/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "code_generator_arm.h" #include "arch/arm/instruction_set_features_arm.h" #include "art_method.h" #include "code_generator_utils.h" #include "compiled_method.h" #include "entrypoints/quick/quick_entrypoints.h" #include "gc/accounting/card_table.h" #include "intrinsics.h" #include "intrinsics_arm.h" #include "mirror/array-inl.h" #include "mirror/class-inl.h" #include "thread.h" #include "utils/arm/assembler_arm.h" #include "utils/arm/managed_register_arm.h" #include "utils/assembler.h" #include "utils/stack_checks.h" namespace art { template class GcRoot; namespace arm { static bool ExpectedPairLayout(Location location) { // We expected this for both core and fpu register pairs. return ((location.low() & 1) == 0) && (location.low() + 1 == location.high()); } static constexpr int kCurrentMethodStackOffset = 0; static constexpr Register kMethodRegisterArgument = R0; static constexpr Register kCoreAlwaysSpillRegister = R5; static constexpr Register kCoreCalleeSaves[] = { R5, R6, R7, R8, R10, R11, LR }; static constexpr SRegister kFpuCalleeSaves[] = { S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31 }; // D31 cannot be split into two S registers, and the register allocator only works on // S registers. Therefore there is no need to block it. static constexpr DRegister DTMP = D31; static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7; // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. #define __ down_cast(codegen->GetAssembler())-> // NOLINT #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArmPointerSize, x).Int32Value() static constexpr int kRegListThreshold = 4; // SaveLiveRegisters and RestoreLiveRegisters from SlowPathCodeARM operate on sets of S registers, // for each live D registers they treat two corresponding S registers as live ones. // // Two following functions (SaveContiguousSRegisterList, RestoreContiguousSRegisterList) build // from a list of contiguous S registers a list of contiguous D registers (processing first/last // S registers corner cases) and save/restore this new list treating them as D registers. // - decreasing code size // - avoiding hazards on Cortex-A57, when a pair of S registers for an actual live D register is // restored and then used in regular non SlowPath code as D register. // // For the following example (v means the S register is live): // D names: | D0 | D1 | D2 | D4 | ... // S names: | S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | ... // Live? | | v | v | v | v | v | v | | ... // // S1 and S6 will be saved/restored independently; D registers list (D1, D2) will be processed // as D registers. static size_t SaveContiguousSRegisterList(size_t first, size_t last, CodeGenerator* codegen, size_t stack_offset) { DCHECK_LE(first, last); if ((first == last) && (first == 0)) { stack_offset += codegen->SaveFloatingPointRegister(stack_offset, first); return stack_offset; } if (first % 2 == 1) { stack_offset += codegen->SaveFloatingPointRegister(stack_offset, first++); } bool save_last = false; if (last % 2 == 0) { save_last = true; --last; } if (first < last) { DRegister d_reg = static_cast(first / 2); DCHECK_EQ((last - first + 1) % 2, 0u); size_t number_of_d_regs = (last - first + 1) / 2; if (number_of_d_regs == 1) { __ StoreDToOffset(d_reg, SP, stack_offset); } else if (number_of_d_regs > 1) { __ add(IP, SP, ShifterOperand(stack_offset)); __ vstmiad(IP, d_reg, number_of_d_regs); } stack_offset += number_of_d_regs * kArmWordSize * 2; } if (save_last) { stack_offset += codegen->SaveFloatingPointRegister(stack_offset, last + 1); } return stack_offset; } static size_t RestoreContiguousSRegisterList(size_t first, size_t last, CodeGenerator* codegen, size_t stack_offset) { DCHECK_LE(first, last); if ((first == last) && (first == 0)) { stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, first); return stack_offset; } if (first % 2 == 1) { stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, first++); } bool restore_last = false; if (last % 2 == 0) { restore_last = true; --last; } if (first < last) { DRegister d_reg = static_cast(first / 2); DCHECK_EQ((last - first + 1) % 2, 0u); size_t number_of_d_regs = (last - first + 1) / 2; if (number_of_d_regs == 1) { __ LoadDFromOffset(d_reg, SP, stack_offset); } else if (number_of_d_regs > 1) { __ add(IP, SP, ShifterOperand(stack_offset)); __ vldmiad(IP, d_reg, number_of_d_regs); } stack_offset += number_of_d_regs * kArmWordSize * 2; } if (restore_last) { stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, last + 1); } return stack_offset; } void SlowPathCodeARM::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); size_t orig_offset = stack_offset; const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true); for (uint32_t i : LowToHighBits(core_spills)) { // If the register holds an object, update the stack mask. if (locations->RegisterContainsObject(i)) { locations->SetStackBit(stack_offset / kVRegSize); } DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); saved_core_stack_offsets_[i] = stack_offset; stack_offset += kArmWordSize; } int reg_num = POPCOUNT(core_spills); if (reg_num != 0) { if (reg_num > kRegListThreshold) { __ StoreList(RegList(core_spills), orig_offset); } else { stack_offset = orig_offset; for (uint32_t i : LowToHighBits(core_spills)) { stack_offset += codegen->SaveCoreRegister(stack_offset, i); } } } uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false); orig_offset = stack_offset; for (uint32_t i : LowToHighBits(fp_spills)) { DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); saved_fpu_stack_offsets_[i] = stack_offset; stack_offset += kArmWordSize; } stack_offset = orig_offset; while (fp_spills != 0u) { uint32_t begin = CTZ(fp_spills); uint32_t tmp = fp_spills + (1u << begin); fp_spills &= tmp; // Clear the contiguous range of 1s. uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp); // CTZ(0) is undefined. stack_offset = SaveContiguousSRegisterList(begin, end - 1, codegen, stack_offset); } DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); } void SlowPathCodeARM::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); size_t orig_offset = stack_offset; const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true); for (uint32_t i : LowToHighBits(core_spills)) { DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); stack_offset += kArmWordSize; } int reg_num = POPCOUNT(core_spills); if (reg_num != 0) { if (reg_num > kRegListThreshold) { __ LoadList(RegList(core_spills), orig_offset); } else { stack_offset = orig_offset; for (uint32_t i : LowToHighBits(core_spills)) { stack_offset += codegen->RestoreCoreRegister(stack_offset, i); } } } uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false); while (fp_spills != 0u) { uint32_t begin = CTZ(fp_spills); uint32_t tmp = fp_spills + (1u << begin); fp_spills &= tmp; // Clear the contiguous range of 1s. uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp); // CTZ(0) is undefined. stack_offset = RestoreContiguousSRegisterList(begin, end - 1, codegen, stack_offset); } DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); } class NullCheckSlowPathARM : public SlowPathCodeARM { public: explicit NullCheckSlowPathARM(HNullCheck* instruction) : SlowPathCodeARM(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorARM* arm_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); if (instruction_->CanThrowIntoCatchBlock()) { // Live registers will be restored in the catch block if caught. SaveLiveRegisters(codegen, instruction_->GetLocations()); } arm_codegen->InvokeRuntime(kQuickThrowNullPointer, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); } bool IsFatal() const OVERRIDE { return true; } const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathARM"; } private: DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM); }; class DivZeroCheckSlowPathARM : public SlowPathCodeARM { public: explicit DivZeroCheckSlowPathARM(HDivZeroCheck* instruction) : SlowPathCodeARM(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorARM* arm_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); arm_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); } bool IsFatal() const OVERRIDE { return true; } const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathARM"; } private: DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM); }; class SuspendCheckSlowPathARM : public SlowPathCodeARM { public: SuspendCheckSlowPathARM(HSuspendCheck* instruction, HBasicBlock* successor) : SlowPathCodeARM(instruction), successor_(successor) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorARM* arm_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); arm_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); if (successor_ == nullptr) { __ b(GetReturnLabel()); } else { __ b(arm_codegen->GetLabelOf(successor_)); } } Label* GetReturnLabel() { DCHECK(successor_ == nullptr); return &return_label_; } HBasicBlock* GetSuccessor() const { return successor_; } const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathARM"; } private: // If not null, the block to branch to after the suspend check. HBasicBlock* const successor_; // If `successor_` is null, the label to branch to after the suspend check. Label return_label_; DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM); }; class BoundsCheckSlowPathARM : public SlowPathCodeARM { public: explicit BoundsCheckSlowPathARM(HBoundsCheck* instruction) : SlowPathCodeARM(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorARM* arm_codegen = down_cast(codegen); LocationSummary* locations = instruction_->GetLocations(); __ Bind(GetEntryLabel()); if (instruction_->CanThrowIntoCatchBlock()) { // Live registers will be restored in the catch block if caught. SaveLiveRegisters(codegen, instruction_->GetLocations()); } // We're moving two locations to locations that could overlap, so we need a parallel // move resolver. InvokeRuntimeCallingConvention calling_convention; codegen->EmitParallelMoves( locations->InAt(0), Location::RegisterLocation(calling_convention.GetRegisterAt(0)), Primitive::kPrimInt, locations->InAt(1), Location::RegisterLocation(calling_convention.GetRegisterAt(1)), Primitive::kPrimInt); QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt() ? kQuickThrowStringBounds : kQuickThrowArrayBounds; arm_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); CheckEntrypointTypes(); } bool IsFatal() const OVERRIDE { return true; } const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathARM"; } private: DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM); }; class LoadClassSlowPathARM : public SlowPathCodeARM { public: LoadClassSlowPathARM(HLoadClass* cls, HInstruction* at, uint32_t dex_pc, bool do_clinit) : SlowPathCodeARM(at), cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) { DCHECK(at->IsLoadClass() || at->IsClinitCheck()); } void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = at_->GetLocations(); CodeGeneratorARM* arm_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; __ LoadImmediate(calling_convention.GetRegisterAt(0), cls_->GetTypeIndex()); QuickEntrypointEnum entrypoint = do_clinit_ ? kQuickInitializeStaticStorage : kQuickInitializeType; arm_codegen->InvokeRuntime(entrypoint, at_, dex_pc_, this); if (do_clinit_) { CheckEntrypointTypes(); } else { CheckEntrypointTypes(); } // Move the class to the desired location. Location out = locations->Out(); if (out.IsValid()) { DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0)); } RestoreLiveRegisters(codegen, locations); __ b(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathARM"; } private: // The class this slow path will load. HLoadClass* const cls_; // The instruction where this slow path is happening. // (Might be the load class or an initialization check). HInstruction* const at_; // The dex PC of `at_`. const uint32_t dex_pc_; // Whether to initialize the class. const bool do_clinit_; DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM); }; class LoadStringSlowPathARM : public SlowPathCodeARM { public: explicit LoadStringSlowPathARM(HLoadString* instruction) : SlowPathCodeARM(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); HLoadString* load = instruction_->AsLoadString(); const uint32_t string_index = load->GetStringIndex(); Register out = locations->Out().AsRegister(); Register temp = locations->GetTemp(0).AsRegister(); constexpr bool call_saves_everything_except_r0 = (!kUseReadBarrier || kUseBakerReadBarrier); CodeGeneratorARM* arm_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; // In the unlucky case that the `temp` is R0, we preserve the address in `out` across // the kSaveEverything call (or use `out` for the address after non-kSaveEverything call). bool temp_is_r0 = (temp == calling_convention.GetRegisterAt(0)); Register entry_address = temp_is_r0 ? out : temp; DCHECK_NE(entry_address, calling_convention.GetRegisterAt(0)); if (call_saves_everything_except_r0 && temp_is_r0) { __ mov(entry_address, ShifterOperand(temp)); } __ LoadImmediate(calling_convention.GetRegisterAt(0), string_index); arm_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); // Store the resolved String to the .bss entry. if (call_saves_everything_except_r0) { // The string entry address was preserved in `entry_address` thanks to kSaveEverything. __ str(R0, Address(entry_address)); } else { // For non-Baker read barrier, we need to re-calculate the address of the string entry. CodeGeneratorARM::PcRelativePatchInfo* labels = arm_codegen->NewPcRelativeStringPatch(load->GetDexFile(), string_index); __ BindTrackedLabel(&labels->movw_label); __ movw(entry_address, /* placeholder */ 0u); __ BindTrackedLabel(&labels->movt_label); __ movt(entry_address, /* placeholder */ 0u); __ BindTrackedLabel(&labels->add_pc_label); __ add(entry_address, entry_address, ShifterOperand(PC)); __ str(R0, Address(entry_address)); } arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0)); RestoreLiveRegisters(codegen, locations); __ b(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathARM"; } private: DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM); }; class TypeCheckSlowPathARM : public SlowPathCodeARM { public: TypeCheckSlowPathARM(HInstruction* instruction, bool is_fatal) : SlowPathCodeARM(instruction), is_fatal_(is_fatal) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); DCHECK(instruction_->IsCheckCast() || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); CodeGeneratorARM* arm_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); if (!is_fatal_) { SaveLiveRegisters(codegen, locations); } // We're moving two locations to locations that could overlap, so we need a parallel // move resolver. InvokeRuntimeCallingConvention calling_convention; codegen->EmitParallelMoves(locations->InAt(0), Location::RegisterLocation(calling_convention.GetRegisterAt(0)), Primitive::kPrimNot, locations->InAt(1), Location::RegisterLocation(calling_convention.GetRegisterAt(1)), Primitive::kPrimNot); if (instruction_->IsInstanceOf()) { arm_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0)); } else { DCHECK(instruction_->IsCheckCast()); arm_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); } if (!is_fatal_) { RestoreLiveRegisters(codegen, locations); __ b(GetExitLabel()); } } const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathARM"; } bool IsFatal() const OVERRIDE { return is_fatal_; } private: const bool is_fatal_; DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM); }; class DeoptimizationSlowPathARM : public SlowPathCodeARM { public: explicit DeoptimizationSlowPathARM(HDeoptimize* instruction) : SlowPathCodeARM(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorARM* arm_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); arm_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); } const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathARM"; } private: DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM); }; class ArraySetSlowPathARM : public SlowPathCodeARM { public: explicit ArraySetSlowPathARM(HInstruction* instruction) : SlowPathCodeARM(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; HParallelMove parallel_move(codegen->GetGraph()->GetArena()); parallel_move.AddMove( locations->InAt(0), Location::RegisterLocation(calling_convention.GetRegisterAt(0)), Primitive::kPrimNot, nullptr); parallel_move.AddMove( locations->InAt(1), Location::RegisterLocation(calling_convention.GetRegisterAt(1)), Primitive::kPrimInt, nullptr); parallel_move.AddMove( locations->InAt(2), Location::RegisterLocation(calling_convention.GetRegisterAt(2)), Primitive::kPrimNot, nullptr); codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); CodeGeneratorARM* arm_codegen = down_cast(codegen); arm_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); RestoreLiveRegisters(codegen, locations); __ b(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathARM"; } private: DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM); }; // Slow path marking an object reference `ref` during a read // barrier. The field `obj.field` in the object `obj` holding this // reference does not get updated by this slow path after marking (see // ReadBarrierMarkAndUpdateFieldSlowPathARM below for that). // // This means that after the execution of this slow path, `ref` will // always be up-to-date, but `obj.field` may not; i.e., after the // flip, `ref` will be a to-space reference, but `obj.field` will // probably still be a from-space reference (unless it gets updated by // another thread, or if another thread installed another object // reference (different from `ref`) in `obj.field`). class ReadBarrierMarkSlowPathARM : public SlowPathCodeARM { public: ReadBarrierMarkSlowPathARM(HInstruction* instruction, Location ref, Location entrypoint = Location::NoLocation()) : SlowPathCodeARM(instruction), ref_(ref), entrypoint_(entrypoint) { DCHECK(kEmitCompilerReadBarrier); } const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathARM"; } void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); Register ref_reg = ref_.AsRegister(); DCHECK(locations->CanCall()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg; DCHECK(instruction_->IsInstanceFieldGet() || instruction_->IsStaticFieldGet() || instruction_->IsArrayGet() || instruction_->IsArraySet() || instruction_->IsLoadClass() || instruction_->IsLoadString() || instruction_->IsInstanceOf() || instruction_->IsCheckCast() || (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()) || (instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified())) << "Unexpected instruction in read barrier marking slow path: " << instruction_->DebugName(); // The read barrier instrumentation of object ArrayGet // instructions does not support the HIntermediateAddress // instruction. DCHECK(!(instruction_->IsArrayGet() && instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress())); __ Bind(GetEntryLabel()); // No need to save live registers; it's taken care of by the // entrypoint. Also, there is no need to update the stack mask, // as this runtime call will not trigger a garbage collection. CodeGeneratorARM* arm_codegen = down_cast(codegen); DCHECK_NE(ref_reg, SP); DCHECK_NE(ref_reg, LR); DCHECK_NE(ref_reg, PC); // IP is used internally by the ReadBarrierMarkRegX entry point // as a temporary, it cannot be the entry point's input/output. DCHECK_NE(ref_reg, IP); DCHECK(0 <= ref_reg && ref_reg < kNumberOfCoreRegisters) << ref_reg; // "Compact" slow path, saving two moves. // // Instead of using the standard runtime calling convention (input // and output in R0): // // R0 <- ref // R0 <- ReadBarrierMark(R0) // ref <- R0 // // we just use rX (the register containing `ref`) as input and output // of a dedicated entrypoint: // // rX <- ReadBarrierMarkRegX(rX) // if (entrypoint_.IsValid()) { arm_codegen->ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction_, this); __ blx(entrypoint_.AsRegister()); } else { int32_t entry_point_offset = CodeGenerator::GetReadBarrierMarkEntryPointsOffset(ref_reg); // This runtime call does not require a stack map. arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); } __ b(GetExitLabel()); } private: // The location (register) of the marked object reference. const Location ref_; // The location of the entrypoint if already loaded. const Location entrypoint_; DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathARM); }; // Slow path marking an object reference `ref` during a read barrier, // and if needed, atomically updating the field `obj.field` in the // object `obj` holding this reference after marking (contrary to // ReadBarrierMarkSlowPathARM above, which never tries to update // `obj.field`). // // This means that after the execution of this slow path, both `ref` // and `obj.field` will be up-to-date; i.e., after the flip, both will // hold the same to-space reference (unless another thread installed // another object reference (different from `ref`) in `obj.field`). class ReadBarrierMarkAndUpdateFieldSlowPathARM : public SlowPathCodeARM { public: ReadBarrierMarkAndUpdateFieldSlowPathARM(HInstruction* instruction, Location ref, Register obj, Location field_offset, Register temp1, Register temp2) : SlowPathCodeARM(instruction), ref_(ref), obj_(obj), field_offset_(field_offset), temp1_(temp1), temp2_(temp2) { DCHECK(kEmitCompilerReadBarrier); } const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkAndUpdateFieldSlowPathARM"; } void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); Register ref_reg = ref_.AsRegister(); DCHECK(locations->CanCall()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg; // This slow path is only used by the UnsafeCASObject intrinsic. DCHECK((instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified())) << "Unexpected instruction in read barrier marking and field updating slow path: " << instruction_->DebugName(); DCHECK(instruction_->GetLocations()->Intrinsified()); DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kUnsafeCASObject); DCHECK(field_offset_.IsRegisterPair()) << field_offset_; __ Bind(GetEntryLabel()); // Save the old reference. // Note that we cannot use IP to save the old reference, as IP is // used internally by the ReadBarrierMarkRegX entry point, and we // need the old reference after the call to that entry point. DCHECK_NE(temp1_, IP); __ Mov(temp1_, ref_reg); // No need to save live registers; it's taken care of by the // entrypoint. Also, there is no need to update the stack mask, // as this runtime call will not trigger a garbage collection. CodeGeneratorARM* arm_codegen = down_cast(codegen); DCHECK_NE(ref_reg, SP); DCHECK_NE(ref_reg, LR); DCHECK_NE(ref_reg, PC); // IP