/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ //#define LOG_NDEBUG 0 #define LOG_TAG "HevcUtils" #include #include #include "include/HevcUtils.h" #include #include #include #include #include #include #include namespace android { static const uint8_t kHevcNalUnitTypes[5] = { kHevcNalUnitTypeVps, kHevcNalUnitTypeSps, kHevcNalUnitTypePps, kHevcNalUnitTypePrefixSei, kHevcNalUnitTypeSuffixSei, }; HevcParameterSets::HevcParameterSets() : mInfo(kInfoNone) { } status_t HevcParameterSets::addNalUnit(const uint8_t* data, size_t size) { if (size < 1) { ALOGE("empty NAL b/35467107"); return ERROR_MALFORMED; } uint8_t nalUnitType = (data[0] >> 1) & 0x3f; status_t err = OK; switch (nalUnitType) { case 32: // VPS if (size < 2) { ALOGE("invalid NAL/VPS size b/35467107"); return ERROR_MALFORMED; } err = parseVps(data + 2, size - 2); break; case 33: // SPS if (size < 2) { ALOGE("invalid NAL/SPS size b/35467107"); return ERROR_MALFORMED; } err = parseSps(data + 2, size - 2); break; case 34: // PPS if (size < 2) { ALOGE("invalid NAL/PPS size b/35467107"); return ERROR_MALFORMED; } err = parsePps(data + 2, size - 2); break; case 39: // Prefix SEI case 40: // Suffix SEI // Ignore break; default: ALOGE("Unrecognized NAL unit type."); return ERROR_MALFORMED; } if (err != OK) { ALOGE("error parsing VPS or SPS or PPS"); return err; } sp buffer = ABuffer::CreateAsCopy(data, size); buffer->setInt32Data(nalUnitType); mNalUnits.push(buffer); return OK; } template static bool findParam(uint32_t key, T *param, KeyedVector ¶ms) { CHECK(param); if (params.indexOfKey(key) < 0) { return false; } *param = (T) params[key]; return true; } bool HevcParameterSets::findParam8(uint32_t key, uint8_t *param) { return findParam(key, param, mParams); } bool HevcParameterSets::findParam16(uint32_t key, uint16_t *param) { return findParam(key, param, mParams); } bool HevcParameterSets::findParam32(uint32_t key, uint32_t *param) { return findParam(key, param, mParams); } bool HevcParameterSets::findParam64(uint32_t key, uint64_t *param) { return findParam(key, param, mParams); } size_t HevcParameterSets::getNumNalUnitsOfType(uint8_t type) { size_t num = 0; for (size_t i = 0; i < mNalUnits.size(); ++i) { if (getType(i) == type) { ++num; } } return num; } uint8_t HevcParameterSets::getType(size_t index) { CHECK_LT(index, mNalUnits.size()); return mNalUnits[index]->int32Data(); } size_t HevcParameterSets::getSize(size_t index) { CHECK_LT(index, mNalUnits.size()); return mNalUnits[index]->size(); } bool HevcParameterSets::write(size_t index, uint8_t* dest, size_t size) { CHECK_LT(index, mNalUnits.size()); const sp& nalUnit = mNalUnits[index]; if (size < nalUnit->size()) { ALOGE("dest buffer size too small: %zu vs. %zu to be written", size, nalUnit->size()); return false; } memcpy(dest, nalUnit->data(), nalUnit->size()); return true; } status_t HevcParameterSets::parseVps(const uint8_t* data, size_t size) { // See Rec. ITU-T H.265 v3 (04/2015) Chapter 7.3.2.1 for reference NALBitReader reader(data, size); // Skip vps_video_parameter_set_id reader.skipBits(4); // Skip vps_base_layer_internal_flag reader.skipBits(1); // Skip vps_base_layer_available_flag reader.skipBits(1); // Skip vps_max_layers_minus_1 reader.skipBits(6); // Skip vps_max_sub_layers_minus1 reader.skipBits(3); // Skip vps_temporal_id_nesting_flags reader.skipBits(1); // Skip reserved reader.skipBits(16); if (reader.atLeastNumBitsLeft(96)) { mParams.add(kGeneralProfileSpace, reader.getBits(2)); mParams.add(kGeneralTierFlag, reader.getBits(1)); mParams.add(kGeneralProfileIdc, reader.getBits(5)); mParams.add(kGeneralProfileCompatibilityFlags, reader.getBits(32)); mParams.add( kGeneralConstraintIndicatorFlags, ((uint64_t)reader.getBits(16) << 32) | reader.getBits(32)); mParams.add(kGeneralLevelIdc, reader.getBits(8)); // 96 bits total for general profile. } else { reader.skipBits(96); } return reader.overRead() ? ERROR_MALFORMED : OK; } status_t HevcParameterSets::parseSps(const uint8_t* data, size_t size) { // See Rec. ITU-T H.265 v3 (04/2015) Chapter 7.3.2.2 for reference NALBitReader reader(data, size); // Skip sps_video_parameter_set_id reader.skipBits(4); uint8_t maxSubLayersMinus1 = reader.getBitsWithFallback(3, 0); // Skip sps_temporal_id_nesting_flag; reader.skipBits(1); // Skip general profile reader.skipBits(96); if (maxSubLayersMinus1 > 0) { bool subLayerProfilePresentFlag[8]; bool subLayerLevelPresentFlag[8]; for (int i = 0; i < maxSubLayersMinus1; ++i) { subLayerProfilePresentFlag[i] = reader.getBitsWithFallback(1, 0); subLayerLevelPresentFlag[i] = reader.getBitsWithFallback(1, 0); } // Skip reserved reader.skipBits(2 * (8 - maxSubLayersMinus1)); for (int i = 0; i < maxSubLayersMinus1; ++i) { if (subLayerProfilePresentFlag[i]) { // Skip profile reader.skipBits(88); } if (subLayerLevelPresentFlag[i]) { // Skip sub_layer_level_idc[i] reader.skipBits(8); } } } // Skip sps_seq_parameter_set_id skipUE(&reader); uint8_t chromaFormatIdc = parseUEWithFallback(&reader, 0); mParams.add(kChromaFormatIdc, chromaFormatIdc); if (chromaFormatIdc == 3) { // Skip separate_colour_plane_flag reader.skipBits(1); } // Skip pic_width_in_luma_samples skipUE(&reader); // Skip pic_height_in_luma_samples skipUE(&reader); if (reader.getBitsWithFallback(1, 0) /* i.e. conformance_window_flag */) { // Skip conf_win_left_offset skipUE(&reader); // Skip conf_win_right_offset skipUE(&reader); // Skip conf_win_top_offset skipUE(&reader); // Skip conf_win_bottom_offset skipUE(&reader); } mParams.add(kBitDepthLumaMinus8, parseUEWithFallback(&reader, 0)); mParams.add(kBitDepthChromaMinus8, parseUEWithFallback(&reader, 0)); // log2_max_pic_order_cnt_lsb_minus4 size_t log2MaxPicOrderCntLsb = parseUEWithFallback(&reader, 0) + (size_t)4; bool spsSubLayerOrderingInfoPresentFlag = reader.getBitsWithFallback(1, 0); for (uint32_t i = spsSubLayerOrderingInfoPresentFlag ? 0 : maxSubLayersMinus1; i <= maxSubLayersMinus1; ++i) { skipUE(&reader); // sps_max_dec_pic_buffering_minus1[i] skipUE(&reader); // sps_max_num_reorder_pics[i] skipUE(&reader); // sps_max_latency_increase_plus1[i] } skipUE(&reader); // log2_min_luma_coding_block_size_minus3 skipUE(&reader); // log2_diff_max_min_luma_coding_block_size skipUE(&reader); // log2_min_luma_transform_block_size_minus2 skipUE(&reader); // log2_diff_max_min_luma_transform_block_size skipUE(&reader); // max_transform_hierarchy_depth_inter skipUE(&reader); // max_transform_hierarchy_depth_intra if (reader.getBitsWithFallback(1, 0)) { // scaling_list_enabled_flag u(1) // scaling_list_data if (reader.getBitsWithFallback(1, 0)) { // sps_scaling_list_data_present_flag for (uint32_t sizeId = 0; sizeId < 4; ++sizeId) { for (uint32_t matrixId = 0; matrixId < 6; matrixId += (sizeId == 3) ? 