/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "assembler_thumb2.h" #include "base/stl_util.h" #include "base/stringprintf.h" #include "utils/assembler_test.h" namespace art { class AssemblerThumb2Test : public AssemblerTest { protected: std::string GetArchitectureString() OVERRIDE { return "arm"; } std::string GetAssemblerParameters() OVERRIDE { return " -march=armv7-a -mcpu=cortex-a15 -mfpu=neon -mthumb"; } const char* GetAssemblyHeader() OVERRIDE { return kThumb2AssemblyHeader; } std::string GetDisassembleParameters() OVERRIDE { return " -D -bbinary -marm --disassembler-options=force-thumb --no-show-raw-insn"; } void SetUpHelpers() OVERRIDE { if (registers_.size() == 0) { registers_.insert(end(registers_), { // NOLINT(whitespace/braces) new arm::Register(arm::R0), new arm::Register(arm::R1), new arm::Register(arm::R2), new arm::Register(arm::R3), new arm::Register(arm::R4), new arm::Register(arm::R5), new arm::Register(arm::R6), new arm::Register(arm::R7), new arm::Register(arm::R8), new arm::Register(arm::R9), new arm::Register(arm::R10), new arm::Register(arm::R11), new arm::Register(arm::R12), new arm::Register(arm::R13), new arm::Register(arm::R14), new arm::Register(arm::R15) }); } } void TearDown() OVERRIDE { AssemblerTest::TearDown(); STLDeleteElements(®isters_); } std::vector GetRegisters() OVERRIDE { return registers_; } uint32_t CreateImmediate(int64_t imm_value) OVERRIDE { return imm_value; } std::string RepeatInsn(size_t count, const std::string& insn) { std::string result; for (; count != 0u; --count) { result += insn; } return result; } private: std::vector registers_; static constexpr const char* kThumb2AssemblyHeader = ".syntax unified\n.thumb\n"; }; TEST_F(AssemblerThumb2Test, Toolchain) { EXPECT_TRUE(CheckTools()); } #define __ GetAssembler()-> TEST_F(AssemblerThumb2Test, Sbfx) { __ sbfx(arm::R0, arm::R1, 0, 1); __ sbfx(arm::R0, arm::R1, 0, 8); __ sbfx(arm::R0, arm::R1, 0, 16); __ sbfx(arm::R0, arm::R1, 0, 32); __ sbfx(arm::R0, arm::R1, 8, 1); __ sbfx(arm::R0, arm::R1, 8, 8); __ sbfx(arm::R0, arm::R1, 8, 16); __ sbfx(arm::R0, arm::R1, 8, 24); __ sbfx(arm::R0, arm::R1, 16, 1); __ sbfx(arm::R0, arm::R1, 16, 8); __ sbfx(arm::R0, arm::R1, 16, 16); __ sbfx(arm::R0, arm::R1, 31, 1); const char* expected = "sbfx r0, r1, #0, #1\n" "sbfx r0, r1, #0, #8\n" "sbfx r0, r1, #0, #16\n" "sbfx r0, r1, #0, #32\n" "sbfx r0, r1, #8, #1\n" "sbfx r0, r1, #8, #8\n" "sbfx r0, r1, #8, #16\n" "sbfx r0, r1, #8, #24\n" "sbfx r0, r1, #16, #1\n" "sbfx r0, r1, #16, #8\n" "sbfx r0, r1, #16, #16\n" "sbfx r0, r1, #31, #1\n"; DriverStr(expected, "sbfx"); } TEST_F(AssemblerThumb2Test, Ubfx) { __ ubfx(arm::R0, arm::R1, 0, 1); __ ubfx(arm::R0, arm::R1, 0, 8); __ ubfx(arm::R0, arm::R1, 0, 16); __ ubfx(arm::R0, arm::R1, 0, 32); __ ubfx(arm::R0, arm::R1, 8, 1); __ ubfx(arm::R0, arm::R1, 8, 8); __ ubfx(arm::R0, arm::R1, 8, 16); __ ubfx(arm::R0, arm::R1, 8, 24); __ ubfx(arm::R0, arm::R1, 16, 1); __ ubfx(arm::R0, arm::R1, 16, 8); __ ubfx(arm::R0, arm::R1, 16, 16); __ ubfx(arm::R0, arm::R1, 31, 1); const char* expected = "ubfx r0, r1, #0, #1\n" "ubfx r0, r1, #0, #8\n" "ubfx r0, r1, #0, #16\n" "ubfx r0, r1, #0, #32\n" "ubfx r0, r1, #8, #1\n" "ubfx r0, r1, #8, #8\n" "ubfx r0, r1, #8, #16\n" "ubfx r0, r1, #8, #24\n" "ubfx r0, r1, #16, #1\n" "ubfx r0, r1, #16, #8\n" "ubfx r0, r1, #16, #16\n" "ubfx r0, r1, #31, #1\n"; DriverStr(expected, "ubfx"); } TEST_F(AssemblerThumb2Test, Vmstat) { __ vmstat(); const char* expected = "vmrs APSR_nzcv, FPSCR\n"; DriverStr(expected, "vmrs"); } TEST_F(AssemblerThumb2Test, ldrexd) { __ ldrexd(arm::R0, arm::R1, arm::R0); __ ldrexd(arm::R0, arm::R1, arm::R1); __ ldrexd(arm::R0, arm::R1, arm::R2); __ ldrexd(arm::R5, arm::R3, arm::R7); const char* expected = "ldrexd r0, r1, [r0]\n" "ldrexd r0, r1, [r1]\n" "ldrexd r0, r1, [r2]\n" "ldrexd r5, r3, [r7]\n"; DriverStr(expected, "ldrexd"); } TEST_F(AssemblerThumb2Test, strexd) { __ strexd(arm::R9, arm::R0, arm::R1, arm::R0); __ strexd(arm::R9, arm::R0, arm::R1, arm::R1); __ strexd(arm::R9, arm::R0, arm::R1, arm::R2); __ strexd(arm::R9, arm::R5, arm::R3, arm::R7); const char* expected = "strexd r9, r0, r1, [r0]\n" "strexd r9, r0, r1, [r1]\n" "strexd r9, r0, r1, [r2]\n" "strexd r9, r5, r3, [r7]\n"; DriverStr(expected, "strexd"); } TEST_F(AssemblerThumb2Test, LdrdStrd) { __ ldrd(arm::R0, arm::Address(arm::R2, 8)); __ ldrd(arm::R0, arm::Address(arm::R12)); __ strd(arm::R0, arm::Address(arm::R2, 8)); const char* expected = "ldrd r0, r1, [r2, #8]\n" "ldrd r0, r1, [r12]\n" "strd r0, r1, [r2, #8]\n"; DriverStr(expected, "ldrdstrd"); } TEST_F(AssemblerThumb2Test, eor) { __ eor(arm::R1, arm::R1, arm::ShifterOperand(arm::R0)); __ eor(arm::R1, arm::R0, arm::ShifterOperand(arm::R1)); __ eor(arm::R1, arm::R8, arm::ShifterOperand(arm::R0)); __ eor(arm::R8, arm::R1, arm::ShifterOperand(arm::R0)); __ eor(arm::R1, arm::R0, arm::ShifterOperand(arm::R8)); const char* expected = "eors r1, r0\n" "eor r1, r0, r1\n" "eor r1, r8, r0\n" "eor r8, r1, r0\n" "eor r1, r0, r8\n"; DriverStr(expected, "abs"); } TEST_F(AssemblerThumb2Test, sub) { __ subs(arm::R1, arm::R0, arm::ShifterOperand(42)); __ sub(arm::R1, arm::R0, arm::ShifterOperand(42)); __ subs(arm::R1, arm::R0, arm::ShifterOperand(arm::R2, arm::ASR, 31)); __ sub(arm::R1, arm::R0, arm::ShifterOperand(arm::R2, arm::ASR, 31)); const char* expected = "subs r1, r0, #42\n" "sub.w r1, r0, #42\n" "subs r1, r0, r2, asr #31\n" "sub r1, r0, r2, asr #31\n"; DriverStr(expected, "sub"); } TEST_F(AssemblerThumb2Test, add) { __ adds(arm::R1, arm::R0, arm::ShifterOperand(42)); __ add(arm::R1, arm::R0, arm::ShifterOperand(42)); __ adds(arm::R1, arm::R0, arm::ShifterOperand(arm::R2, arm::ASR, 31)); __ add(arm::R1, arm::R0, arm::ShifterOperand(arm::R2, arm::ASR, 31)); const char* expected = "adds r1, r0, #42\n" "add.w r1, r0, #42\n" "adds r1, r0, r2, asr #31\n" "add r1, r0, r2, asr #31\n"; DriverStr(expected, "add"); } TEST_F(AssemblerThumb2Test, umull) { __ umull(arm::R0, arm::R1, arm::R2, arm::R3); const char* expected = "umull r0, r1, r2, r3\n"; DriverStr(expected, "umull"); } TEST_F(AssemblerThumb2Test, smull) { __ smull(arm::R0, arm::R1, arm::R2, arm::R3); const char* expected = "smull r0, r1, r2, r3\n"; DriverStr(expected, "smull"); } TEST_F(AssemblerThumb2Test, StoreWordToThumbOffset) { arm::StoreOperandType type = arm::kStoreWord; int32_t offset = 4092; ASSERT_TRUE(arm::Address::CanHoldStoreOffsetThumb(type, offset)); __ StoreToOffset(type, arm::R0, arm::SP, offset); __ StoreToOffset(type, arm::IP, arm::SP, offset); __ StoreToOffset(type, arm::IP, arm::R5, offset); const char* expected = "str r0, [sp, #4092]\n" "str ip, [sp, #4092]\n" "str ip, [r5, #4092]\n"; DriverStr(expected, "StoreWordToThumbOffset"); } TEST_F(AssemblerThumb2Test, StoreWordToNonThumbOffset) { arm::StoreOperandType type = arm::kStoreWord; int32_t offset = 4096; ASSERT_FALSE(arm::Address::CanHoldStoreOffsetThumb(type, offset)); __ StoreToOffset(type, arm::R0, arm::SP, offset); __ StoreToOffset(type, arm::IP, arm::SP, offset); __ StoreToOffset(type, arm::IP, arm::R5, offset); const char* expected = "add.w ip, sp, #4096\n" // AddConstant(ip, sp, 4096) "str r0, [ip, #0]\n" "str r5, [sp, #-4]!\n" // Push(r5) "add.w r5, sp, #4096\n" // AddConstant(r5, 4100 & ~0xfff) "str ip, [r5, #4]\n" // StoreToOffset(type, ip, r5, 4100 & 0xfff) "ldr r5, [sp], #4\n" // Pop(r5) "str r6, [sp, #-4]!\n" // Push(r6) "add.w r6, r5, #4096\n" // AddConstant(r6, r5, 4096 & ~0xfff) "str ip, [r6, #0]\n" // StoreToOffset(type, ip, r6, 4096 & 0xfff) "ldr r6, [sp], #4\n"; // Pop(r6) DriverStr(expected, "StoreWordToNonThumbOffset"); } TEST_F(AssemblerThumb2Test, StoreWordPairToThumbOffset) { arm::StoreOperandType type = arm::kStoreWordPair; int32_t offset = 1020; ASSERT_TRUE(arm::Address::CanHoldStoreOffsetThumb(type, offset)); __ StoreToOffset(type, arm::R0, arm::SP, offset); // We cannot use IP (i.e. R12) as first source register, as it would // force us to use SP (i.e. R13) as second source register, which // would have an "unpredictable" effect according to the ARMv7 // specification (the T1 encoding describes the result as // UNPREDICTABLE when of the source registers is R13). // // So we use (R11, IP) (e.g. (R11, R12)) as source registers in the // following instructions. __ StoreToOffset(type, arm::R11, arm::SP, offset); __ StoreToOffset(type, arm::R11, arm::R5, offset); const char* expected = "strd r0, r1, [sp, #1020]\n" "strd r11, ip, [sp, #1020]\n" "strd r11, ip, [r5, #1020]\n"; DriverStr(expected, "StoreWordPairToThumbOffset"); } TEST_F(AssemblerThumb2Test, StoreWordPairToNonThumbOffset) { arm::StoreOperandType type = arm::kStoreWordPair; int32_t offset = 1024; ASSERT_FALSE(arm::Address::CanHoldStoreOffsetThumb(type, offset)); __ StoreToOffset(type, arm::R0, arm::SP, offset); // Same comment as in AssemblerThumb2Test.StoreWordPairToThumbOffset // regarding the use of (R11, IP) (e.g. (R11, R12)) as source // registers in the following instructions. __ StoreToOffset(type, arm::R11, arm::SP, offset); __ StoreToOffset(type, arm::R11, arm::R5, offset); const char* expected = "add.w ip, sp, #1024\n" // AddConstant(ip, sp, 1024) "strd r0, r1, [ip, #0]\n" "str r5, [sp, #-4]!\n" // Push(r5) "add.w r5, sp, #1024\n" // AddConstant(r5, sp, (1024 + kRegisterSize) & ~0x3fc) "strd r11, ip, [r5, #4]\n" // StoreToOffset(type, r11, sp, (1024 + kRegisterSize) & 0x3fc) "ldr r5, [sp], #4\n" // Pop(r5) "str r6, [sp, #-4]!