is used internally by the ReadBarrierMarkRegX entry point // as a temporary, it cannot be the entry point's input/output. DCHECK_NE(ref_reg, IP); DCHECK(0 <= ref_reg && ref_reg < kNumberOfCoreRegisters) << ref_reg; // "Compact" slow path, saving two moves. // // Instead of using the standard runtime calling convention (input // and output in R0): // // R0 <- ref // R0 <- ReadBarrierMark(R0) // ref <- R0 // // we just use rX (the register containing `ref`) as input and output // of a dedicated entrypoint: // // rX <- ReadBarrierMarkRegX(rX) // int32_t entry_point_offset = CodeGenerator::GetReadBarrierMarkEntryPointsOffset(ref_reg); // This runtime call does not require a stack map. arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); // If the new reference is different from the old reference, // update the field in the holder (`*(obj_ + field_offset_)`). // // Note that this field could also hold a different object, if // another thread had concurrently changed it. In that case, the // LDREX/SUBS/ITNE sequence of instructions in the compare-and-set // (CAS) operation below would abort the CAS, leaving the field // as-is. Label done; __ cmp(temp1_, ShifterOperand(ref_reg)); __ b(&done, EQ); // Update the the holder's field atomically. This may fail if // mutator updates before us, but it's OK. This is achieved // using a strong compare-and-set (CAS) operation with relaxed // memory synchronization ordering, where the expected value is // the old reference and the desired value is the new reference. // Convenience aliases. Register base = obj_; // The UnsafeCASObject intrinsic uses a register pair as field // offset ("long offset"), of which only the low part contains // data. Register offset = field_offset_.AsRegisterPairLow(); Register expected = temp1_; Register value = ref_reg; Register tmp_ptr = IP; // Pointer to actual memory. Register tmp = temp2_; // Value in memory. __ add(tmp_ptr, base, ShifterOperand(offset)); if (kPoisonHeapReferences) { __ PoisonHeapReference(expected); if (value == expected) { // Do not poison `value`, as it is the same register as // `expected`, which has just been poisoned. } else { __ PoisonHeapReference(value); } } // do { // tmp = [r_ptr] - expected; // } while (tmp == 0 && failure([r_ptr] <- r_new_value)); Label loop_head, exit_loop; __ Bind(&loop_head); __ ldrex(tmp, tmp_ptr); __ subs(tmp, tmp, ShifterOperand(expected)); __ it(NE); __ clrex(NE); __ b(&exit_loop, NE); __ strex(tmp, value, tmp_ptr); __ cmp(tmp, ShifterOperand(1)); __ b(&loop_head, EQ); __ Bind(&exit_loop); if (kPoisonHeapReferences) { __ UnpoisonHeapReference(expected); if (value == expected) { // Do not unpoison `value`, as it is the same register as // `expected`, which has just been unpoisoned. } else { __ UnpoisonHeapReference(value); } } __ Bind(&done); __ b(GetExitLabel()); } private: // The location (register) of the marked object reference. const Location ref_; // The register containing the object holding the marked object reference field. const Register obj_; // The location of the offset of the marked reference field within `obj_`. Location field_offset_; const Register temp1_; const Register temp2_; DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkAndUpdateFieldSlowPathARM); }; // Slow path generating a read barrier for a heap reference. class ReadBarrierForHeapReferenceSlowPathARM : public SlowPathCodeARM { public: ReadBarrierForHeapReferenceSlowPathARM(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index) : SlowPathCodeARM(instruction), out_(out), ref_(ref), obj_(obj), offset_(offset), index_(index) { DCHECK(kEmitCompilerReadBarrier); // If `obj` is equal to `out` or `ref`, it means the initial object // has been overwritten by (or after) the heap object reference load // to be instrumented, e.g.: // // __ LoadFromOffset(kLoadWord, out, out, offset); // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset); // // In that case, we have lost the information about the original // object, and the emitted read barrier cannot work properly. DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out; DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref; } void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorARM* arm_codegen = down_cast(codegen); LocationSummary* locations = instruction_->GetLocations(); Register reg_out = out_.AsRegister(); DCHECK(locations->CanCall()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out)); DCHECK(instruction_->IsInstanceFieldGet() || instruction_->IsStaticFieldGet() || instruction_->IsArrayGet() || instruction_->IsInstanceOf() || instruction_->IsCheckCast() || (instruction_->IsInvokeVirtual()) && instruction_->GetLocations()->Intrinsified()) << "Unexpected instruction in read barrier for heap reference slow path: " << instruction_->DebugName(); // The read barrier instrumentation of object ArrayGet // instructions does not support the HIntermediateAddress // instruction. DCHECK(!(instruction_->IsArrayGet() && instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress())); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); // We may have to change the index's value, but as `index_` is a // constant member (like other "inputs" of this slow path), // introduce a copy of it, `index`. Location index = index_; if (index_.IsValid()) { // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics. if (instruction_->IsArrayGet()) { // Compute the actual memory offset and store it in `index`. Register index_reg = index_.AsRegister(); DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg)); if (codegen->IsCoreCalleeSaveRegister(index_reg)) { // We are about to change the value of `index_reg` (see the // calls to art::arm::Thumb2Assembler::Lsl and // art::arm::Thumb2Assembler::AddConstant below), but it has // not been saved by the previous call to // art::SlowPathCode::SaveLiveRegisters, as it is a // callee-save register -- // art::SlowPathCode::SaveLiveRegisters does not consider // callee-save registers, as it has been designed with the // assumption that callee-save registers are supposed to be // handled by the called function. So, as a callee-save // register, `index_reg` _would_ eventually be saved onto // the stack, but it would be too late: we would have // changed its value earlier. Therefore, we manually save // it here into another freely available register, // `free_reg`, chosen of course among the caller-save // registers (as a callee-save `free_reg` register would // exhibit the same problem). // // Note we could have requested a temporary register from // the register allocator instead; but we prefer not to, as // this is a slow path, and we know we can find a // caller-save register that is available. Register free_reg = FindAvailableCallerSaveRegister(codegen); __ Mov(free_reg, index_reg); index_reg = free_reg; index = Location::RegisterLocation(index_reg); } else { // The initial register stored in `index_` has already been // saved in the call to art::SlowPathCode::SaveLiveRegisters // (as it is not a callee-save register), so we can freely // use it. } // Shifting the index value contained in `index_reg` by the scale // factor (2) cannot overflow in practice, as the runtime is // unable to allocate object arrays with a size larger than // 2^26 - 1 (that is, 2^28 - 4 bytes). __ Lsl(index_reg, index_reg, TIMES_4); static_assert( sizeof(mirror::HeapReference) == sizeof(int32_t), "art::mirror::HeapReference and int32_t have different sizes."); __ AddConstant(index_reg, index_reg, offset_); } else { // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile // intrinsics, `index_` is not shifted by a scale factor of 2 // (as in the case of ArrayGet), as it is actually an offset // to an object field within an object. DCHECK(instruction_->IsInvoke()) << instruction_->DebugName(); DCHECK(instruction_->GetLocations()->Intrinsified()); DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) || (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile)) << instruction_->AsInvoke()->GetIntrinsic(); DCHECK_EQ(offset_, 0U); DCHECK(index_.IsRegisterPair()); // UnsafeGet's offset location is a register pair, the low // part contains the correct offset. index = index_.ToLow(); } } // We're moving two or three locations to locations that could // overlap, so we need a parallel move resolver. InvokeRuntimeCallingConvention calling_convention; HParallelMove parallel_move(codegen->GetGraph()->GetArena()); parallel_move.AddMove(ref_, Location::RegisterLocation(calling_convention.GetRegisterAt(0)), Primitive::kPrimNot, nullptr); parallel_move.AddMove(obj_, Location::RegisterLocation(calling_convention.GetRegisterAt(1)), Primitive::kPrimNot, nullptr); if (index.IsValid()) { parallel_move.AddMove(index, Location::RegisterLocation(calling_convention.GetRegisterAt(2)), Primitive::kPrimInt, nullptr); codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); } else { codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); __ LoadImmediate(calling_convention.GetRegisterAt(2), offset_); } arm_codegen->InvokeRuntime(kQuickReadBarrierSlow, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes< kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>(); arm_codegen->Move32(out_, Location::RegisterLocation(R0)); RestoreLiveRegisters(codegen, locations); __ b(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathARM"; } private: Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) { size_t ref = static_cast(ref_.AsRegister()); size_t obj = static_cast(obj_.AsRegister()); for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) { return static_cast(i); } } // We shall never fail to find a free caller-save register, as // there are more than two core caller-save registers on ARM // (meaning it is possible to find one which is different from // `ref` and `obj`). DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u); LOG(FATAL) << "Could not find a free caller-save register"; UNREACHABLE(); } const Location out_; const Location ref_; const Location obj_; const uint32_t offset_; // An additional location containing an index to an array. // Only used for HArrayGet and the UnsafeGetObject & // UnsafeGetObjectVolatile intrinsics. const Location index_; DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM); }; // Slow path generating a read barrier for a GC root. class ReadBarrierForRootSlowPathARM : public SlowPathCodeARM { public: ReadBarrierForRootSlowPathARM(HInstruction* instruction, Location out, Location root) : SlowPathCodeARM(instruction), out_(out), root_(root) { DCHECK(kEmitCompilerReadBarrier); } void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); Register reg_out = out_.AsRegister(); DCHECK(locations->CanCall()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out)); DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString()) << "Unexpected instruction in read barrier for GC root slow path: " << instruction_->DebugName(); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; CodeGeneratorARM* arm_codegen = down_cast(codegen); arm_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), root_); arm_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes*>(); arm_codegen->Move32(out_, Location::RegisterLocation(R0)); RestoreLiveRegisters(codegen, locations); __ b(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathARM"; } private: const Location out_; const Location root_; DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM); }; #undef __ // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. #define __ down_cast(GetAssembler())-> // NOLINT inline Condition ARMCondition(IfCondition cond) { switch (cond) { case kCondEQ: return EQ; case kCondNE: return NE; case kCondLT: return LT; case kCondLE: return LE; case kCondGT: return GT; case kCondGE: return GE; case kCondB: return LO; case kCondBE: return LS; case kCondA: return HI; case kCondAE: return HS; } LOG(FATAL) << "Unreachable"; UNREACHABLE(); } // Maps signed condition to unsigned condition. inline Condition ARMUnsignedCondition(IfCondition cond) { switch (cond) { case kCondEQ: return EQ; case kCondNE: return NE; // Signed to unsigned. case kCondLT: return LO; case kCondLE: return LS; case kCondGT: return HI; case kCondGE: return HS; // Unsigned remain unchanged. case kCondB: return LO; case kCondBE: return LS; case kCondA: return HI; case kCondAE: return HS; } LOG(FATAL) << "Unreachable"; UNREACHABLE(); } inline Condition ARMFPCondition(IfCondition cond, bool gt_bias) { // The ARM condition codes can express all the necessary branches, see the // "Meaning (floating-point)" column in the table A8-1 of the ARMv7 reference manual. // There is no dex instruction or HIR that would need the missing conditions // "equal or unordered" or "not equal". switch (cond) { case kCondEQ: return EQ; case kCondNE: return NE /* unordered */; case kCondLT: return gt_bias ? CC : LT /* unordered */; case kCondLE: return gt_bias ? LS : LE /* unordered */; case kCondGT: return gt_bias ? HI /* unordered */ : GT; case kCondGE: return gt_bias ? CS /* unordered */ : GE; default: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } } void CodeGeneratorARM::DumpCoreRegister(std::ostream& stream, int reg) const { stream << Register(reg); } void CodeGeneratorARM::DumpFloatingPointRegister(std::ostream& stream, int reg) const { stream << SRegister(reg); } size_t CodeGeneratorARM::SaveCoreRegister(size_t stack_index, uint32_t reg_id) { __ StoreToOffset(kStoreWord, static_cast(reg_id), SP, stack_index); return kArmWordSize; } size_t CodeGeneratorARM::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) { __ LoadFromOffset(kLoadWord, static_cast(reg_id), SP, stack_index); return kArmWordSize; } size_t CodeGeneratorARM::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) { __ StoreSToOffset(static_cast(reg_id), SP, stack_index); return kArmWordSize; } size_t CodeGeneratorARM::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) { __ LoadSFromOffset(static_cast(reg_id), SP, stack_index); return kArmWordSize; } CodeGeneratorARM::CodeGeneratorARM(HGraph* graph, const ArmInstructionSetFeatures& isa_features, const CompilerOptions& compiler_options, OptimizingCompilerStats* stats) : CodeGenerator(graph, kNumberOfCoreRegisters, kNumberOfSRegisters, kNumberOfRegisterPairs, ComputeRegisterMask(reinterpret_cast(kCoreCalleeSaves), arraysize(kCoreCalleeSaves)), ComputeRegisterMask(reinterpret_cast(kFpuCalleeSaves), arraysize(kFpuCalleeSaves)), compiler_options, stats), block_labels_(nullptr), location_builder_(graph, this), instruction_visitor_(graph, this), move_resolver_(graph->GetArena(), this), assembler_(graph->GetArena()), isa_features_(isa_features), uint32_literals_(std::less(), graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), method_patches_(MethodReferenceComparator(), graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), call_patches_(MethodReferenceComparator(), graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), relative_call_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), boot_image_string_patches_(StringReferenceValueComparator(), graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), pc_relative_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), boot_image_type_patches_(TypeReferenceValueComparator(), graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), pc_relative_type_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), boot_image_address_patches_(std::less(), graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), jit_string_patches_(StringReferenceValueComparator(), graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) { // Always save the LR register to mimic Quick. AddAllocatedRegister(Location::RegisterLocation(LR)); } void CodeGeneratorARM::Finalize(CodeAllocator* allocator) { // Ensure that we fix up branches and literal loads and emit the literal pool. __ FinalizeCode(); // Adjust native pc offsets in stack maps. for (size_t i = 0, num = stack_map_stream_.GetNumberOfStackMaps(); i != num; ++i) { uint32_t old_position = stack_map_stream_.GetStackMap(i).native_pc_offset; uint32_t new_position = __ GetAdjustedPosition(old_position); stack_map_stream_.SetStackMapNativePcOffset(i, new_position); } // Adjust pc offsets for the disassembly information. if (disasm_info_ != nullptr) { GeneratedCodeInterval* frame_entry_interval = disasm_info_->GetFrameEntryInterval(); frame_entry_interval->start = __ GetAdjustedPosition(frame_entry_interval->start); frame_entry_interval->end = __ GetAdjustedPosition(frame_entry_interval->end); for (auto& it : *disasm_info_->GetInstructionIntervals()) { it.second.start = __ GetAdjustedPosition(it.second.start); it.second.end = __ GetAdjustedPosition(it.second.end); } for (auto& it : *disasm_info_->GetSlowPathIntervals()) { it.code_interval.start = __ GetAdjustedPosition(it.code_interval.start); it.code_interval.end = __ GetAdjustedPosition(it.code_interval.end); } } CodeGenerator::Finalize(allocator); } void CodeGeneratorARM::SetupBlockedRegisters() const { // Stack register, LR and PC are always reserved. blocked_core_registers_[SP] = true; blocked_core_registers_[LR] = true; blocked_core_registers_[PC] = true; // Reserve thread register. blocked_core_registers_[TR] = true; // Reserve temp register. blocked_core_registers_[IP] = true; if (GetGraph()->IsDebuggable()) { // Stubs do not save callee-save floating point registers. If the graph // is debuggable, we need to deal with these registers differently. For // now, just block them. for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) { blocked_fpu_registers_[kFpuCalleeSaves[i]] = true; } } } InstructionCodeGeneratorARM::InstructionCodeGeneratorARM(HGraph* graph, CodeGeneratorARM* codegen) : InstructionCodeGenerator(graph, codegen), assembler_(codegen->GetAssembler()), codegen_(codegen) {} void CodeGeneratorARM::ComputeSpillMask() { core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_; DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved"; // There is no easy instruction to restore just the PC on thumb2. We spill and // restore another arbitrary register. core_spill_mask_ |= (1 << kCoreAlwaysSpillRegister); fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_; // We use vpush and vpop for saving and restoring floating point registers, which take // a SRegister and the number of registers to save/restore after that SRegister. We // therefore update the `fpu_spill_mask_` to also contain those registers not allocated, // but in the range. if (fpu_spill_mask_ != 0) { uint32_t least_significant_bit = LeastSignificantBit(fpu_spill_mask_); uint32_t most_significant_bit = MostSignificantBit(fpu_spill_mask_); for (uint32_t i = least_significant_bit + 1 ; i < most_significant_bit; ++i) { fpu_spill_mask_ |= (1 << i); } } } static dwarf::Reg DWARFReg(Register reg) { return dwarf::Reg::ArmCore(static_cast(reg)); } static dwarf::Reg DWARFReg(SRegister reg) { return dwarf::Reg::ArmFp(static_cast(reg)); } void CodeGeneratorARM::GenerateFrameEntry() { bool skip_overflow_check = IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm); DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks()); __ Bind(&frame_entry_label_); if (HasEmptyFrame()) { return; } if (!skip_overflow_check) { __ AddConstant(IP, SP, -static_cast(GetStackOverflowReservedBytes(kArm))); __ LoadFromOffset(kLoadWord, IP, IP, 0); RecordPcInfo(nullptr, 0); } __ PushList(core_spill_mask_); __ cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(core_spill_mask_)); __ cfi().RelOffsetForMany(DWARFReg(kMethodRegisterArgument), 0, core_spill_mask_, kArmWordSize); if (fpu_spill_mask_ != 0) { SRegister start_register = SRegister(LeastSignificantBit(fpu_spill_mask_)); __ vpushs(start_register, POPCOUNT(fpu_spill_mask_)); __ cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(fpu_spill_mask_)); __ cfi().RelOffsetForMany(DWARFReg(S0), 0, fpu_spill_mask_, kArmWordSize); } int adjust = GetFrameSize() - FrameEntrySpillSize(); __ AddConstant(SP, -adjust); __ cfi().AdjustCFAOffset(adjust); // Save the current method if we need it. Note that we do not // do this in HCurrentMethod, as the instruction might have been removed // in the SSA graph. if (RequiresCurrentMethod()) { __ StoreToOffset(kStoreWord, kMethodRegisterArgument, SP, 0); } } void CodeGeneratorARM::GenerateFrameExit() { if (HasEmptyFrame()) { __ bx(LR); return; } __ cfi().RememberState(); int adjust = GetFrameSize() - FrameEntrySpillSize(); __ AddConstant(SP, adjust); __ cfi().AdjustCFAOffset(-adjust); if (fpu_spill_mask_ != 0) { SRegister start_register = SRegister(LeastSignificantBit(fpu_spill_mask_)); __ vpops(start_register, POPCOUNT(fpu_spill_mask_)); __ cfi().AdjustCFAOffset(-static_cast(kArmPointerSize) * POPCOUNT(fpu_spill_mask_)); __ cfi().RestoreMany(DWARFReg(SRegister(0)), fpu_spill_mask_); } // Pop LR into PC to return. DCHECK_NE(core_spill_mask_ & (1 << LR), 0U); uint32_t pop_mask = (core_spill_mask_ & (~(1 << LR))) | 1 << PC; __ PopList(pop_mask); __ cfi().RestoreState(); __ cfi().DefCFAOffset(GetFrameSize()); } void CodeGeneratorARM::Bind(HBasicBlock* block) { Label* label = GetLabelOf(block); __ BindTrackedLabel(label); } Location InvokeDexCallingConventionVisitorARM::GetNextLocation(Primitive::Type type) { switch (type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: { uint32_t index = gp_index_++; uint32_t stack_index = stack_index_++; if (index < calling_convention.GetNumberOfRegisters()) { return Location::RegisterLocation(calling_convention.GetRegisterAt(index)); } else { return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index)); } } case Primitive::kPrimLong: { uint32_t index = gp_index_; uint32_t stack_index = stack_index_; gp_index_ += 2; stack_index_ += 2; if (index + 1 < calling_convention.GetNumberOfRegisters()) { if (calling_convention.GetRegisterAt(index) == R1) { // Skip R1, and use R2_R3 instead. gp_index_++; index++; } } if (index + 1 < calling_convention.GetNumberOfRegisters()) { DCHECK_EQ(calling_convention.GetRegisterAt(index) + 1, calling_convention.GetRegisterAt(index + 1)); return Location::RegisterPairLocation(calling_convention.GetRegisterAt(index), calling_convention.GetRegisterAt(index + 1)); } else { return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index)); } } case Primitive::kPrimFloat: { uint32_t stack_index = stack_index_++; if (float_index_ % 2 == 0) { float_index_ = std::max(double_index_, float_index_); } if (float_index_ < calling_convention.GetNumberOfFpuRegisters()) { return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(float_index_++)); } else { return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index)); } } case Primitive::kPrimDouble: { double_index_ = std::max(double_index_, RoundUp(float_index_, 2)); uint32_t stack_index = stack_index_; stack_index_ += 2; if (double_index_ + 1 < calling_convention.GetNumberOfFpuRegisters()) { uint32_t index = double_index_; double_index_ += 2; Location result = Location::FpuRegisterPairLocation( calling_convention.GetFpuRegisterAt(index), calling_convention.GetFpuRegisterAt(index + 1)); DCHECK(ExpectedPairLayout(result)); return result; } else { return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index)); } } case Primitive::kPrimVoid: LOG(FATAL) << "Unexpected parameter type " << type; break; } return Location::NoLocation(); } Location InvokeDexCallingConventionVisitorARM::GetReturnLocation(Primitive::Type type) const { switch (type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: { return Location::RegisterLocation(R0); } case Primitive::kPrimFloat: { return Location::FpuRegisterLocation(S0); } case Primitive::kPrimLong: { return Location::RegisterPairLocation(R0, R1); } case Primitive::kPrimDouble: { return Location::FpuRegisterPairLocation(S0, S1); } case Primitive::kPrimVoid: return Location::NoLocation(); } UNREACHABLE(); } Location InvokeDexCallingConventionVisitorARM::GetMethodLocation() const { return Location::RegisterLocation(kMethodRegisterArgument); } void CodeGeneratorARM::Move32(Location destination, Location source) { if (source.Equals(destination)) { return; } if (destination.IsRegister()) { if (source.IsRegister()) { __ Mov(destination.AsRegister(), source.AsRegister()); } else if (source.IsFpuRegister()) { __ vmovrs(destination.AsRegister(), source.AsFpuRegister()); } else { __ LoadFromOffset(kLoadWord, destination.AsRegister(), SP, source.GetStackIndex()); } } else if (destination.IsFpuRegister()) { if (source.IsRegister()) { __ vmovsr(destination.AsFpuRegister(), source.AsRegister()); } else if (source.IsFpuRegister()) { __ vmovs(destination.AsFpuRegister(), source.AsFpuRegister()); } else { __ LoadSFromOffset(destination.AsFpuRegister(), SP, source.GetStackIndex()); } } else { DCHECK(destination.IsStackSlot()) << destination; if (source.IsRegister()) { __ StoreToOffset(kStoreWord, source.AsRegister(), SP, destination.GetStackIndex()); } else if (source.IsFpuRegister()) { __ StoreSToOffset(source.AsFpuRegister(), SP, destination.GetStackIndex()); } else { DCHECK(source.IsStackSlot()) << source; __ LoadFromOffset(kLoadWord, IP, SP, source.GetStackIndex()); __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex()); } } } void CodeGeneratorARM::Move64(Location destination, Location source) { if (source.Equals(destination)) { return; } if (destination.IsRegisterPair()) { if (source.IsRegisterPair()) { EmitParallelMoves( Location::RegisterLocation(source.AsRegisterPairHigh()), Location::RegisterLocation(destination.AsRegisterPairHigh()), Primitive::kPrimInt, Location::RegisterLocation(source.AsRegisterPairLow()), Location::RegisterLocation(destination.AsRegisterPairLow()), Primitive::kPrimInt); } else if (source.IsFpuRegister()) { UNIMPLEMENTED(FATAL); } else if (source.IsFpuRegisterPair()) { __ vmovrrd(destination.AsRegisterPairLow(), destination.AsRegisterPairHigh(), FromLowSToD(source.AsFpuRegisterPairLow())); } else { DCHECK(source.IsDoubleStackSlot()); DCHECK(ExpectedPairLayout(destination)); __ LoadFromOffset(kLoadWordPair, destination.AsRegisterPairLow(), SP, source.GetStackIndex()); } } else if (destination.IsFpuRegisterPair()) { if (source.IsDoubleStackSlot()) { __ LoadDFromOffset(FromLowSToD(destination.AsFpuRegisterPairLow()), SP, source.GetStackIndex()); } else if (source.IsRegisterPair()) { __ vmovdrr(FromLowSToD(destination.AsFpuRegisterPairLow()), source.AsRegisterPairLow(), source.AsRegisterPairHigh()); } else { UNIMPLEMENTED(FATAL); } } else { DCHECK(destination.IsDoubleStackSlot()); if (source.IsRegisterPair()) { // No conflict possible, so just do the moves. if (source.AsRegisterPairLow() == R1) { DCHECK_EQ(source.AsRegisterPairHigh(), R2); __ StoreToOffset(kStoreWord, R1, SP, destination.GetStackIndex()); __ StoreToOffset(kStoreWord, R2, SP, destination.GetHighStackIndex(kArmWordSize)); } else { __ StoreToOffset(kStoreWordPair, source.AsRegisterPairLow(), SP, destination.GetStackIndex()); } } else if (source.IsFpuRegisterPair()) { __ StoreDToOffset(FromLowSToD(source.AsFpuRegisterPairLow()), SP, destination.GetStackIndex()); } else { DCHECK(source.IsDoubleStackSlot()); EmitParallelMoves( Location::StackSlot(source.GetStackIndex()), Location::StackSlot(destination.GetStackIndex()), Primitive::kPrimInt, Location::StackSlot(source.GetHighStackIndex(kArmWordSize)), Location::StackSlot(destination.GetHighStackIndex(kArmWordSize)), Primitive::kPrimInt); } } } void CodeGeneratorARM::MoveConstant(Location location, int32_t value) { DCHECK(location.IsRegister()); __ LoadImmediate(location.AsRegister(), value); } void CodeGeneratorARM::MoveLocation(Location dst, Location src, Primitive::Type dst_type) { HParallelMove move(GetGraph()->GetArena()); move.AddMove(src, dst, dst_type, nullptr); GetMoveResolver()->EmitNativeCode(&move); } void CodeGeneratorARM::AddLocationAsTemp(Location location, LocationSummary* locations) { if (location.IsRegister()) { locations->AddTemp(location); } else if (location.IsRegisterPair()) { locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow())); locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh())); } else { UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location; } } void CodeGeneratorARM::InvokeRuntime(QuickEntrypointEnum entrypoint, HInstruction* instruction, uint32_t dex_pc, SlowPathCode* slow_path) { ValidateInvokeRuntime(entrypoint, instruction, slow_path); GenerateInvokeRuntime(GetThreadOffset(entrypoint).Int32Value()); if (EntrypointRequiresStackMap(entrypoint)) { RecordPcInfo(instruction, dex_pc, slow_path); } } void CodeGeneratorARM::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset, HInstruction* instruction, SlowPathCode* slow_path) { ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path); GenerateInvokeRuntime(entry_point_offset); } void CodeGeneratorARM::GenerateInvokeRuntime(int32_t entry_point_offset) { __ LoadFromOffset(kLoadWord, LR, TR, entry_point_offset); __ blx(LR); } void InstructionCodeGeneratorARM::HandleGoto(HInstruction* got, HBasicBlock* successor) { DCHECK(!successor->IsExitBlock()); HBasicBlock* block = got->GetBlock(); HInstruction* previous = got->GetPrevious(); HLoopInformation* info = block->GetLoopInformation(); if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck()); GenerateSuspendCheck(info->GetSuspendCheck(), successor); return; } if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) { GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); } if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) { __ b(codegen_->GetLabelOf(successor)); } } void LocationsBuilderARM::VisitGoto(HGoto* got) { got->SetLocations(nullptr); } void InstructionCodeGeneratorARM::VisitGoto(HGoto* got) { HandleGoto(got, got->GetSuccessor()); } void LocationsBuilderARM::VisitTryBoundary(HTryBoundary* try_boundary) { try_boundary->SetLocations(nullptr); } void InstructionCodeGeneratorARM::VisitTryBoundary(HTryBoundary* try_boundary) { HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor(); if (!successor->IsExitBlock()) { HandleGoto(try_boundary, successor); } } void LocationsBuilderARM::VisitExit(HExit* exit) { exit->SetLocations(nullptr); } void InstructionCodeGeneratorARM::VisitExit(HExit* exit ATTRIBUTE_UNUSED) { } void InstructionCodeGeneratorARM::GenerateVcmp(HInstruction* instruction) { Primitive::Type type = instruction->InputAt(0)->GetType(); Location lhs_loc = instruction->GetLocations()->InAt(0); Location rhs_loc = instruction->GetLocations()->InAt(1); if (rhs_loc.IsConstant()) { // 0.0 is the only immediate that can be encoded directly in // a VCMP instruction. // // Both the JLS (section 15.20.1) and the JVMS (section 6.5) // specify that in a floating-point comparison, positive zero // and negative zero are considered equal, so we can use the // literal 0.0 for both cases here. // // Note however that some methods (Float.equal, Float.compare, // Float.compareTo, Double.equal, Double.compare, // Double.compareTo, Math.max, Math.min, StrictMath.max, // StrictMath.min) consider 0.0 to be (strictly) greater than // -0.0. So if we ever translate calls to these methods into a // HCompare instruction, we must handle the -0.0 case with // care here. DCHECK(rhs_loc.GetConstant()->IsArithmeticZero()); if (type == Primitive::kPrimFloat) { __ vcmpsz(lhs_loc.AsFpuRegister()); } else { DCHECK_EQ(type, Primitive::kPrimDouble); __ vcmpdz(FromLowSToD(lhs_loc.AsFpuRegisterPairLow())); } } else { if (type == Primitive::kPrimFloat) { __ vcmps(lhs_loc.AsFpuRegister(), rhs_loc.AsFpuRegister()); } else { DCHECK_EQ(type, Primitive::kPrimDouble); __ vcmpd(FromLowSToD(lhs_loc.AsFpuRegisterPairLow()), FromLowSToD(rhs_loc.AsFpuRegisterPairLow())); } } } void InstructionCodeGeneratorARM::GenerateFPJumps(HCondition* cond, Label* true_label, Label* false_label ATTRIBUTE_UNUSED) { __ vmstat(); // transfer FP status register to ARM APSR. __ b(true_label, ARMFPCondition(cond->GetCondition(), cond->IsGtBias())); } void InstructionCodeGeneratorARM::GenerateLongComparesAndJumps(HCondition* cond, Label* true_label, Label* false_label) { LocationSummary* locations = cond->GetLocations(); Location left = locations->InAt(0); Location right = locations->InAt(1); IfCondition if_cond = cond->GetCondition(); Register left_high = left.AsRegisterPairHigh(); Register left_low = left.AsRegisterPairLow(); IfCondition true_high_cond = if_cond; IfCondition false_high_cond = cond->GetOppositeCondition(); Condition final_condition = ARMUnsignedCondition(if_cond); // unsigned on lower part // Set the conditions for the test, remembering that == needs to be // decided using the low words. // TODO: consider avoiding jumps with temporary and CMP low+SBC high switch (if_cond) { case kCondEQ: case kCondNE: // Nothing to do. break; case kCondLT: false_high_cond = kCondGT; break; case kCondLE: true_high_cond = kCondLT; break; case kCondGT: false_high_cond = kCondLT; break; case kCondGE: true_high_cond = kCondGT; break; case kCondB: false_high_cond = kCondA; break; case kCondBE: true_high_cond = kCondB; break; case kCondA: false_high_cond = kCondB; break; case kCondAE: true_high_cond = kCondA; break; } if (right.IsConstant()) { int64_t value = right.GetConstant()->AsLongConstant()->GetValue(); int32_t val_low = Low32Bits(value); int32_t val_high = High32Bits(value); __ CmpConstant(left_high, val_high); if (if_cond == kCondNE) { __ b(true_label, ARMCondition(true_high_cond)); } else if (if_cond == kCondEQ) { __ b(false_label, ARMCondition(false_high_cond)); } else { __ b(true_label, ARMCondition(true_high_cond)); __ b(false_label, ARMCondition(false_high_cond)); } // Must be equal high, so compare the lows. __ CmpConstant(left_low, val_low); } else { Register right_high = right.AsRegisterPairHigh(); Register right_low = right.AsRegisterPairLow(); __ cmp(left_high, ShifterOperand(right_high)); if (if_cond == kCondNE) { __ b(true_label, ARMCondition(true_high_cond)); } else if (if_cond == kCondEQ) { __ b(false_label, ARMCondition(false_high_cond)); } else { __ b(true_label, ARMCondition(true_high_cond)); __ b(false_label, ARMCondition(false_high_cond)); } // Must be equal high, so compare the lows. __ cmp(left_low, ShifterOperand(right_low)); } // The last comparison might be unsigned. // TODO: optimize cases where this is always true/false __ b(true_label, final_condition); } void InstructionCodeGeneratorARM::GenerateCompareTestAndBranch(HCondition* condition, Label* true_target_in, Label* false_target_in) { // Generated branching requires both targets to be explicit. If either of the // targets is nullptr (fallthrough) use and bind `fallthrough_target` instead. Label fallthrough_target; Label* true_target = true_target_in == nullptr ? &fallthrough_target : true_target_in; Label* false_target = false_target_in == nullptr ? &fallthrough_target : false_target_in; Primitive::Type type = condition->InputAt(0)->GetType(); switch (type) { case Primitive::kPrimLong: GenerateLongComparesAndJumps(condition, true_target, false_target); break; case Primitive::kPrimFloat: case Primitive::kPrimDouble: GenerateVcmp(condition); GenerateFPJumps(condition, true_target, false_target); break; default: LOG(FATAL) << "Unexpected compare type " << type; } if (false_target != &fallthrough_target) { __ b(false_target); } if (fallthrough_target.IsLinked()) { __ Bind(&fallthrough_target); } } void InstructionCodeGeneratorARM::GenerateTestAndBranch(HInstruction* instruction, size_t condition_input_index, Label* true_target, Label* false_target) { HInstruction* cond = instruction->InputAt(condition_input_index); if (true_target == nullptr && false_target == nullptr) { // Nothing to do. The code always falls through. return; } else if (cond->IsIntConstant()) { // Constant condition, statically compared against "true" (integer value 1). if (cond->AsIntConstant()->IsTrue()) { if (true_target != nullptr) { __ b(true_target); } } else { DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue(); if (false_target != nullptr) { __ b(false_target); } } return; } // The following code generates these patterns: // (1) true_target == nullptr && false_target != nullptr // - opposite condition true => branch to false_target // (2) true_target != nullptr && false_target == nullptr // - condition true => branch to true_target // (3) true_target != nullptr && false_target != nullptr // - condition true => branch to true_target // - branch to false_target if (IsBooleanValueOrMaterializedCondition(cond)) { // Condition has been materialized, compare the output to 0. Location cond_val = instruction->GetLocations()->InAt(condition_input_index); DCHECK(cond_val.IsRegister()); if (true_target == nullptr) { __ CompareAndBranchIfZero(cond_val.AsRegister(), false_target); } else { __ CompareAndBranchIfNonZero(cond_val.AsRegister(), true_target); } } else { // Condition has not been materialized. Use its inputs as the comparison and // its condition as the branch condition. HCondition* condition = cond->AsCondition(); // If this is a long or FP comparison that has been folded into // the HCondition, generate the comparison directly. Primitive::Type type = condition->InputAt(0)->GetType(); if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) { GenerateCompareTestAndBranch(condition, true_target, false_target); return; } LocationSummary* locations = cond->GetLocations(); DCHECK(locations->InAt(0).IsRegister()); Register left = locations->InAt(0).AsRegister(); Location right = locations->InAt(1); if (right.IsRegister()) { __ cmp(left, ShifterOperand(right.AsRegister())); } else { DCHECK(right.IsConstant()); __ CmpConstant(left, CodeGenerator::GetInt32ValueOf(right.GetConstant())); } if (true_target == nullptr) { __ b(false_target, ARMCondition(condition->GetOppositeCondition())); } else { __ b(true_target, ARMCondition(condition->GetCondition())); } } // If neither branch falls through (case 3), the conditional branch to `true_target` // was already emitted (case 2) and we need to emit a jump to `false_target`. if (true_target != nullptr && false_target != nullptr) { __ b(false_target); } } void LocationsBuilderARM::VisitIf(HIf* if_instr) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr); if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) { locations->SetInAt(0, Location::RequiresRegister()); } } void InstructionCodeGeneratorARM::VisitIf(HIf* if_instr) { HBasicBlock* true_successor = if_instr->IfTrueSuccessor(); HBasicBlock* false_successor = if_instr->IfFalseSuccessor(); Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ? nullptr : codegen_->GetLabelOf(true_successor); Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ? nullptr : codegen_->GetLabelOf(false_successor); GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target); } void LocationsBuilderARM::VisitDeoptimize(HDeoptimize* deoptimize) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath); locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) { locations->SetInAt(0, Location::RequiresRegister()); } } void InstructionCodeGeneratorARM::VisitDeoptimize(HDeoptimize* deoptimize) { SlowPathCodeARM* slow_path = deopt_slow_paths_.NewSlowPath(deoptimize); GenerateTestAndBranch(deoptimize, /* condition_input_index */ 0, slow_path->GetEntryLabel(), /* false_target */ nullptr); } void LocationsBuilderARM::VisitSelect(HSelect* select) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select); if (Primitive::IsFloatingPointType(select->GetType())) { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); } else { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); } if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) { locations->SetInAt(2, Location::RequiresRegister()); } locations->SetOut(Location::SameAsFirstInput()); } void InstructionCodeGeneratorARM::VisitSelect(HSelect* select) { LocationSummary* locations = select->GetLocations(); Label false_target; GenerateTestAndBranch(select, /* condition_input_index */ 2, /* true_target */ nullptr, &false_target); codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType()); __ Bind(&false_target); } void LocationsBuilderARM::VisitNativeDebugInfo(HNativeDebugInfo* info) { new (GetGraph()->GetArena()) LocationSummary(info); } void InstructionCodeGeneratorARM::VisitNativeDebugInfo(HNativeDebugInfo*) { // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile. } void CodeGeneratorARM::GenerateNop() { __ nop(); } void LocationsBuilderARM::HandleCondition(HCondition* cond) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall); // Handle the long/FP comparisons made in instruction simplification. switch (cond->InputAt(0)->GetType()) { case Primitive::kPrimLong: locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1))); if (!cond->IsEmittedAtUseSite()) { locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); } break; case Primitive::kPrimFloat: case Primitive::kPrimDouble: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, ArithmeticZeroOrFpuRegister(cond->InputAt(1))); if (!cond->IsEmittedAtUseSite()) { locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } break; default: locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1))); if (!cond->IsEmittedAtUseSite()) { locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } } } void InstructionCodeGeneratorARM::HandleCondition(HCondition* cond) { if (cond->IsEmittedAtUseSite()) { return; } LocationSummary* locations = cond->GetLocations(); Location left = locations->InAt(0); Location right = locations->InAt(1); Register out = locations->Out().AsRegister(); Label true_label, false_label; switch (cond->InputAt(0)->GetType()) { default: { // Integer case. if (right.IsRegister()) { __ cmp(left.AsRegister(), ShifterOperand(right.AsRegister())); } else { DCHECK(right.IsConstant()); __ CmpConstant(left.AsRegister(), CodeGenerator::GetInt32ValueOf(right.GetConstant())); } __ it(ARMCondition(cond->GetCondition()), kItElse); __ mov(locations->Out().AsRegister(), ShifterOperand(1), ARMCondition(cond->GetCondition())); __ mov(locations->Out().AsRegister(), ShifterOperand(0), ARMCondition(cond->GetOppositeCondition())); return; } case Primitive::kPrimLong: GenerateLongComparesAndJumps(cond, &true_label, &false_label); break; case Primitive::kPrimFloat: case Primitive::kPrimDouble: GenerateVcmp(cond); GenerateFPJumps(cond, &true_label, &false_label); break; } // Convert the jumps into the result. Label done_label; // False case: result = 0. __ Bind(&false_label); __ LoadImmediate(out, 0); __ b(&done_label); // True case: result = 1. __ Bind(&true_label); __ LoadImmediate(out, 1); __ Bind(&done_label); } void LocationsBuilderARM::VisitEqual(HEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARM::VisitEqual(HEqual* comp) { HandleCondition(comp); } void LocationsBuilderARM::VisitNotEqual(HNotEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARM::VisitNotEqual(HNotEqual* comp) { HandleCondition(comp); } void LocationsBuilderARM::VisitLessThan(HLessThan* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARM::VisitLessThan(HLessThan* comp) { HandleCondition(comp); } void LocationsBuilderARM::VisitLessThanOrEqual(HLessThanOrEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARM::VisitLessThanOrEqual(HLessThanOrEqual* comp) { HandleCondition(comp); } void LocationsBuilderARM::VisitGreaterThan(HGreaterThan* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARM::VisitGreaterThan(HGreaterThan* comp) { HandleCondition(comp); } void LocationsBuilderARM::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARM::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { HandleCondition(comp); } void LocationsBuilderARM::VisitBelow(HBelow* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARM::VisitBelow(HBelow* comp) { HandleCondition(comp); } void LocationsBuilderARM::VisitBelowOrEqual(HBelowOrEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARM::VisitBelowOrEqual(HBelowOrEqual* comp) { HandleCondition(comp); } void LocationsBuilderARM::VisitAbove(HAbove* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARM::VisitAbove(HAbove* comp) { HandleCondition(comp); } void LocationsBuilderARM::VisitAboveOrEqual(HAboveOrEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARM::VisitAboveOrEqual(HAboveOrEqual* comp) { HandleCondition(comp); } void LocationsBuilderARM::VisitIntConstant(HIntConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorARM::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderARM::VisitNullConstant(HNullConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorARM::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderARM::VisitLongConstant(HLongConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorARM::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderARM::VisitFloatConstant(HFloatConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorARM::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderARM::VisitDoubleConstant(HDoubleConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorARM::VisitDoubleConstant(HDoubleConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderARM::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { memory_barrier->SetLocations(nullptr); } void InstructionCodeGeneratorARM::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind()); } void LocationsBuilderARM::VisitReturnVoid(HReturnVoid* ret) { ret->SetLocations(nullptr); } void