3 : 1) { if (!reader.getBitsWithFallback(1, 1)) { // scaling_list_pred_mode_flag[sizeId][matrixId] skipUE(&reader); // scaling_list_pred_matrix_id_delta[sizeId][matrixId] } else { uint32_t coefNum = std::min(64, (1 << (4 + (sizeId << 1)))); if (sizeId > 1) { skipSE(&reader); // scaling_list_dc_coef_minus8[sizeId − 2][matrixId] } for (uint32_t i = 0; i < coefNum; ++i) { skipSE(&reader); // scaling_list_delta_coef } } } } } } reader.skipBits(1); // amp_enabled_flag reader.skipBits(1); // sample_adaptive_offset_enabled_flag u(1) if (reader.getBitsWithFallback(1, 0)) { // pcm_enabled_flag reader.skipBits(4); // pcm_sample_bit_depth_luma_minus1 reader.skipBits(4); // pcm_sample_bit_depth_chroma_minus1 u(4) skipUE(&reader); // log2_min_pcm_luma_coding_block_size_minus3 skipUE(&reader); // log2_diff_max_min_pcm_luma_coding_block_size reader.skipBits(1); // pcm_loop_filter_disabled_flag } uint32_t numShortTermRefPicSets = parseUEWithFallback(&reader, 0); uint32_t numPics = 0; for (uint32_t i = 0; i < numShortTermRefPicSets; ++i) { // st_ref_pic_set(i) if (i != 0 && reader.getBitsWithFallback(1, 0)) { // inter_ref_pic_set_prediction_flag reader.skipBits(1); // delta_rps_sign skipUE(&reader); // abs_delta_rps_minus1 uint32_t nextNumPics = 0; for (uint32_t j = 0; j <= numPics; ++j) { if (reader.getBitsWithFallback(1, 0) // used_by_curr_pic_flag[j] || reader.getBitsWithFallback(1, 0)) { // use_delta_flag[j] ++nextNumPics; } } numPics = nextNumPics; } else { uint32_t numNegativePics = parseUEWithFallback(&reader, 0); uint32_t numPositivePics = parseUEWithFallback(&reader, 0); if (numNegativePics > UINT32_MAX - numPositivePics) { return ERROR_MALFORMED; } numPics = numNegativePics + numPositivePics; for (uint32_t j = 0; j < numPics; ++j) { skipUE(&reader); // delta_poc_s0|1_minus1[i] reader.skipBits(1); // used_by_curr_pic_s0|1_flag[i] if (reader.overRead()) { return ERROR_MALFORMED; } } } if (reader.overRead()) { return ERROR_MALFORMED; } } if (reader.getBitsWithFallback(1, 0)) { // long_term_ref_pics_present_flag uint32_t numLongTermRefPicSps = parseUEWithFallback(&reader, 0); for (uint32_t i = 0; i < numLongTermRefPicSps; ++i) { reader.skipBits(log2MaxPicOrderCntLsb); // lt_ref_pic_poc_lsb_sps[i] reader.skipBits(1); // used_by_curr_pic_lt_sps_flag[i] if (reader.overRead()) { return ERROR_MALFORMED; } } } reader.skipBits(1); // sps_temporal_mvp_enabled_flag reader.skipBits(1); // strong_intra_smoothing_enabled_flag if (reader.getBitsWithFallback(1, 0)) { // vui_parameters_present_flag if (reader.getBitsWithFallback(1, 0)) { // aspect_ratio_info_present_flag uint32_t aspectRatioIdc = reader.getBitsWithFallback(8, 0); if (aspectRatioIdc == 0xFF /* EXTENDED_SAR */) { reader.skipBits(16); // sar_width reader.skipBits(16); // sar_height } } if (reader.getBitsWithFallback(1, 0)) { // overscan_info_present_flag reader.skipBits(1); // overscan_appropriate_flag } if (reader.getBitsWithFallback(1, 0)) { // video_signal_type_present_flag reader.skipBits(3); // video_format uint32_t videoFullRangeFlag; if (reader.getBitsGraceful(1, &videoFullRangeFlag)) { mParams.add(kVideoFullRangeFlag, videoFullRangeFlag); } if (reader.getBitsWithFallback(1, 0)) { // colour_description_present_flag mInfo = (Info)(mInfo | kInfoHasColorDescription); uint32_t colourPrimaries, transferCharacteristics, matrixCoeffs; if (reader.getBitsGraceful(8, &colourPrimaries)) { mParams.add(kColourPrimaries, colourPrimaries); } if (reader.getBitsGraceful(8, &transferCharacteristics)) { mParams.add(kTransferCharacteristics, transferCharacteristics); if (transferCharacteristics == 16 /* ST 2084 */ || transferCharacteristics == 18 /* ARIB STD-B67 HLG */) { mInfo = (Info)(mInfo | kInfoIsHdr); } } if (reader.getBitsGraceful(8, &matrixCoeffs)) { mParams.add(kMatrixCoeffs, matrixCoeffs); } } // skip