/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include //#define LOG_NDEBUG 0 #define LOG_TAG "AudioSource" #include #include #include #include #include #include #include #include #include namespace android { static void AudioRecordCallbackFunction(int event, void *user, void *info) { AudioSource *source = (AudioSource *) user; switch (event) { case AudioRecord::EVENT_MORE_DATA: { source->dataCallback(*((AudioRecord::Buffer *) info)); break; } case AudioRecord::EVENT_OVERRUN: { ALOGW("AudioRecord reported overrun!"); break; } default: // does nothing break; } } AudioSource::AudioSource( const audio_attributes_t *attr, const String16 &opPackageName, uint32_t sampleRate, uint32_t channelCount, uint32_t outSampleRate, uid_t uid, pid_t pid, audio_port_handle_t selectedDeviceId, audio_microphone_direction_t selectedMicDirection, float selectedMicFieldDimension) : mStarted(false), mSampleRate(sampleRate), mOutSampleRate(outSampleRate > 0 ? outSampleRate : sampleRate), mTrackMaxAmplitude(false), mStartTimeUs(0), mStopSystemTimeUs(-1), mLastFrameTimestampUs(0), mMaxAmplitude(0), mPrevSampleTimeUs(0), mInitialReadTimeUs(0), mNumFramesReceived(0), mNumFramesSkipped(0), mNumFramesLost(0), mNumClientOwnedBuffers(0), mNoMoreFramesToRead(false) { ALOGV("sampleRate: %u, outSampleRate: %u, channelCount: %u", sampleRate, outSampleRate, channelCount); CHECK(channelCount == 1 || channelCount == 2); CHECK(sampleRate > 0); size_t minFrameCount; status_t status = AudioRecord::getMinFrameCount(&minFrameCount, sampleRate, AUDIO_FORMAT_PCM_16_BIT, audio_channel_in_mask_from_count(channelCount)); if (status == OK) { // make sure that the AudioRecord callback never returns more than the maximum // buffer size uint32_t frameCount = kMaxBufferSize / sizeof(int16_t) / channelCount; // make sure that the AudioRecord total buffer size is large enough size_t bufCount = 2; while ((bufCount * frameCount) < minFrameCount) { bufCount++; } mRecord = new AudioRecord( AUDIO_SOURCE_DEFAULT, sampleRate, AUDIO_FORMAT_PCM_16_BIT, audio_channel_in_mask_from_count(channelCount), opPackageName, (size_t) (bufCount * frameCount), AudioRecordCallbackFunction, this, frameCount /*notificationFrames*/, AUDIO_SESSION_ALLOCATE, AudioRecord::TRANSFER_DEFAULT, AUDIO_INPUT_FLAG_NONE, uid, pid, attr, selectedDeviceId, selectedMicDirection, selectedMicFieldDimension); // Set caller name so it can be logged in destructor. // MediaMetricsConstants.h: AMEDIAMETRICS_PROP_CALLERNAME_VALUE_MEDIA mRecord->setCallerName("media"); mInitCheck = mRecord->initCheck(); if (mInitCheck != OK) { mRecord.clear(); } } else { mInitCheck = status; } } AudioSource::~AudioSource() { if (mStarted) { reset(); } } status_t AudioSource::initCheck() const { return mInitCheck; } status_t AudioSource::start(MetaData *params) { Mutex::Autolock autoLock(mLock); if (mStarted) { return UNKNOWN_ERROR; } if (mInitCheck != OK) { return NO_INIT; } mTrackMaxAmplitude = false; mMaxAmplitude = 0; mInitialReadTimeUs = 0; mStartTimeUs = 0; int64_t startTimeUs; if (params && params->findInt64(kKeyTime, &startTimeUs)) { mStartTimeUs = startTimeUs; } status_t err = mRecord->start(); if (err == OK) { mStarted = true; } else { mRecord.clear(); } return err; } void AudioSource::releaseQueuedFrames_l() { ALOGV("releaseQueuedFrames_l"); List::iterator it; while (!mBuffersReceived.empty()) { it = mBuffersReceived.begin(); (*it)->release(); mBuffersReceived.erase(it); } } void AudioSource::waitOutstandingEncodingFrames_l() { ALOGV("waitOutstandingEncodingFrames_l: %" PRId64, mNumClientOwnedBuffers); while (mNumClientOwnedBuffers > 0) { mFrameEncodingCompletionCondition.wait(mLock); } } status_t AudioSource::reset() { Mutex::Autolock autoLock(mLock); if (!mStarted) { return UNKNOWN_ERROR; } if (mInitCheck != OK) { return NO_INIT; } mStarted = false; mStopSystemTimeUs = -1; mNoMoreFramesToRead = false; mFrameAvailableCondition.signal(); mRecord->stop(); waitOutstandingEncodingFrames_l(); releaseQueuedFrames_l(); return OK; } sp AudioSource::getFormat() { Mutex::Autolock autoLock(mLock); if (mInitCheck != OK) { return 0; } sp meta = new MetaData; meta->setCString(kKeyMIMEType, MEDIA_MIMETYPE_AUDIO_RAW); meta->setInt32(kKeySampleRate, mSampleRate); meta->setInt32(kKeyChannelCount, mRecord->channelCount()); meta->setInt32(kKeyMaxInputSize, kMaxBufferSize); meta->setInt32(kKeyPcmEncoding, kAudioEncodingPcm16bit); return meta; } void AudioSource::rampVolume( int32_t startFrame, int32_t rampDurationFrames, uint8_t *data, size_t bytes) { const int32_t kShift = 14; int32_t fixedMultiplier = (startFrame << kShift) / rampDurationFrames; const int32_t nChannels = mRecord->channelCount(); int32_t stopFrame = startFrame + bytes / sizeof(int16_t); int16_t *frame = (int16_t *) data; if (stopFrame > rampDurationFrames) { stopFrame = rampDurationFrames; } while (startFrame < stopFrame) { if (nChannels == 1) { // mono frame[0] = (frame[0] * fixedMultiplier) >> kShift; ++frame; ++startFrame; } else { // stereo frame[0] = (frame[0] * fixedMultiplier) >> kShift; frame[1] = (frame[1] * fixedMultiplier) >> kShift; frame += 2; startFrame += 2; } // Update the multiplier every 4 frames if ((startFrame & 3) == 0) { fixedMultiplier = (startFrame << kShift) / rampDurationFrames; } } } status_t AudioSource::read( MediaBufferBase **out, const ReadOptions * /* options */) { Mutex::Autolock autoLock(mLock); *out = NULL; if (mInitCheck != OK) { return NO_INIT; } while (mStarted && mBuffersReceived.empty()) { mFrameAvailableCondition.wait(mLock); if (mNoMoreFramesToRead) { return OK; } } if (!mStarted) { return OK; } MediaBuffer *buffer = *mBuffersReceived.begin(); mBuffersReceived.erase(mBuffersReceived.begin()); ++mNumClientOwnedBuffers; buffer->setObserver(this); buffer->add_ref(); // Mute/suppress the recording sound int64_t timeUs; CHECK(buffer->meta_data().findInt64(kKeyTime, &timeUs)); int64_t elapsedTimeUs = timeUs - mStartTimeUs; if (elapsedTimeUs < kAutoRampStartUs) { memset((uint8_t *) buffer->data(), 0, buffer->range_length()); } else if (elapsedTimeUs < kAutoRampStartUs + kAutoRampDurationUs) { int32_t autoRampDurationFrames = ((int64_t)kAutoRampDurationUs * mSampleRate + 500000LL) / 1000000LL; //Need type casting int32_t autoRampStartFrames = ((int64_t)kAutoRampStartUs * mSampleRate + 500000LL) / 1000000LL; //Need type casting int32_t nFrames = mNumFramesReceived - autoRampStartFrames; rampVolume(nFrames, autoRampDurationFrames, (uint8_t *) buffer->data(), buffer->range_length()); } // Track the max recording signal amplitude. if (mTrackMaxAmplitude) { trackMaxAmplitude( (int16_t *) buffer->data(), buffer->range_length() >> 1); } if (mSampleRate != mOutSampleRate) { timeUs *= (int64_t)mSampleRate / (int64_t)mOutSampleRate; buffer->meta_data().setInt64(kKeyTime, timeUs); } *out = buffer; return OK; } status_t AudioSource::setStopTimeUs(int64_t stopTimeUs) { Mutex::Autolock autoLock(mLock); ALOGV("Set stoptime: %lld us", (long long)stopTimeUs); if (stopTimeUs < -1) { ALOGE("Invalid stop time %lld us", (long long)stopTimeUs); return BAD_VALUE; } else if (stopTimeUs == -1) { ALOGI("reset stopTime to be -1"); } mStopSystemTimeUs = stopTimeUs; return OK; } void AudioSource::signalBufferReturned(MediaBufferBase *buffer) { ALOGV("signalBufferReturned: %p", buffer->data()); Mutex::Autolock autoLock(mLock); --mNumClientOwnedBuffers; buffer->setObserver(0); buffer->release(); mFrameEncodingCompletionCondition.signal(); return; } status_t AudioSource::dataCallback(const AudioRecord::Buffer& audioBuffer) { int64_t timeUs, position, timeNs; ExtendedTimestamp ts; ExtendedTimestamp::Location location; const int32_t usPerSec = 1000000; if (mRecord->getTimestamp(&ts) == OK && ts.getBestTimestamp(&position, &timeNs, ExtendedTimestamp::TIMEBASE_MONOTONIC, &location) == OK) { // Use audio timestamp. timeUs = timeNs / 1000 - (position - mNumFramesSkipped - mNumFramesReceived + mNumFramesLost) * usPerSec / mSampleRate; } else { // This should not happen in normal case. ALOGW("Failed to get audio timestamp, fallback to use systemclock"); timeUs = systemTime() / 1000LL; // Estimate the real sampling time of the 1st sample in this buffer // from AudioRecord's latency. (Apply this adjustment first so that // the start time logic is not affected.) timeUs -= mRecord->latency() * 1000LL; } ALOGV("dataCallbackTimestamp: %" PRId64 " us", timeUs); Mutex::Autolock autoLock(mLock); if (!mStarted) { ALOGW("Spurious callback from AudioRecord. Drop the audio data."); return OK; } const size_t bufferSize = audioBuffer.size; // Drop retrieved and previously lost audio data. if (mNumFramesReceived == 0 && timeUs < mStartTimeUs) { (void) mRecord->getInputFramesLost(); int64_t receievedFrames = bufferSize / mRecord->frameSize(); ALOGV("Drop audio data(%" PRId64 " frames) at %" PRId64 "/%" PRId64 " us", receievedFrames, timeUs, mStartTimeUs); mNumFramesSkipped += receievedFrames; return OK; } if (mStopSystemTimeUs != -1 && timeUs >= mStopSystemTimeUs) { ALOGV("Drop Audio frame at %lld stop time: %lld us", (long long)timeUs, (long long)mStopSystemTimeUs); mNoMoreFramesToRead = true; mFrameAvailableCondition.signal(); return OK; } if (mNumFramesReceived == 0 && mPrevSampleTimeUs == 0) { mInitialReadTimeUs = timeUs; // Initial delay if (mStartTimeUs > 0) { mStartTimeUs = timeUs - mStartTimeUs; } mPrevSampleTimeUs = mStartTimeUs; } mLastFrameTimestampUs = timeUs; uint64_t numLostBytes = 0; // AudioRecord::getInputFramesLost() returns uint32_t if (mNumFramesReceived > 0) { // Ignore earlier frame lost // getInputFramesLost() returns the number of lost frames. // Convert number of frames lost to number of bytes lost. numLostBytes = (uint64_t)mRecord->getInputFramesLost() * mRecord->frameSize(); } CHECK_EQ(numLostBytes & 1, 0u); CHECK_EQ(audioBuffer.size & 1, 0u); if (numLostBytes > 0) { // Loss of audio frames should happen rarely; thus the LOGW should // not cause a logging spam ALOGW("Lost audio record data: %" PRIu64 " bytes", numLostBytes); } while (numLostBytes > 0) { uint64_t