/* crc32_comb.c -- compute the CRC-32 of a data stream * Copyright (C) 1995-2006, 2010, 2011, 2012, 2016, 2018 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h * * Thanks to Rodney Brown for his contribution of faster * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing * tables for updating the shift register in one step with three exclusive-ors * instead of four steps with four exclusive-ors. This results in about a * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. */ #include "zbuild.h" #include #include "deflate.h" #include "crc32_p.h" #include "crc32_comb_tbl.h" /* Local functions for crc concatenation */ static uint32_t crc32_combine_(uint32_t crc1, uint32_t crc2, z_off64_t len2); static void crc32_combine_gen_(uint32_t *op, z_off64_t len2); /* ========================================================================= */ static uint32_t crc32_combine_(uint32_t crc1, uint32_t crc2, z_off64_t len2) { int n; if (len2 > 0) /* operator for 2^n zeros repeats every GF2_DIM n values */ for (n = 0; len2; n = (n + 1) % GF2_DIM, len2 >>= 1) if (len2 & 1) crc1 = gf2_matrix_times(crc_comb[n], crc1); return crc1 ^ crc2; } /* ========================================================================= */ #ifdef ZLIB_COMPAT unsigned long Z_EXPORT PREFIX(crc32_combine)(unsigned long crc1, unsigned long crc2, z_off_t len2) { return (unsigned long)crc32_combine_((uint32_t)crc1, (uint32_t)crc2, len2); } unsigned long Z_EXPORT PREFIX4(crc32_combine)(unsigned long crc1, unsigned long crc2, z_off64_t len2) { return (unsigned long)crc32_combine_((uint32_t)crc1, (uint32_t)crc2, len2); } #else uint32_t Z_EXPORT PREFIX4(crc32_combine)(uint32_t crc1, uint32_t crc2, z_off64_t len2) { return crc32_combine_(crc1, crc2, len2); } #endif /* ========================================================================= */ static void crc32_combine_gen_(uint32_t *op, z_off64_t len2) { uint32_t row; int j; unsigned i; /* if len2 is zero or negative, return the identity matrix */ if (len2 <= 0) { row = 1; for (j = 0; j < GF2_DIM; j++) { op[j] = row; row <<= 1; } return; } /* at least one bit in len2 is set -- find it, and copy the operator corresponding to that position into op */ i = 0; for (;;) { if (len2 & 1) { for (j = 0; j < GF2_DIM; j++) op[j] = crc_comb[i][j]; break; } len2 >>= 1; i = (i + 1) % GF2_DIM; } /* for each remaining bit set in len2 (if any), multiply op by the operator corresponding to that position */ for (;;) { len2 >>= 1; i = (i + 1) % GF2_DIM; if (len2 == 0) break; if (len2 & 1) for (j = 0; j < GF2_DIM; j++) op[j] = gf2_matrix_times(crc_comb[i], op[j]); } } /* ========================================================================= */ #ifdef ZLIB_COMPAT void Z_EXPORT PREFIX(crc32_combine_gen)(uint32_t *op, z_off_t len2) { crc32_combine_gen_(op, len2); } #endif void Z_EXPORT PREFIX4(crc32_combine_gen)(uint32_t *op, z_off64_t len2) { crc32_combine_gen_(op, len2); } /* ========================================================================= */ uint32_t Z_EXPORT PREFIX(crc32_combine_op)(uint32_t crc1, uint32_t crc2, const uint32_t *op) { return gf2_matrix_times(op, crc1) ^ crc2; }