/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "builder.h" #include "code_generator_arm.h" #include "code_generator_x86.h" #include "code_generator_x86_64.h" #include "common_compiler_test.h" #include "dex_file.h" #include "dex_instruction.h" #include "instruction_set.h" #include "nodes.h" #include "optimizing_unit_test.h" #include "prepare_for_register_allocation.h" #include "register_allocator.h" #include "ssa_liveness_analysis.h" #include "gtest/gtest.h" namespace art { class InternalCodeAllocator : public CodeAllocator { public: InternalCodeAllocator() { } virtual uint8_t* Allocate(size_t size) { size_ = size; memory_.reset(new uint8_t[size]); return memory_.get(); } size_t GetSize() const { return size_; } uint8_t* GetMemory() const { return memory_.get(); } private: size_t size_; std::unique_ptr memory_; DISALLOW_COPY_AND_ASSIGN(InternalCodeAllocator); }; static void Run(const InternalCodeAllocator& allocator, const CodeGenerator& codegen, bool has_result, int32_t expected) { typedef int32_t (*fptr)(); CommonCompilerTest::MakeExecutable(allocator.GetMemory(), allocator.GetSize()); fptr f = reinterpret_cast(allocator.GetMemory()); if (codegen.GetInstructionSet() == kThumb2) { // For thumb we need the bottom bit set. f = reinterpret_cast(reinterpret_cast(f) + 1); } int32_t result = f(); if (has_result) { ASSERT_EQ(result, expected); } } static void RunCodeBaseline(HGraph* graph, bool has_result, int32_t expected) { InternalCodeAllocator allocator; x86::CodeGeneratorX86 codegenX86(graph); // We avoid doing a stack overflow check that requires the runtime being setup, // by making sure the compiler knows the methods we are running are leaf methods. codegenX86.CompileBaseline(&allocator, true); if (kRuntimeISA == kX86) { Run(allocator, codegenX86, has_result, expected); } arm::CodeGeneratorARM codegenARM(graph); codegenARM.CompileBaseline(&allocator, true); if (kRuntimeISA == kArm || kRuntimeISA == kThumb2) { Run(allocator, codegenARM, has_result, expected); } x86_64::CodeGeneratorX86_64 codegenX86_64(graph); codegenX86_64.CompileBaseline(&allocator, true); if (kRuntimeISA == kX86_64) { Run(allocator, codegenX86_64, has_result, expected); } } static void RunCodeOptimized(CodeGenerator* codegen, HGraph* graph, std::function hook_before_codegen, bool has_result, int32_t expected) { SsaLivenessAnalysis liveness(*graph, codegen); liveness.Analyze(); RegisterAllocator register_allocator(graph->GetArena(), codegen, liveness); register_allocator.AllocateRegisters(); hook_before_codegen(graph); InternalCodeAllocator allocator; codegen->CompileOptimized(&allocator); Run(allocator, *codegen, has_result, expected); } static void RunCodeOptimized(HGraph* graph, std::function hook_before_codegen, bool has_result, int32_t expected) { if (kRuntimeISA == kX86) { x86::CodeGeneratorX86 codegenX86(graph); RunCodeOptimized(&codegenX86, graph, hook_before_codegen, has_result, expected); } else if (kRuntimeISA == kArm || kRuntimeISA == kThumb2) { arm::CodeGeneratorARM codegenARM(graph); RunCodeOptimized(&codegenARM, graph, hook_before_codegen, has_result, expected); } else if (kRuntimeISA == kX86_64) { x86_64::CodeGeneratorX86_64 codegenX86_64(graph); RunCodeOptimized(&codegenX86_64, graph, hook_before_codegen, has_result, expected); } } static void TestCode(const uint16_t* data, bool has_result = false, int32_t expected = 0) { ArenaPool pool; ArenaAllocator arena(&pool); HGraphBuilder builder(&arena); const DexFile::CodeItem* item = reinterpret_cast(data); HGraph* graph = builder.BuildGraph(*item); // Remove suspend checks, they cannot be executed in this context. ASSERT_NE(graph, nullptr); RemoveSuspendChecks(graph); RunCodeBaseline(graph, has_result, expected); } TEST(CodegenTest, ReturnVoid) { const uint16_t data[] = ZERO_REGISTER_CODE_ITEM(Instruction::RETURN_VOID); TestCode(data); } TEST(CodegenTest, CFG1) { const uint16_t data[] = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO | 0x100, Instruction::RETURN_VOID); TestCode(data); } TEST(CodegenTest, CFG2) { const uint16_t data[] = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO | 0x100, Instruction::GOTO | 0x100, Instruction::RETURN_VOID); TestCode(data); } TEST(CodegenTest, CFG3) { const uint16_t data1[] = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO | 0x200, Instruction::RETURN_VOID, Instruction::GOTO | 0xFF00); TestCode(data1); const uint16_t data2[] = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO_16, 3, Instruction::RETURN_VOID, Instruction::GOTO_16, 0xFFFF); TestCode(data2); const uint16_t data3[] = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO_32, 4, 0, Instruction::RETURN_VOID, Instruction::GOTO_32, 0xFFFF, 0xFFFF); TestCode(data3); } TEST(CodegenTest, CFG4) { const uint16_t data[] = ZERO_REGISTER_CODE_ITEM( Instruction::RETURN_VOID, Instruction::GOTO | 0x100, Instruction::GOTO | 0xFE00); TestCode(data); } TEST(CodegenTest, CFG5) { const uint16_t data[] = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::IF_EQ, 3, Instruction::GOTO | 