\n" // Push(r6) "add.w r6, r5, #1024\n" // AddConstant(r6, r5, 1024 & ~0x3fc) "strd r11, ip, [r6, #0]\n" // StoreToOffset(type, r11, r6, 1024 & 0x3fc) "ldr r6, [sp], #4\n"; // Pop(r6) DriverStr(expected, "StoreWordPairToNonThumbOffset"); } TEST_F(AssemblerThumb2Test, TwoCbzMaxOffset) { Label label0, label1, label2; __ cbz(arm::R0, &label1); constexpr size_t kLdrR0R0Count1 = 63; for (size_t i = 0; i != kLdrR0R0Count1; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ Bind(&label0); __ cbz(arm::R0, &label2); __ Bind(&label1); constexpr size_t kLdrR0R0Count2 = 64; for (size_t i = 0; i != kLdrR0R0Count2; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ Bind(&label2); std::string expected = "cbz r0, 1f\n" + // cbz r0, label1 RepeatInsn(kLdrR0R0Count1, "ldr r0, [r0]\n") + "0:\n" "cbz r0, 2f\n" // cbz r0, label2 "1:\n" + RepeatInsn(kLdrR0R0Count2, "ldr r0, [r0]\n") + "2:\n"; DriverStr(expected, "TwoCbzMaxOffset"); EXPECT_EQ(static_cast(label0.Position()) + 0u, __ GetAdjustedPosition(label0.Position())); EXPECT_EQ(static_cast(label1.Position()) + 0u, __ GetAdjustedPosition(label1.Position())); EXPECT_EQ(static_cast(label2.Position()) + 0u, __ GetAdjustedPosition(label2.Position())); } TEST_F(AssemblerThumb2Test, TwoCbzBeyondMaxOffset) { Label label0, label1, label2; __ cbz(arm::R0, &label1); constexpr size_t kLdrR0R0Count1 = 63; for (size_t i = 0; i != kLdrR0R0Count1; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ Bind(&label0); __ cbz(arm::R0, &label2); __ Bind(&label1); constexpr size_t kLdrR0R0Count2 = 65; for (size_t i = 0; i != kLdrR0R0Count2; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ Bind(&label2); std::string expected = "cmp r0, #0\n" // cbz r0, label1 "beq.n 1f\n" + RepeatInsn(kLdrR0R0Count1, "ldr r0, [r0]\n") + "0:\n" "cmp r0, #0\n" // cbz r0, label2 "beq.n 2f\n" "1:\n" + RepeatInsn(kLdrR0R0Count2, "ldr r0, [r0]\n") + "2:\n"; DriverStr(expected, "TwoCbzBeyondMaxOffset"); EXPECT_EQ(static_cast(label0.Position()) + 2u, __ GetAdjustedPosition(label0.Position())); EXPECT_EQ(static_cast(label1.Position()) + 4u, __ GetAdjustedPosition(label1.Position())); EXPECT_EQ(static_cast(label2.Position()) + 4u, __ GetAdjustedPosition(label2.Position())); } TEST_F(AssemblerThumb2Test, TwoCbzSecondAtMaxB16Offset) { Label label0, label1, label2; __ cbz(arm::R0, &label1); constexpr size_t kLdrR0R0Count1 = 62; for (size_t i = 0; i != kLdrR0R0Count1; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ Bind(&label0); __ cbz(arm::R0, &label2); __ Bind(&label1); constexpr size_t kLdrR0R0Count2 = 128; for (size_t i = 0; i != kLdrR0R0Count2; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ Bind(&label2); std::string expected = "cbz r0, 1f\n" + // cbz r0, label1 RepeatInsn(kLdrR0R0Count1, "ldr r0, [r0]\n") + "0:\n" "cmp r0, #0\n" // cbz r0, label2 "beq.n 2f\n" "1:\n" + RepeatInsn(kLdrR0R0Count2, "ldr r0, [r0]\n") + "2:\n"; DriverStr(expected, "TwoCbzSecondAtMaxB16Offset"); EXPECT_EQ(static_cast(label0.Position()) + 0u, __ GetAdjustedPosition(label0.Position())); EXPECT_EQ(static_cast(label1.Position()) + 2u, __ GetAdjustedPosition(label1.Position())); EXPECT_EQ(static_cast(label2.Position()) + 2u, __ GetAdjustedPosition(label2.Position())); } TEST_F(AssemblerThumb2Test, TwoCbzSecondBeyondMaxB16Offset) { Label label0, label1, label2; __ cbz(arm::R0, &label1); constexpr size_t kLdrR0R0Count1 = 62; for (size_t i = 0; i != kLdrR0R0Count1; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ Bind(&label0); __ cbz(arm::R0, &label2); __ Bind(&label1); constexpr size_t kLdrR0R0Count2 = 129; for (size_t i = 0; i != kLdrR0R0Count2; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ Bind(&label2); std::string expected = "cmp r0, #0\n" // cbz r0, label1 "beq.n 1f\n" + RepeatInsn(kLdrR0R0Count1, "ldr r0, [r0]\n") + "0:\n" "cmp r0, #0\n" // cbz r0, label2 "beq.w 2f\n" "1:\n" + RepeatInsn(kLdrR0R0Count2, "ldr r0, [r0]\n") + "2:\n"; DriverStr(expected, "TwoCbzSecondBeyondMaxB16Offset"); EXPECT_EQ(static_cast(label0.Position()) + 2u, __ GetAdjustedPosition(label0.Position())); EXPECT_EQ(static_cast(label1.Position()) + 6u, __ GetAdjustedPosition(label1.Position())); EXPECT_EQ(static_cast(label2.Position()) + 6u, __ GetAdjustedPosition(label2.Position())); } TEST_F(AssemblerThumb2Test, TwoCbzFirstAtMaxB16Offset) { Label label0, label1, label2; __ cbz(arm::R0, &label1); constexpr size_t kLdrR0R0Count1 = 127; for (size_t i = 0; i != kLdrR0R0Count1; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ Bind(&label0); __ cbz(arm::R0, &label2); __ Bind(&label1); constexpr size_t kLdrR0R0Count2 = 64; for (size_t i = 0; i != kLdrR0R0Count2; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ Bind(&label2); std::string expected = "cmp r0, #0\n" // cbz r0, label1 "beq.n 1f\n" + RepeatInsn(kLdrR0R0Count1, "ldr r0, [r0]\n") + "0:\n" "cbz r0, 2f\n" // cbz r0, label2 "1:\n" + RepeatInsn(kLdrR0R0Count2, "ldr r0, [r0]\n") + "2:\n"; DriverStr(expected, "TwoCbzFirstAtMaxB16Offset"); EXPECT_EQ(static_cast(label0.Position()) + 2u, __ GetAdjustedPosition(label0.Position())); EXPECT_EQ(static_cast(label1.Position()) + 2u, __ GetAdjustedPosition(label1.Position())); EXPECT_EQ(static_cast(label2.Position()) + 2u, __ GetAdjustedPosition(label2.Position())); } TEST_F(AssemblerThumb2Test, TwoCbzFirstBeyondMaxB16Offset) { Label label0, label1, label2; __ cbz(arm::R0, &label1); constexpr size_t kLdrR0R0Count1 = 127; for (size_t i = 0; i != kLdrR0R0Count1; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ Bind(&label0); __ cbz(arm::R0, &label2); __ Bind(&label1); constexpr size_t kLdrR0R0Count2 = 65; for (size_t i = 0; i != kLdrR0R0Count2; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ Bind(&label2); std::string expected = "cmp r0, #0\n" // cbz r0, label1 "beq.w 1f\n" + RepeatInsn(kLdrR0R0Count1, "ldr r0, [r0]\n") + "0:\n" "cmp r0, #0\n" // cbz r0, label2 "beq.n 2f\n" "1:\n" + RepeatInsn(kLdrR0R0Count2, "ldr r0, [r0]\n") + "2:\n"; DriverStr(expected, "TwoCbzFirstBeyondMaxB16Offset"); EXPECT_EQ(static_cast(label0.Position()) + 4u, __ GetAdjustedPosition(label0.Position())); EXPECT_EQ(static_cast(label1.Position()) + 6u, __ GetAdjustedPosition(label1.Position())); EXPECT_EQ(static_cast(label2.Position()) + 6u, __ GetAdjustedPosition(label2.Position())); } TEST_F(AssemblerThumb2Test, LoadLiteralMax1KiB) { arm::Literal* literal = __ NewLiteral(0x12345678); __ LoadLiteral(arm::R0, literal); Label label; __ Bind(&label); constexpr size_t kLdrR0R0Count = 511; for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } std::string expected = "1:\n" "ldr.n r0, [pc, #((2f - 1b - 2) & ~2)]\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".align 2, 0\n" "2:\n" ".word 0x12345678\n"; DriverStr(expected, "LoadLiteralMax1KiB"); EXPECT_EQ(static_cast(label.Position()) + 0u, __ GetAdjustedPosition(label.Position())); } TEST_F(AssemblerThumb2Test, LoadLiteralBeyondMax1KiB) { arm::Literal* literal = __ NewLiteral(0x12345678); __ LoadLiteral(arm::R0, literal); Label label; __ Bind(&label); constexpr size_t kLdrR0R0Count = 512; for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } std::string expected = "1:\n" "ldr.w r0, [pc, #((2f - 1b - 2) & ~2)]\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".align 2, 0\n" "2:\n" ".word 0x12345678\n"; DriverStr(expected, "LoadLiteralBeyondMax1KiB"); EXPECT_EQ(static_cast(label.Position()) + 2u, __ GetAdjustedPosition(label.Position())); } TEST_F(AssemblerThumb2Test, LoadLiteralMax4KiB) { arm::Literal* literal = __ NewLiteral(0x12345678); __ LoadLiteral(arm::R1, literal); Label label; __ Bind(&label); constexpr size_t kLdrR0R0Count = 2046; for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } std::string expected = "1:\n" "ldr.w r1, [pc, #((2f - 1b - 2) & ~2)]\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".align 2, 0\n" "2:\n" ".word 0x12345678\n"; DriverStr(expected, "LoadLiteralMax4KiB"); EXPECT_EQ(static_cast(label.Position()) + 2u, __ GetAdjustedPosition(label.Position())); } TEST_F(AssemblerThumb2Test, LoadLiteralBeyondMax4KiB) { arm::Literal* literal = __ NewLiteral(0x12345678); __ LoadLiteral(arm::R1, literal); Label label; __ Bind(&label); constexpr size_t kLdrR0R0Count = 2047; for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } std::string expected = "movw r1, #4096\n" // "as" does not consider (2f - 1f - 4) a constant expression for movw. "1:\n" "add r1, pc\n" "ldr r1, [r1, #0]\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".align 2, 0\n" "2:\n" ".word 0x12345678\n"; DriverStr(expected, "LoadLiteralBeyondMax4KiB"); EXPECT_EQ(static_cast(label.Position()) + 6u, __ GetAdjustedPosition(label.Position())); } TEST_F(AssemblerThumb2Test, LoadLiteralMax64KiB) { arm::Literal* literal = __ NewLiteral(0x12345678); __ LoadLiteral(arm::R1, literal); Label label; __ Bind(&label); constexpr size_t kLdrR0R0Count = (1u << 15) - 2u; for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } std::string expected = "movw r1, #0xfffc\n" // "as" does not consider (2f - 1f - 4) a constant expression for movw. "1:\n" "add r1, pc\n" "ldr r1, [r1, #0]\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".align 2, 0\n" "2:\n" ".word 0x12345678\n"; DriverStr(expected, "LoadLiteralMax64KiB"); EXPECT_EQ(static_cast(label.Position()) + 6u, __ GetAdjustedPosition(label.Position())); } TEST_F(AssemblerThumb2Test, LoadLiteralBeyondMax64KiB) { arm::Literal* literal = __ NewLiteral(0x12345678); __ LoadLiteral(arm::R1, literal); Label label; __ Bind(&label); constexpr size_t kLdrR0R0Count = (1u << 15) - 1u; for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } std::string expected = "mov.w r1, #((2f - 1f - 4) & ~0xfff)\n" "1:\n" "add r1, pc\n" "ldr r1, [r1, #((2f - 1b - 4) & 0xfff)]\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".align 2, 0\n" "2:\n" ".word 0x12345678\n"; DriverStr(expected, "LoadLiteralBeyondMax64KiB"); EXPECT_EQ(static_cast(label.Position()) + 8u, __ GetAdjustedPosition(label.Position())); } TEST_F(AssemblerThumb2Test, LoadLiteralMax1MiB) { arm::Literal* literal = __ NewLiteral(0x12345678); __ LoadLiteral(arm::R1, literal); Label label; __ Bind(&label); constexpr size_t kLdrR0R0Count = (1u << 19) - 3u; for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } std::string expected = "mov.w r1, #((2f - 1f - 4) & ~0xfff)\n" "1:\n" "add r1, pc\n" "ldr r1, [r1, #((2f - 1b - 4) & 0xfff)]\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".align 2, 0\n" "2:\n" ".word 0x12345678\n"; DriverStr(expected, "LoadLiteralMax1MiB"); EXPECT_EQ(static_cast(label.Position()) + 8u, __ GetAdjustedPosition(label.Position())); } TEST_F(AssemblerThumb2Test, LoadLiteralBeyondMax1MiB) { arm::Literal* literal = __ NewLiteral(0x12345678); __ LoadLiteral(arm::R1, literal); Label label; __ Bind(&label); constexpr size_t kLdrR0R0Count = (1u << 19) - 2u; for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } std::string expected = // "as" does not consider ((2f - 1f - 4) & 0xffff) a constant expression for movw. "movw r1, #(0x100000 & 0xffff)\n" // "as" does not consider ((2f - 1f - 4) >> 16) a constant expression for movt. "movt r1, #(0x100000 >> 16)\n" "1:\n" "add r1, pc\n" "ldr.w r1, [r1, #0]\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".align 2, 0\n" "2:\n" ".word 0x12345678\n"; DriverStr(expected, "LoadLiteralBeyondMax1MiB"); EXPECT_EQ(static_cast(label.Position()) + 12u, __ GetAdjustedPosition(label.Position())); } TEST_F(AssemblerThumb2Test, LoadLiteralFar) { arm::Literal* literal = __ NewLiteral(0x12345678); __ LoadLiteral(arm::R1, literal); Label label; __ Bind(&label); constexpr size_t kLdrR0R0Count = (1u << 19) - 2u + 0x1234; for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } std::string expected = // "as" does not consider ((2f - 1f - 4) & 0xffff) a constant expression for movw. "movw r1, #((0x100000 + 2 * 0x1234) & 0xffff)\n" // "as" does not consider ((2f - 1f - 4) >> 16) a constant expression for movt. "movt r1, #((0x100000 + 2 * 0x1234) >> 16)\n" "1:\n" "add r1, pc\n" "ldr.w r1, [r1, #0]\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".align 2, 0\n" "2:\n" ".word 0x12345678\n"; DriverStr(expected, "LoadLiteralFar"); EXPECT_EQ(static_cast(label.Position()) + 12u, __ GetAdjustedPosition(label.Position())); } TEST_F(AssemblerThumb2Test, LoadLiteralWideMax1KiB) { arm::Literal* literal = __ NewLiteral(INT64_C(0x1234567887654321)); __ LoadLiteral(arm::R1, arm::R3, literal); Label label; __ Bind(&label); constexpr size_t kLdrR0R0Count = 510; for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } std::string expected = "1:\n" "ldrd r1, r3, [pc, #((2f - 1b - 2) & ~2)]\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".align 2, 0\n" "2:\n" ".word 0x87654321\n" ".word 0x12345678\n"; DriverStr(expected, "LoadLiteralWideMax1KiB"); EXPECT_EQ(static_cast(label.Position()) + 0u, __ GetAdjustedPosition(label.Position())); } TEST_F(AssemblerThumb2Test, LoadLiteralWideBeyondMax1KiB) { arm::Literal* literal = __ NewLiteral(INT64_C(0x1234567887654321)); __ LoadLiteral(arm::R1, arm::R3, literal); Label label; __ Bind(&label); constexpr size_t kLdrR0R0Count = 511; for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } std::string expected = "mov.w ip, #((2f - 1f - 4) & ~0x3ff)\n" "1:\n" "add ip, pc\n" "ldrd r1, r3, [ip, #((2f - 1b - 4) & 0x3ff)]\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".align 2, 0\n" "2:\n" ".word 0x87654321\n" ".word 0x12345678\n"; DriverStr(expected, "LoadLiteralWideBeyondMax1KiB"); EXPECT_EQ(static_cast(label.Position()) + 6u, __ GetAdjustedPosition(label.Position())); } TEST_F(AssemblerThumb2Test, LoadLiteralSingleMax256KiB) { // The literal size must match but the type doesn't, so use an int32_t rather than float. arm::Literal* literal = __ NewLiteral(0x12345678); __ LoadLiteral(arm::S3, literal); Label label; __ Bind(&label); constexpr size_t kLdrR0R0Count = (1 << 17) - 3u; for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } std::string expected = "mov.w ip, #((2f - 1f - 4) & ~0x3ff)\n" "1:\n" "add ip, pc\n" "vldr s3, [ip, #((2f - 1b - 4) & 