bufferSize = numLostBytes; if (numLostBytes > kMaxBufferSize) { numLostBytes -= kMaxBufferSize; bufferSize = kMaxBufferSize; } else { numLostBytes = 0; } MediaBuffer *lostAudioBuffer = new MediaBuffer(bufferSize); memset(lostAudioBuffer->data(), 0, bufferSize); lostAudioBuffer->set_range(0, bufferSize); mNumFramesLost += bufferSize / mRecord->frameSize(); queueInputBuffer_l(lostAudioBuffer, timeUs); } if (audioBuffer.size == 0) { ALOGW("Nothing is available from AudioRecord callback buffer"); return OK; } MediaBuffer *buffer = new MediaBuffer(bufferSize); memcpy((uint8_t *) buffer->data(), audioBuffer.i16, audioBuffer.size); buffer->set_range(0, bufferSize); queueInputBuffer_l(buffer, timeUs); return OK; } void AudioSource::queueInputBuffer_l(MediaBuffer *buffer, int64_t timeUs) { const size_t bufferSize = buffer->range_length(); const size_t frameSize = mRecord->frameSize(); if (mNumFramesReceived == 0) { buffer->meta_data().setInt64(kKeyAnchorTime, mStartTimeUs); } mNumFramesReceived += bufferSize / frameSize; const int64_t timestampUs = mStartTimeUs + ((1000000LL * mNumFramesReceived) + (mSampleRate >> 1)) / mSampleRate; buffer->meta_data().setInt64(kKeyTime, mPrevSampleTimeUs); buffer->meta_data().setInt64(kKeyDriftTime, timeUs - mInitialReadTimeUs); mPrevSampleTimeUs = timestampUs; mBuffersReceived.push_back(buffer); mFrameAvailableCondition.signal(); } void AudioSource::trackMaxAmplitude(int16_t *data, int nSamples) { for (int i = nSamples; i > 0; --i) { int16_t value = *data++; if (value < 0) { value = -value; } if (mMaxAmplitude < value) { mMaxAmplitude = value; } } } int16_t AudioSource::getMaxAmplitude() { // First call activates the tracking. if (!mTrackMaxAmplitude) { mTrackMaxAmplitude = true; } int16_t value = mMaxAmplitude; mMaxAmplitude = 0; ALOGV("max amplitude since last call: %d", value); return value; } status_t AudioSource::setInputDevice(audio_port_handle_t deviceId) { if (mRecord != 0) { return mRecord->setInputDevice(deviceId); } return NO_INIT; } status_t AudioSource::getRoutedDeviceId(audio_port_handle_t* deviceId) { if (mRecord != 0) { *deviceId = mRecord->getRoutedDeviceId(); return NO_ERROR; } return NO_INIT; } status_t AudioSource::addAudioDeviceCallback( const sp& callback) { if (mRecord != 0) { return mRecord->addAudioDeviceCallback(callback); } return NO_INIT; } status_t AudioSource::removeAudioDeviceCallback( const sp& callback) { if (mRecord != 0) { return mRecord->removeAudioDeviceCallback(callback); } return NO_INIT; } status_t AudioSource::getActiveMicrophones( std::vector* activeMicrophones) { if (mRecord != 0) { return mRecord->getActiveMicrophones(activeMicrophones); } return NO_INIT; } status_t AudioSource::setPreferredMicrophoneDirection(audio_microphone_direction_t direction) { ALOGV("setPreferredMicrophoneDirection(%d)", direction); if (mRecord != 0) { return mRecord->setPreferredMicrophoneDirection(direction); } return NO_INIT; } status_t AudioSource::setPreferredMicrophoneFieldDimension(float zoom) { ALOGV("setPreferredMicrophoneFieldDimension(%f)", zoom); if (mRecord != 0) { return mRecord->setPreferredMicrophoneFieldDimension(zoom); } return NO_INIT; } status_t AudioSource::getPortId(audio_port_handle_t *portId) const { if (mRecord != 0) { *portId = mRecord->getPortId(); return NO_ERROR; } return NO_INIT; } } // namespace android