0x100, Instruction::RETURN_VOID); TestCode(data); } TEST(CodegenTest, IntConstant) { const uint16_t data[] = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::RETURN_VOID); TestCode(data); } TEST(CodegenTest, Return1) { const uint16_t data[] = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::RETURN | 0); TestCode(data, true, 0); } TEST(CodegenTest, Return2) { const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::CONST_4 | 0 | 1 << 8, Instruction::RETURN | 1 << 8); TestCode(data, true, 0); } TEST(CodegenTest, Return3) { const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::CONST_4 | 1 << 8 | 1 << 12, Instruction::RETURN | 1 << 8); TestCode(data, true, 1); } TEST(CodegenTest, ReturnIf1) { const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::CONST_4 | 1 << 8 | 1 << 12, Instruction::IF_EQ, 3, Instruction::RETURN | 0 << 8, Instruction::RETURN | 1 << 8); TestCode(data, true, 1); } TEST(CodegenTest, ReturnIf2) { const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::CONST_4 | 1 << 8 | 1 << 12, Instruction::IF_EQ | 0 << 4 | 1 << 8, 3, Instruction::RETURN | 0 << 8, Instruction::RETURN | 1 << 8); TestCode(data, true, 0); } TEST(CodegenTest, ReturnAdd1) { const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 3 << 12 | 0, Instruction::CONST_4 | 4 << 12 | 1 << 8, Instruction::ADD_INT, 1 << 8 | 0, Instruction::RETURN); TestCode(data, true, 7); } TEST(CodegenTest, ReturnAdd2) { const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 3 << 12 | 0, Instruction::CONST_4 | 4 << 12 | 1 << 8, Instruction::ADD_INT_2ADDR | 1 << 12, Instruction::RETURN); TestCode(data, true, 7); } TEST(CodegenTest, ReturnAdd3) { const uint16_t data[] = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 4 << 12 | 0 << 8, Instruction::ADD_INT_LIT8, 3 << 8 | 0, Instruction::RETURN); TestCode(data, true, 7); } TEST(CodegenTest, ReturnAdd4) { const uint16_t data[] = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 4 << 12 | 0 << 8, Instruction::ADD_INT_LIT16, 3, Instruction::RETURN); TestCode(data, true, 7); } TEST(CodegenTest, NonMaterializedCondition) { ArenaPool pool; ArenaAllocator allocator(&pool); HGraph* graph = new (&allocator) HGraph(&allocator); HBasicBlock* entry = new (&allocator) HBasicBlock(graph); graph->AddBlock(entry); graph->SetEntryBlock(entry); entry->AddInstruction(new (&allocator) HGoto()); HBasicBlock* first_block = new (&allocator) HBasicBlock(graph); graph->AddBlock(first_block); entry->AddSuccessor(first_block); HIntConstant* constant0 = new (&allocator) HIntConstant(0); entry->AddInstruction(constant0); HIntConstant* constant1 = new (&allocator) HIntConstant(1); entry->AddInstruction(constant1); HEqual* equal = new (&allocator) HEqual(constant0, constant0); first_block->AddInstruction(equal); first_block->AddInstruction(new (&allocator) HIf(equal)); HBasicBlock* then = new (&allocator) HBasicBlock(graph); HBasicBlock* else_ = new (&allocator) HBasicBlock(graph); HBasicBlock* exit = new (&allocator) HBasicBlock(graph); graph->AddBlock(then); graph->AddBlock(else_); graph->AddBlock(exit); first_block->AddSuccessor(then); first_block->AddSuccessor(else_); then->AddSuccessor(exit); else_->AddSuccessor(exit); exit->AddInstruction(new (&allocator) HExit()); then->AddInstruction(new (&allocator) HReturn(constant0)); else_->AddInstruction(new (&allocator) HReturn(constant1)); ASSERT_TRUE(equal->NeedsMaterialization()); graph->BuildDominatorTree(); PrepareForRegisterAllocation(graph).Run(); ASSERT_FALSE(equal->NeedsMaterialization()); auto hook_before_codegen = [](HGraph* graph) { HBasicBlock* block = graph->GetEntryBlock()->GetSuccessors().Get(0); HParallelMove* move = new (graph->GetArena()) HParallelMove(graph->GetArena()); block->InsertInstructionBefore(move, block->GetLastInstruction()); }; RunCodeOptimized(graph, hook_before_codegen, true, 0); } #define MUL_TEST(TYPE, TEST_NAME) \ TEST(CodegenTest, Return ## TEST_NAME) { \ const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( \ Instruction::CONST_4 | 3 << 12 | 0, \ Instruction::CONST_4 | 4 << 12 | 1 << 8, \ Instruction::MUL_ ## TYPE, 1 << 8 | 0, \ Instruction::RETURN); \ \ TestCode(data, true, 12); \ } \ \ TEST(CodegenTest, Return ## TEST_NAME ## 2addr) { \ const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( \ Instruction::CONST_4 | 3 << 12 | 0, \ Instruction::CONST_4 | 4 << 12 | 1 << 8, \ Instruction::MUL_ ## TYPE ## _2ADDR | 1 << 12, \ Instruction::RETURN); \ \ TestCode(data, true, 12); \ } MUL_TEST(INT, MulInt); MUL_TEST(LONG, MulLong); // MUL_TEST(FLOAT, Float); // MUL_TEST(DOUBLE, Double); TEST(CodegenTest, ReturnMulIntLit8) { const uint16_t data[] = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 4 << 12 | 0 << 8, Instruction::MUL_INT_LIT8, 3 << 8 | 0, Instruction::RETURN); TestCode(data, true, 12); } TEST(CodegenTest, ReturnMulIntLit16) { const uint16_t data[] = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 4 << 12 | 0 << 8, Instruction::MUL_INT_LIT16, 3, Instruction::RETURN); TestCode(data, true, 12); } } // namespace art