0x3ff)]\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".align 2, 0\n" "2:\n" ".word 0x12345678\n"; DriverStr(expected, "LoadLiteralSingleMax256KiB"); EXPECT_EQ(static_cast(label.Position()) + 6u, __ GetAdjustedPosition(label.Position())); } TEST_F(AssemblerThumb2Test, LoadLiteralDoubleBeyondMax256KiB) { // The literal size must match but the type doesn't, so use an int64_t rather than double. arm::Literal* literal = __ NewLiteral(INT64_C(0x1234567887654321)); __ LoadLiteral(arm::D3, literal); Label label; __ Bind(&label); constexpr size_t kLdrR0R0Count = (1 << 17) - 2u; for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } std::string expected = // "as" does not consider ((2f - 1f - 4) & 0xffff) a constant expression for movw. "movw ip, #(0x40000 & 0xffff)\n" // "as" does not consider ((2f - 1f - 4) >> 16) a constant expression for movt. "movt ip, #(0x40000 >> 16)\n" "1:\n" "add ip, pc\n" "vldr d3, [ip, #0]\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".align 2, 0\n" "2:\n" ".word 0x87654321\n" ".word 0x12345678\n"; DriverStr(expected, "LoadLiteralDoubleBeyondMax256KiB"); EXPECT_EQ(static_cast(label.Position()) + 10u, __ GetAdjustedPosition(label.Position())); } TEST_F(AssemblerThumb2Test, LoadLiteralDoubleFar) { // The literal size must match but the type doesn't, so use an int64_t rather than double. arm::Literal* literal = __ NewLiteral(INT64_C(0x1234567887654321)); __ LoadLiteral(arm::D3, literal); Label label; __ Bind(&label); constexpr size_t kLdrR0R0Count = (1 << 17) - 2u + 0x1234; for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } std::string expected = // "as" does not consider ((2f - 1f - 4) & 0xffff) a constant expression for movw. "movw ip, #((0x40000 + 2 * 0x1234) & 0xffff)\n" // "as" does not consider ((2f - 1f - 4) >> 16) a constant expression for movt. "movt ip, #((0x40000 + 2 * 0x1234) >> 16)\n" "1:\n" "add ip, pc\n" "vldr d3, [ip, #0]\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".align 2, 0\n" "2:\n" ".word 0x87654321\n" ".word 0x12345678\n"; DriverStr(expected, "LoadLiteralDoubleFar"); EXPECT_EQ(static_cast(label.Position()) + 10u, __ GetAdjustedPosition(label.Position())); } TEST_F(AssemblerThumb2Test, LoadLiteralBeyondMax1KiBDueToAlignmentOnSecondPass) { // First part: as TwoCbzBeyondMaxOffset but add one 16-bit instruction to the end, // so that the size is not Aligned<4>(.). On the first pass, the assembler resizes // the second CBZ because it's out of range, then it will resize the first CBZ // which has been pushed out of range. Thus, after the first pass, the code size // will appear Aligned<4>(.) but the final size will not be. Label label0, label1, label2; __ cbz(arm::R0, &label1); constexpr size_t kLdrR0R0Count1 = 63; for (size_t i = 0; i != kLdrR0R0Count1; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ Bind(&label0); __ cbz(arm::R0, &label2); __ Bind(&label1); constexpr size_t kLdrR0R0Count2 = 65; for (size_t i = 0; i != kLdrR0R0Count2; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ Bind(&label2); __ ldr(arm::R0, arm::Address(arm::R0)); std::string expected_part1 = "cmp r0, #0\n" // cbz r0, label1 "beq.n 1f\n" + RepeatInsn(kLdrR0R0Count1, "ldr r0, [r0]\n") + "0:\n" "cmp r0, #0\n" // cbz r0, label2 "beq.n 2f\n" "1:\n" + RepeatInsn(kLdrR0R0Count2, "ldr r0, [r0]\n") + "2:\n" // Here the offset is Aligned<4>(.). "ldr r0, [r0]\n"; // Make the first part // Second part: as LoadLiteralMax1KiB with the caveat that the offset of the load // literal will not be Aligned<4>(.) but it will appear to be when we process the // instruction during the first pass, so the literal will need a padding and it // will push the literal out of range, so we shall end up with "ldr.w". arm::Literal* literal = __ NewLiteral(0x12345678); __ LoadLiteral(arm::R0, literal); Label label; __ Bind(&label); constexpr size_t kLdrR0R0Count = 511; for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } std::string expected = expected_part1 + "1:\n" "ldr.w r0, [pc, #((2f - 1b - 2) & ~2)]\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".align 2, 0\n" "2:\n" ".word 0x12345678\n"; DriverStr(expected, "LoadLiteralMax1KiB"); EXPECT_EQ(static_cast(label.Position()) + 6u, __ GetAdjustedPosition(label.Position())); } TEST_F(AssemblerThumb2Test, BindTrackedLabel) { Label non_tracked, tracked, branch_target; // A few dummy loads on entry. constexpr size_t kLdrR0R0Count = 5; for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } // A branch that will need to be fixed up. __ cbz(arm::R0, &branch_target); // Some more dummy loads. for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } // Now insert tracked and untracked label. __ Bind(&non_tracked); __ BindTrackedLabel(&tracked); // A lot of dummy loads, to ensure the branch needs resizing. constexpr size_t kLdrR0R0CountLong = 60; for (size_t i = 0; i != kLdrR0R0CountLong; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } // Bind the branch target. __ Bind(&branch_target); // One more load. __ ldr(arm::R0, arm::Address(arm::R0)); std::string expected = RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + "cmp r0, #0\n" // cbz r0, 1f "beq.n 1f\n" + RepeatInsn(kLdrR0R0Count + kLdrR0R0CountLong, "ldr r0, [r0]\n") + "1:\n" "ldr r0, [r0]\n"; DriverStr(expected, "BindTrackedLabel"); // Expectation is that the tracked label should have moved. EXPECT_LT(non_tracked.Position(), tracked.Position()); } TEST_F(AssemblerThumb2Test, JumpTable) { // The jump table. Use three labels. Label label1, label2, label3; std::vector labels({ &label1, &label2, &label3 }); // A few dummy loads on entry, interspersed with 2 labels. constexpr size_t kLdrR0R0Count = 5; for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ BindTrackedLabel(&label1); for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ BindTrackedLabel(&label2); for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } // Create the jump table, emit the base load. arm::JumpTable* jump_table = __ CreateJumpTable(std::move(labels), arm::R1); // Dummy computation, stand-in for the address. We're only testing the jump table here, not how // it's being used. __ ldr(arm::R0, arm::Address(arm::R0)); // Emit the jump __ EmitJumpTableDispatch(jump_table, arm::R1); // Some more dummy instructions. for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ BindTrackedLabel(&label3); for (size_t i = 0; i != kLdrR0R0Count; ++i) { // Note: odd so there's no alignment __ ldr(arm::R0, arm::Address(arm::R0)); // necessary, as gcc as emits nops, } // whereas we emit 0 != nop. static_assert((kLdrR0R0Count + 3) * 2 < 1 * KB, "Too much offset"); std::string expected = RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".L1:\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".L2:\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + "adr r1, .Ljump_table\n" "ldr r0, [r0]\n" ".Lbase:\n" "add pc, r1\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".L3:\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".align 2\n" ".Ljump_table:\n" ".4byte (.L1 - .Lbase - 4)\n" ".4byte (.L2 - .Lbase - 4)\n" ".4byte (.L3 - .Lbase - 4)\n"; DriverStr(expected, "JumpTable"); } // Test for >1K fixup. TEST_F(AssemblerThumb2Test, JumpTable4K) { // The jump table. Use three labels. Label label1, label2, label3; std::vector labels({ &label1, &label2, &label3 }); // A few dummy loads on entry, interspersed with 2 labels. constexpr size_t kLdrR0R0Count = 5; for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ BindTrackedLabel(&label1); for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ BindTrackedLabel(&label2); for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } // Create the jump table, emit the base load. arm::JumpTable* jump_table = __ CreateJumpTable(std::move(labels), arm::R1); // Dummy computation, stand-in for the address. We're only testing the jump table here, not how // it's being used. __ ldr(arm::R0, arm::Address(arm::R0)); // Emit the jump __ EmitJumpTableDispatch(jump_table, arm::R1); // Some more dummy instructions. for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ BindTrackedLabel(&label3); constexpr size_t kLdrR0R0Count2 = 600; // Note: even so there's no alignment for (size_t i = 0; i != kLdrR0R0Count2; ++i) { // necessary, as gcc as emits nops, __ ldr(arm::R0, arm::Address(arm::R0)); // whereas we emit 0 != nop. } static_assert((kLdrR0R0Count + kLdrR0R0Count2 + 3) * 2 > 1 * KB, "Not enough offset"); static_assert((kLdrR0R0Count + kLdrR0R0Count2 + 3) * 2 < 4 * KB, "Too much offset"); std::string expected = RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".L1:\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".L2:\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + "adr r1, .Ljump_table\n" "ldr r0, [r0]\n" ".Lbase:\n" "add pc, r1\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".L3:\n" + RepeatInsn(kLdrR0R0Count2, "ldr r0, [r0]\n") + ".align 2\n" ".Ljump_table:\n" ".4byte (.L1 - .Lbase - 4)\n" ".4byte (.L2 - .Lbase - 4)\n" ".4byte (.L3 - .Lbase - 4)\n"; DriverStr(expected, "JumpTable4K"); } // Test for >4K fixup. TEST_F(AssemblerThumb2Test, JumpTable64K) { // The jump table. Use three labels. Label label1, label2, label3; std::vector labels({ &label1, &label2, &label3 }); // A few dummy loads on entry, interspersed with 2 labels. constexpr size_t kLdrR0R0Count = 5; for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ BindTrackedLabel(&label1); for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ BindTrackedLabel(&label2); for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } // Create the jump table, emit the base load. arm::JumpTable* jump_table = __ CreateJumpTable(std::move(labels), arm::R1); // Dummy computation, stand-in for the address. We're only testing the jump table here, not how // it's being used. __ ldr(arm::R0, arm::Address(arm::R0)); // Emit the jump __ EmitJumpTableDispatch(jump_table, arm::R1); // Some more dummy instructions. for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ BindTrackedLabel(&label3); constexpr size_t kLdrR0R0Count2 = 2601; // Note: odd so there's no alignment for (size_t i = 0; i != kLdrR0R0Count2; ++i) { // necessary, as gcc as emits nops, __ ldr(arm::R0, arm::Address(arm::R0)); // whereas we emit 0 != nop. } static_assert((kLdrR0R0Count + kLdrR0R0Count2 + 3) * 2 > 4 * KB, "Not enough offset"); static_assert((kLdrR0R0Count + kLdrR0R0Count2 + 3) * 2 < 64 * KB, "Too much offset"); std::string expected = RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".L1:\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".L2:\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + // ~ adr r1, .Ljump_table, gcc as can't seem to fix up a large offset itself. // (Note: have to use constants, as labels aren't accepted. "movw r1, #(((3 + " + StringPrintf("%zu", kLdrR0R0Count + kLdrR0R0Count2) + ") * 2 - 4) & 0xFFFF)\n" "add r1, pc\n" "ldr r0, [r0]\n" ".Lbase:\n" "add pc, r1\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".L3:\n" + RepeatInsn(kLdrR0R0Count2, "ldr r0, [r0]\n") + ".align 2\n" ".Ljump_table:\n" ".4byte (.L1 - .Lbase - 4)\n" ".4byte (.L2 - .Lbase - 4)\n" ".4byte (.L3 - .Lbase - 4)\n"; DriverStr(expected, "JumpTable64K"); } // Test for >64K fixup. TEST_F(AssemblerThumb2Test, JumpTableFar) { // The jump table. Use three labels. Label label1, label2, label3; std::vector labels({ &label1, &label2, &label3 }); // A few dummy loads on entry, interspersed with 2 labels. constexpr size_t kLdrR0R0Count = 5; for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ BindTrackedLabel(&label1); for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ BindTrackedLabel(&label2); for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } // Create the jump table, emit the base load. arm::JumpTable* jump_table = __ CreateJumpTable(std::move(labels), arm::R1); // Dummy computation, stand-in for the address. We're only testing the jump table here, not how // it's being used. __ ldr(arm::R0, arm::Address(arm::R0)); // Emit the jump __ EmitJumpTableDispatch(jump_table, arm::R1); // Some more dummy instructions. for (size_t i = 0; i != kLdrR0R0Count; ++i) { __ ldr(arm::R0, arm::Address(arm::R0)); } __ BindTrackedLabel(&label3); constexpr size_t kLdrR0R0Count2 = 70001; // Note: odd so there's no alignment for (size_t i = 0; i != kLdrR0R0Count2; ++i) { // necessary, as gcc as emits nops, __ ldr(arm::R0, arm::Address(arm::R0)); // whereas we emit 0 != nop. } static_assert((kLdrR0R0Count + kLdrR0R0Count2 + 3) * 2 > 64 * KB, "Not enough offset"); std::string expected = RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".L1:\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".L2:\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + // ~ adr r1, .Ljump_table, gcc as can't seem to fix up a large offset itself. // (Note: have to use constants, as labels aren't accepted. "movw r1, #(((3 + " + StringPrintf("%zu", kLdrR0R0Count + kLdrR0R0Count2) + ") * 2 - 4) & 0xFFFF)\n" "movt r1, #(((3 + " + StringPrintf("%zu", kLdrR0R0Count + kLdrR0R0Count2) + ") * 2 - 4) >> 16)\n" ".Lhelp:" "add r1, pc\n" "ldr r0, [r0]\n" ".Lbase:\n" "add pc, r1\n" + RepeatInsn(kLdrR0R0Count, "ldr r0, [r0]\n") + ".L3:\n" + RepeatInsn(kLdrR0R0Count2, "ldr r0, [r0]\n") + ".align 2\n" ".Ljump_table:\n" ".4byte (.L1 - .Lbase - 4)\n" ".4byte (.L2 - .Lbase - 4)\n" ".4byte (.L3 - .Lbase - 4)\n"; DriverStr(expected, "JumpTableFar"); } TEST_F(AssemblerThumb2Test, Clz) { __ clz(arm::R0, arm::R1); const char* expected = "clz r0, r1\n"; DriverStr(expected, "clz"); } TEST_F(AssemblerThumb2Test, rbit) { __ rbit(arm::R1, arm::R0); const char* expected = "rbit r1, r0\n"; DriverStr(expected, "rbit"); } TEST_F(AssemblerThumb2Test, rev) { __ rev(arm::R1, arm::R0); const char* expected = "rev r1, r0\n"; DriverStr(expected, "rev"); } TEST_F(AssemblerThumb2Test, rev16) { __ rev16(arm::R1, arm::R0); const char* expected = "rev16 r1, r0\n"; DriverStr(expected, "rev16"); } TEST_F(AssemblerThumb2Test, revsh) { __ revsh(arm::R1, arm::R0); const char* expected = "revsh r1, r0\n"; DriverStr(expected, "revsh"); } } // namespace art