rest of VUI } } return reader.overRead() ? ERROR_MALFORMED : OK; } status_t HevcParameterSets::parsePps( const uint8_t* data __unused, size_t size __unused) { return OK; } status_t HevcParameterSets::makeHvcc(uint8_t *hvcc, size_t *hvccSize, size_t nalSizeLength) { if (hvcc == NULL || hvccSize == NULL || (nalSizeLength != 4 && nalSizeLength != 2)) { return BAD_VALUE; } // ISO 14496-15: HEVC file format size_t size = 23; // 23 bytes in the header size_t numOfArrays = 0; const size_t numNalUnits = getNumNalUnits(); for (size_t i = 0; i < ARRAY_SIZE(kHevcNalUnitTypes); ++i) { uint8_t type = kHevcNalUnitTypes[i]; size_t numNalus = getNumNalUnitsOfType(type); if (numNalus == 0) { continue; } ++numOfArrays; size += 3; for (size_t j = 0; j < numNalUnits; ++j) { if (getType(j) != type) { continue; } size += 2 + getSize(j); } } uint8_t generalProfileSpace, generalTierFlag, generalProfileIdc; if (!findParam8(kGeneralProfileSpace, &generalProfileSpace) || !findParam8(kGeneralTierFlag, &generalTierFlag) || !findParam8(kGeneralProfileIdc, &generalProfileIdc)) { return ERROR_MALFORMED; } uint32_t compatibilityFlags; uint64_t constraintIdcFlags; if (!findParam32(kGeneralProfileCompatibilityFlags, &compatibilityFlags) || !findParam64(kGeneralConstraintIndicatorFlags, &constraintIdcFlags)) { return ERROR_MALFORMED; } uint8_t generalLevelIdc; if (!findParam8(kGeneralLevelIdc, &generalLevelIdc)) { return ERROR_MALFORMED; } uint8_t chromaFormatIdc, bitDepthLumaMinus8, bitDepthChromaMinus8; if (!findParam8(kChromaFormatIdc, &chromaFormatIdc) || !findParam8(kBitDepthLumaMinus8, &bitDepthLumaMinus8) || !findParam8(kBitDepthChromaMinus8, &bitDepthChromaMinus8)) { return ERROR_MALFORMED; } if (size > *hvccSize) { return NO_MEMORY; } *hvccSize = size; uint8_t *header = hvcc; header[0] = 1; header[1] = (generalProfileSpace << 6) | (generalTierFlag << 5) | generalProfileIdc; header[2] = (compatibilityFlags >> 24) & 0xff; header[3] = (compatibilityFlags >> 16) & 0xff; header[4] = (compatibilityFlags >> 8) & 0xff; header[5] = compatibilityFlags & 0xff; header[6] = (constraintIdcFlags >> 40) & 0xff; header[7] = (constraintIdcFlags >> 32) & 0xff; header[8] = (constraintIdcFlags >> 24) & 0xff; header[9] = (constraintIdcFlags >> 16) & 0xff; header[10] = (constraintIdcFlags >> 8) & 0xff; header[11] = constraintIdcFlags & 0xff; header[12] = generalLevelIdc; // FIXME: parse min_spatial_segmentation_idc. header[13] = 0xf0; header[14] = 0; // FIXME: derive parallelismType properly. header[15] = 0xfc; header[16] = 0xfc | chromaFormatIdc; header[17] = 0xf8 | bitDepthLumaMinus8; header[18] = 0xf8 | bitDepthChromaMinus8; // FIXME: derive avgFrameRate header[19] = 0; header[20] = 0; // constantFrameRate, numTemporalLayers, temporalIdNested all set to 0. header[21] = nalSizeLength - 1; header[22] = numOfArrays; header += 23; for (size_t i = 0; i < ARRAY_SIZE(kHevcNalUnitTypes); ++i) { uint8_t type = kHevcNalUnitTypes[i]; size_t numNalus = getNumNalUnitsOfType(type); if (numNalus == 0) { continue; } // array_completeness set to 1. header[0] = type | 0x80; header[1] = (numNalus >> 8) & 0xff; header[2] = numNalus & 0xff; header += 3; for (size_t j = 0; j < numNalUnits; ++j) { if (getType(j) != type) { continue; } header[0] = (getSize(j) >> 8) & 0xff; header[1] = getSize(j) & 0xff; if (!write(j, header + 2, size - (header - (uint8_t *)hvcc))) { return NO_MEMORY; } header += (2 + getSize(j)); } } CHECK_EQ(header - size, hvcc); return OK; } } // namespace android