or resolved into more vertices. Reconsider forceClose-ing in that case. - SkPath::Iter iter(path, forceClose); - SkPoint pts[4]; - SkPath::Verb v; - ClockwiseEnforcer clockwiseEnforcer; - while (SkPath::kDone_Verb != (v = iter.next(pts))) { - switch (v) { - case SkPath::kMove_Verb: - outputVertices.push_back(Vertex{pts[0].x(), pts[0].y()}); - ALOGV("Move to pos %f %f", pts[0].x(), pts[0].y()); - clockwiseEnforcer.addPoint(pts[0]); - break; - case SkPath::kClose_Verb: - ALOGV("Close at pos %f %f", pts[0].x(), pts[0].y()); - clockwiseEnforcer.addPoint(pts[0]); - break; - case SkPath::kLine_Verb: - ALOGV("kLine_Verb %f %f -> %f %f", pts[0].x(), pts[0].y(), pts[1].x(), pts[1].y()); - outputVertices.push_back(Vertex{pts[1].x(), pts[1].y()}); - clockwiseEnforcer.addPoint(pts[1]); - break; - case SkPath::kQuad_Verb: - ALOGV("kQuad_Verb"); - recursiveQuadraticBezierVertices(pts[0].x(), pts[0].y(), pts[2].x(), pts[2].y(), - pts[1].x(), pts[1].y(), approximationInfo, - outputVertices); - clockwiseEnforcer.addPoint(pts[1]); - clockwiseEnforcer.addPoint(pts[2]); - break; - case SkPath::kCubic_Verb: - ALOGV("kCubic_Verb"); - recursiveCubicBezierVertices(pts[0].x(), pts[0].y(), pts[1].x(), pts[1].y(), - pts[3].x(), pts[3].y(), pts[2].x(), pts[2].y(), - approximationInfo, outputVertices); - clockwiseEnforcer.addPoint(pts[1]); - clockwiseEnforcer.addPoint(pts[2]); - clockwiseEnforcer.addPoint(pts[3]); - break; - case SkPath::kConic_Verb: { - ALOGV("kConic_Verb"); - SkAutoConicToQuads converter; - const SkPoint* quads = converter.computeQuads( - pts, iter.conicWeight(), approximationInfo.thresholdForConicQuads); - for (int i = 0; i < converter.countQuads(); ++i) { - const int offset = 2 * i; - recursiveQuadraticBezierVertices(quads[offset].x(), quads[offset].y(), - quads[offset + 2].x(), quads[offset + 2].y(), - quads[offset + 1].x(), quads[offset + 1].y(), - approximationInfo, outputVertices); - } - clockwiseEnforcer.addPoint(pts[1]); - clockwiseEnforcer.addPoint(pts[2]); - break; - } - default: - static_assert(SkPath::kMove_Verb == 0 && SkPath::kLine_Verb == 1 && - SkPath::kQuad_Verb == 2 && SkPath::kConic_Verb == 3 && - SkPath::kCubic_Verb == 4 && SkPath::kClose_Verb == 5 && - SkPath::kDone_Verb == 6, - "Path enum changed, new types may have been added"); - break; - } - } - - bool wasClosed = false; - int size = outputVertices.size(); - if (size >= 2 && outputVertices[0].x == outputVertices[size - 1].x && - outputVertices[0].y == outputVertices[size - 1].y) { - outputVertices.pop_back(); - wasClosed = true; - } - - // ensure output vector is clockwise - clockwiseEnforcer.reverseVectorIfNotClockwise(outputVertices); - return wasClosed; -} - -/////////////////////////////////////////////////////////////////////////////// -// Bezier approximation -// -// All the inputs and outputs here are in path coordinates. -// We convert the error threshold from screen coordinates into path coordinates. -/////////////////////////////////////////////////////////////////////////////// - -// Get a threshold in path coordinates, by scaling the thresholdSquared from screen coordinates. -// TODO: Document the math behind this algorithm. -static inline float getThreshold(const PathApproximationInfo& info, float dx, float dy) { - // multiplying by sqrInvScaleY/X equivalent to multiplying in dimensional scale factors - float scale = (dx * dx * info.sqrInvScaleY + dy * dy * info.sqrInvScaleX); - return info.thresholdSquared * scale; -} - -void PathTessellator::recursiveCubicBezierVertices(float p1x, float p1y, float c1x, float c1y, - float p2x, float p2y, float c2x, float c2y, - const PathApproximationInfo& approximationInfo, - std::vector<Vertex>& outputVertices, int depth) { - float dx = p2x - p1x; - float dy = p2y - p1y; - float d1 = fabs((c1x - p2x) * dy - (c1y - p2y) * dx); - float d2 = fabs((c2x - p2x) * dy - (c2y - p2y) * dx); - float d = d1 + d2; - - if (depth >= MAX_DEPTH || d * d <= getThreshold(approximationInfo, dx, dy)) { - // below thresh, draw line by adding endpoint - outputVertices.push_back(Vertex{p2x, p2y}); - } else { - float p1c1x = (p1x + c1x) * 0.5f; - float p1c1y = (p1y + c1y) * 0.5f; - float p2c2x = (p2x + c2x) * 0.5f; - float p2c2y = (p2y + c2y) * 0.5f; - - float c1c2x = (c1x + c2x) * 0.5f; - float c1c2y = (c1y + c2y) * 0.5f; - - float p1c1c2x = (p1c1x + c1c2x) * 0.5f; - float p1c1c2y = (p1c1y + c1c2y) * 0.5f; - - float p2c1c2x = (p2c2x + c1c2x) * 0.5f; - float p2c1c2y = (p2c2y + c1c2y) * 0.5f; - - float mx = (p1c1c2x + p2c1c2x) * 0.5f; - float my = (p1c1c2y + p2c1c2y) * 0.5f; - - recursiveCubicBezierVertices(p1x, p1y, p1c1x, p1c1y, mx, my, p1c1c2x, p1c1c2y, - approximationInfo, outputVertices, depth + 1); - recursiveCubicBezierVertices(mx, my, p2c1c2x, p2c1c2y, p2x, p2y, p2c2x, p2c2y, - approximationInfo, outputVertices, depth + 1); - } -} - -void PathTessellator::recursiveQuadraticBezierVertices( - float ax, float ay, float bx, float by, float cx, float cy, - const PathApproximationInfo& approximationInfo, std::vector<Vertex>& outputVertices, - int depth) { - float dx = bx - ax; - float dy = by - ay; - // d is the cross product of vector (B-A) and (C-B). - float d = (cx - bx) * dy - (cy - by) * dx; - - if (depth >= MAX_DEPTH || d * d <= getThreshold(approximationInfo, dx, dy)) { - // below thresh, draw line by adding endpoint - outputVertices.push_back(Vertex{bx, by}); - } else { - float acx = (ax + cx) * 0.5f; - float bcx = (bx + cx) * 0.5f; - float acy = (ay + cy) * 0.5f; - float bcy = (by + cy) * 0.5f; - - // midpoint - float mx = (acx + bcx) * 0.5f; - float my = (acy + bcy) * 0.5f; - - recursiveQuadraticBezierVertices(ax, ay, mx, my, acx, acy, approximationInfo, - outputVertices, depth + 1); - recursiveQuadraticBezierVertices(mx, my, bx, by, bcx, bcy, approximationInfo, - outputVertices, depth + 1); - } -} - -}; // namespace uirenderer -}; // namespace android |