InstructionCodeGeneratorARM::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) { codegen_->GenerateFrameExit(); } void LocationsBuilderARM::VisitReturn(HReturn* ret) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall); locations->SetInAt(0, parameter_visitor_.GetReturnLocation(ret->InputAt(0)->GetType())); } void InstructionCodeGeneratorARM::VisitReturn(HReturn* ret ATTRIBUTE_UNUSED) { codegen_->GenerateFrameExit(); } void LocationsBuilderARM::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { // The trampoline uses the same calling convention as dex calling conventions, // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain // the method_idx. HandleInvoke(invoke); } void InstructionCodeGeneratorARM::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke); } void LocationsBuilderARM::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { // Explicit clinit checks triggered by static invokes must have been pruned by // art::PrepareForRegisterAllocation. DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); IntrinsicLocationsBuilderARM intrinsic(codegen_); if (intrinsic.TryDispatch(invoke)) { if (invoke->GetLocations()->CanCall() && invoke->HasPcRelativeDexCache()) { invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any()); } return; } HandleInvoke(invoke); // For PC-relative dex cache the invoke has an extra input, the PC-relative address base. if (invoke->HasPcRelativeDexCache()) { invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister()); } } static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM* codegen) { if (invoke->GetLocations()->Intrinsified()) { IntrinsicCodeGeneratorARM intrinsic(codegen); intrinsic.Dispatch(invoke); return true; } return false; } void InstructionCodeGeneratorARM::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { // Explicit clinit checks triggered by static invokes must have been pruned by // art::PrepareForRegisterAllocation. DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); if (TryGenerateIntrinsicCode(invoke, codegen_)) { return; } LocationSummary* locations = invoke->GetLocations(); codegen_->GenerateStaticOrDirectCall( invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation()); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); } void LocationsBuilderARM::HandleInvoke(HInvoke* invoke) { InvokeDexCallingConventionVisitorARM calling_convention_visitor; CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); } void LocationsBuilderARM::VisitInvokeVirtual(HInvokeVirtual* invoke) { IntrinsicLocationsBuilderARM intrinsic(codegen_); if (intrinsic.TryDispatch(invoke)) { return; } HandleInvoke(invoke); } void InstructionCodeGeneratorARM::VisitInvokeVirtual(HInvokeVirtual* invoke) { if (TryGenerateIntrinsicCode(invoke, codegen_)) { return; } codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0)); DCHECK(!codegen_->IsLeafMethod()); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); } void LocationsBuilderARM::VisitInvokeInterface(HInvokeInterface* invoke) { HandleInvoke(invoke); // Add the hidden argument. invoke->GetLocations()->AddTemp(Location::RegisterLocation(R12)); } void InstructionCodeGeneratorARM::VisitInvokeInterface(HInvokeInterface* invoke) { // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError. LocationSummary* locations = invoke->GetLocations(); Register temp = locations->GetTemp(0).AsRegister(); Register hidden_reg = locations->GetTemp(1).AsRegister(); Location receiver = locations->InAt(0); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); // Set the hidden argument. This is safe to do this here, as R12 // won't be modified thereafter, before the `blx` (call) instruction. DCHECK_EQ(R12, hidden_reg); __ LoadImmediate(hidden_reg, invoke->GetDexMethodIndex()); if (receiver.IsStackSlot()) { __ LoadFromOffset(kLoadWord, temp, SP, receiver.GetStackIndex()); // /* HeapReference */ temp = temp->klass_ __ LoadFromOffset(kLoadWord, temp, temp, class_offset); } else { // /* HeapReference */ temp = receiver->klass_ __ LoadFromOffset(kLoadWord, temp, receiver.AsRegister(), class_offset); } codegen_->MaybeRecordImplicitNullCheck(invoke); // Instead of simply (possibly) unpoisoning `temp` here, we should // emit a read barrier for the previous class reference load. // However this is not required in practice, as this is an // intermediate/temporary reference and because the current // concurrent copying collector keeps the from-space memory // intact/accessible until the end of the marking phase (the // concurrent copying collector may not in the future). __ MaybeUnpoisonHeapReference(temp); __ LoadFromOffset(kLoadWord, temp, temp, mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value()); uint32_t method_offset = static_cast(ImTable::OffsetOfElement( invoke->GetImtIndex(), kArmPointerSize)); // temp = temp->GetImtEntryAt(method_offset); __ LoadFromOffset(kLoadWord, temp, temp, method_offset); uint32_t entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value(); // LR = temp->GetEntryPoint(); __ LoadFromOffset(kLoadWord, LR, temp, entry_point); // LR(); __ blx(LR); DCHECK(!codegen_->IsLeafMethod()); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); } void LocationsBuilderARM::VisitNeg(HNeg* neg) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall); switch (neg->GetResultType()) { case Primitive::kPrimInt: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); } } void InstructionCodeGeneratorARM::VisitNeg(HNeg* neg) { LocationSummary* locations = neg->GetLocations(); Location out = locations->Out(); Location in = locations->InAt(0); switch (neg->GetResultType()) { case Primitive::kPrimInt: DCHECK(in.IsRegister()); __ rsb(out.AsRegister(), in.AsRegister(), ShifterOperand(0)); break; case Primitive::kPrimLong: DCHECK(in.IsRegisterPair()); // out.lo = 0 - in.lo (and update the carry/borrow (C) flag) __ rsbs(out.AsRegisterPairLow(), in.AsRegisterPairLow(), ShifterOperand(0)); // We cannot emit an RSC (Reverse Subtract with Carry) // instruction here, as it does not exist in the Thumb-2 // instruction set. We use the following approach // using SBC and SUB instead. // // out.hi = -C __ sbc(out.AsRegisterPairHigh(), out.AsRegisterPairHigh(), ShifterOperand(out.AsRegisterPairHigh())); // out.hi = out.hi - in.hi __ sub(out.AsRegisterPairHigh(), out.AsRegisterPairHigh(), ShifterOperand(in.AsRegisterPairHigh())); break; case Primitive::kPrimFloat: DCHECK(in.IsFpuRegister()); __ vnegs(out.AsFpuRegister(), in.AsFpuRegister()); break; case Primitive::kPrimDouble: DCHECK(in.IsFpuRegisterPair()); __ vnegd(FromLowSToD(out.AsFpuRegisterPairLow()), FromLowSToD(in.AsFpuRegisterPairLow())); break; default: LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); } } void LocationsBuilderARM::VisitTypeConversion(HTypeConversion* conversion) { Primitive::Type result_type = conversion->GetResultType(); Primitive::Type input_type = conversion->GetInputType(); DCHECK_NE(result_type, input_type); // The float-to-long, double-to-long and long-to-float type conversions // rely on a call to the runtime. LocationSummary::CallKind call_kind = (((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble) && result_type == Primitive::kPrimLong) || (input_type == Primitive::kPrimLong && result_type == Primitive::kPrimFloat)) ? LocationSummary::kCallOnMainOnly : LocationSummary::kNoCall; LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind); // The Java language does not allow treating boolean as an integral type but // our bit representation makes it safe. switch (result_type) { case Primitive::kPrimByte: switch (input_type) { case Primitive::kPrimLong: // Type conversion from long to byte is a result of code transformations. case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-byte' instruction. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimShort: switch (input_type) { case Primitive::kPrimLong: // Type conversion from long to short is a result of code transformations. case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-short' instruction. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimInt: switch (input_type) { case Primitive::kPrimLong: // Processing a Dex `long-to-int' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; case Primitive::kPrimFloat: // Processing a Dex `float-to-int' instruction. locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); locations->AddTemp(Location::RequiresFpuRegister()); break; case Primitive::kPrimDouble: // Processing a Dex `double-to-int' instruction. locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); locations->AddTemp(Location::RequiresFpuRegister()); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimLong: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-long' instruction. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; case Primitive::kPrimFloat: { // Processing a Dex `float-to-long' instruction. InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::FpuRegisterLocation( calling_convention.GetFpuRegisterAt(0))); locations->SetOut(Location::RegisterPairLocation(R0, R1)); break; } case Primitive::kPrimDouble: { // Processing a Dex `double-to-long' instruction. InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::FpuRegisterPairLocation( calling_convention.GetFpuRegisterAt(0), calling_convention.GetFpuRegisterAt(1))); locations->SetOut(Location::RegisterPairLocation(R0, R1)); break; } default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimChar: switch (input_type) { case Primitive::kPrimLong: // Type conversion from long to char is a result of code transformations. case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: // Processing a Dex `int-to-char' instruction. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimFloat: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-float' instruction. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); break; case Primitive::kPrimLong: { // Processing a Dex `long-to-float' instruction. InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterPairLocation( calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); locations->SetOut(Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); break; } case Primitive::kPrimDouble: // Processing a Dex `double-to-float' instruction. locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; }; break; case Primitive::kPrimDouble: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-double' instruction. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); break; case Primitive::kPrimLong: // Processing a Dex `long-to-double' instruction. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); locations->AddTemp(Location::RequiresFpuRegister()); locations->AddTemp(Location::RequiresFpuRegister()); break; case Primitive::kPrimFloat: // Processing a Dex `float-to-double' instruction. locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; }; break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } } void InstructionCodeGeneratorARM::VisitTypeConversion(HTypeConversion* conversion) { LocationSummary* locations = conversion->GetLocations(); Location out = locations->Out(); Location in = locations->InAt(0); Primitive::Type result_type = conversion->GetResultType(); Primitive::Type input_type = conversion->GetInputType(); DCHECK_NE(result_type, input_type); switch (result_type) { case Primitive::kPrimByte: switch (input_type) { case Primitive::kPrimLong: // Type conversion from long to byte is a result of code transformations. __ sbfx(out.AsRegister(), in.AsRegisterPairLow(), 0, 8); break; case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-byte' instruction. __ sbfx(out.AsRegister(), in.AsRegister(), 0, 8); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimShort: switch (input_type) { case Primitive::kPrimLong: // Type conversion from long to short is a result of code transformations. __ sbfx(out.AsRegister(), in.AsRegisterPairLow(), 0, 16); break; case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-short' instruction. __ sbfx(out.AsRegister(), in.AsRegister(), 0, 16); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimInt: switch (input_type) { case Primitive::kPrimLong: // Processing a Dex `long-to-int' instruction. DCHECK(out.IsRegister()); if (in.IsRegisterPair()) { __ Mov(out.AsRegister(), in.AsRegisterPairLow()); } else if (in.IsDoubleStackSlot()) { __ LoadFromOffset(kLoadWord, out.AsRegister(), SP, in.GetStackIndex()); } else { DCHECK(in.IsConstant()); DCHECK(in.GetConstant()->IsLongConstant()); int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); __ LoadImmediate(out.AsRegister(), static_cast(value)); } break; case Primitive::kPrimFloat: { // Processing a Dex `float-to-int' instruction. SRegister temp = locations->GetTemp(0).AsFpuRegisterPairLow(); __ vcvtis(temp, in.AsFpuRegister()); __ vmovrs(out.AsRegister(), temp); break; } case Primitive::kPrimDouble: { // Processing a Dex `double-to-int' instruction. SRegister temp_s = locations->GetTemp(0).AsFpuRegisterPairLow(); __ vcvtid(temp_s, FromLowSToD(in.AsFpuRegisterPairLow())); __ vmovrs(out.AsRegister(), temp_s); break; } default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimLong: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-long' instruction. DCHECK(out.IsRegisterPair()); DCHECK(in.IsRegister()); __ Mov(out.AsRegisterPairLow(), in.AsRegister()); // Sign extension. __ Asr(out.AsRegisterPairHigh(), out.AsRegisterPairLow(), 31); break; case Primitive::kPrimFloat: // Processing a Dex `float-to-long' instruction. codegen_->InvokeRuntime(kQuickF2l, conversion, conversion->GetDexPc()); CheckEntrypointTypes(); break; case Primitive::kPrimDouble: // Processing a Dex `double-to-long' instruction. codegen_->InvokeRuntime(kQuickD2l, conversion, conversion->GetDexPc()); CheckEntrypointTypes(); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimChar: switch (input_type) { case Primitive::kPrimLong: // Type conversion from long to char is a result of code transformations. __ ubfx(out.AsRegister(), in.AsRegisterPairLow(), 0, 16); break; case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: // Processing a Dex `int-to-char' instruction. __ ubfx(out.AsRegister(), in.AsRegister(), 0, 16); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimFloat: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: { // Processing a Dex `int-to-float' instruction. __ vmovsr(out.AsFpuRegister(), in.AsRegister()); __ vcvtsi(out.AsFpuRegister(), out.AsFpuRegister()); break; } case Primitive::kPrimLong: // Processing a Dex `long-to-float' instruction. codegen_->InvokeRuntime(kQuickL2f, conversion, conversion->GetDexPc()); CheckEntrypointTypes(); break; case Primitive::kPrimDouble: // Processing a Dex `double-to-float' instruction. __ vcvtsd(out.AsFpuRegister(), FromLowSToD(in.AsFpuRegisterPairLow())); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; }; break; case Primitive::kPrimDouble: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: { // Processing a Dex `int-to-double' instruction. __ vmovsr(out.AsFpuRegisterPairLow(), in.AsRegister()); __ vcvtdi(FromLowSToD(out.AsFpuRegisterPairLow()), out.AsFpuRegisterPairLow()); break; } case Primitive::kPrimLong: { // Processing a Dex `long-to-double' instruction. Register low = in.AsRegisterPairLow(); Register high = in.AsRegisterPairHigh(); SRegister out_s = out.AsFpuRegisterPairLow(); DRegister out_d = FromLowSToD(out_s); SRegister temp_s = locations->GetTemp(0).AsFpuRegisterPairLow(); DRegister temp_d = FromLowSToD(temp_s); SRegister constant_s = locations->GetTemp(1).AsFpuRegisterPairLow(); DRegister constant_d = FromLowSToD(constant_s); // temp_d = int-to-double(high) __ vmovsr(temp_s, high); __ vcvtdi(temp_d, temp_s); // constant_d = k2Pow32EncodingForDouble __ LoadDImmediate(constant_d, bit_cast(k2Pow32EncodingForDouble)); // out_d = unsigned-to-double(low) __ vmovsr(out_s, low); __ vcvtdu(out_d, out_s); // out_d += temp_d * constant_d __ vmlad(out_d, temp_d, constant_d); break; } case Primitive::kPrimFloat: // Processing a Dex `float-to-double' instruction. __ vcvtds(FromLowSToD(out.AsFpuRegisterPairLow()), in.AsFpuRegister()); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; }; break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } } void LocationsBuilderARM::VisitAdd(HAdd* add) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall); switch (add->GetResultType()) { case Primitive::kPrimInt: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1))); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, ArmEncodableConstantOrRegister(add->InputAt(1), ADD)); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; } default: LOG(FATAL) << "Unexpected add type " << add->GetResultType(); } } void InstructionCodeGeneratorARM::VisitAdd(HAdd* add) { LocationSummary* locations = add->GetLocations(); Location out = locations->Out(); Location first = locations->InAt(0); Location second = locations->InAt(1); switch (add->GetResultType()) { case Primitive::kPrimInt: if (second.IsRegister()) { __ add(out.AsRegister(), first.AsRegister(), ShifterOperand(second.AsRegister())); } else { __ AddConstant(out.AsRegister(), first.AsRegister(), second.GetConstant()->AsIntConstant()->GetValue()); } break; case Primitive::kPrimLong: { if (second.IsConstant()) { uint64_t value = static_cast(Int64FromConstant(second.GetConstant())); GenerateAddLongConst(out, first, value); } else { DCHECK(second.IsRegisterPair()); __ adds(out.AsRegisterPairLow(), first.AsRegisterPairLow(), ShifterOperand(second.AsRegisterPairLow())); __ adc(out.AsRegisterPairHigh(), first.AsRegisterPairHigh(), ShifterOperand(second.AsRegisterPairHigh())); } break; } case Primitive::kPrimFloat: __ vadds(out.AsFpuRegister(), first.AsFpuRegister(), second.AsFpuRegister()); break; case Primitive::kPrimDouble: __ vaddd(FromLowSToD(out.AsFpuRegisterPairLow()), FromLowSToD(first.AsFpuRegisterPairLow()), FromLowSToD(second.AsFpuRegisterPairLow())); break; default: LOG(FATAL) << "Unexpected add type " << add->GetResultType(); } } void LocationsBuilderARM::VisitSub(HSub* sub) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall); switch (sub->GetResultType()) { case Primitive::kPrimInt: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(sub->InputAt(1))); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, ArmEncodableConstantOrRegister(sub->InputAt(1), SUB)); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; } default: LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); } } void InstructionCodeGeneratorARM::VisitSub(HSub* sub) { LocationSummary* locations = sub->GetLocations(); Location out = locations->Out(); Location first = locations->InAt(0); Location second = locations->InAt(1); switch (sub->GetResultType()) { case Primitive::kPrimInt: { if (second.IsRegister()) { __ sub(out.AsRegister(), first.AsRegister(), ShifterOperand(second.AsRegister())); } else { __ AddConstant(out.AsRegister(), first.AsRegister(), -second.GetConstant()->AsIntConstant()->GetValue()); } break; } case Primitive::kPrimLong: { if (second.IsConstant()) { uint64_t value = static_cast(Int64FromConstant(second.GetConstant())); GenerateAddLongConst(out, first, -value); } else { DCHECK(second.IsRegisterPair()); __ subs(out.AsRegisterPairLow(), first.AsRegisterPairLow(), ShifterOperand(second.AsRegisterPairLow())); __ sbc(out.AsRegisterPairHigh(), first.AsRegisterPairHigh(), ShifterOperand(second.AsRegisterPairHigh())); } break; } case Primitive::kPrimFloat: { __ vsubs(out.AsFpuRegister(), first.AsFpuRegister(), second.AsFpuRegister()); break; } case Primitive::kPrimDouble: { __ vsubd(FromLowSToD(out.AsFpuRegisterPairLow()), FromLowSToD(first.AsFpuRegisterPairLow()), FromLowSToD(second.AsFpuRegisterPairLow())); break; } default: LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); } } void LocationsBuilderARM::VisitMul(HMul* mul) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall); switch (mul->GetResultType()) { case Primitive::kPrimInt: case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; } default: LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); } } void InstructionCodeGeneratorARM::VisitMul(HMul* mul) { LocationSummary* locations = mul->GetLocations(); Location out = locations->Out(); Location first = locations->InAt(0); Location second = locations->InAt(1); switch (mul->GetResultType()) { case Primitive::kPrimInt: { __ mul(out.AsRegister(), first.AsRegister(), second.AsRegister()); break; } case Primitive::kPrimLong: { Register out_hi = out.AsRegisterPairHigh(); Register out_lo = out.AsRegisterPairLow(); Register in1_hi = first.AsRegisterPairHigh(); Register in1_lo = first.AsRegisterPairLow(); Register in2_hi = second.AsRegisterPairHigh(); Register in2_lo = second.AsRegisterPairLow(); // Extra checks to protect caused by the existence of R1_R2. // The algorithm is wrong if out.hi is either in1.lo or in2.lo: // (e.g. in1=r0_r1, in2=r2_r3 and out=r1_r2); DCHECK_NE(out_hi, in1_lo); DCHECK_NE(out_hi, in2_lo); // input: in1 - 64 bits, in2 - 64 bits // output: out // formula: out.hi : out.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo // parts: out.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32] // parts: out.lo = (in1.lo * in2.lo)[31:0] // IP <- in1.lo * in2.hi __ mul(IP, in1_lo, in2_hi); // out.hi <- in1.lo * in2.hi + in1.hi * in2.lo __ mla(out_hi, in1_hi, in2_lo, IP); // out.lo <- (in1.lo * in2.lo)[31:0]; __ umull(out_lo, IP, in1_lo, in2_lo); // out.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32] __ add(out_hi, out_hi, ShifterOperand(IP)); break; } case Primitive::kPrimFloat: { __ vmuls(out.AsFpuRegister(), first.AsFpuRegister(), second.AsFpuRegister()); break; } case Primitive::kPrimDouble: { __ vmuld(FromLowSToD(out.AsFpuRegisterPairLow()), FromLowSToD(first.AsFpuRegisterPairLow()), FromLowSToD(second.AsFpuRegisterPairLow())); break; } default: LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); } } void InstructionCodeGeneratorARM::DivRemOneOrMinusOne(HBinaryOperation* instruction) { DCHECK(instruction->IsDiv() || instruction->IsRem()); DCHECK(instruction->GetResultType() == Primitive::kPrimInt); LocationSummary* locations = instruction->GetLocations(); Location second = locations->InAt(1); DCHECK(second.IsConstant()); Register out = locations->Out().AsRegister(); Register dividend = locations->InAt(0).AsRegister(); int32_t imm = second.GetConstant()->AsIntConstant()->GetValue(); DCHECK(imm == 1 || imm == -1); if (instruction->IsRem()) { __ LoadImmediate(out, 0); } else { if (imm == 1) { __ Mov(out, dividend); } else { __ rsb(out, dividend, ShifterOperand(0)); } } } void InstructionCodeGeneratorARM::DivRemByPowerOfTwo(HBinaryOperation* instruction) { DCHECK(instruction->IsDiv() || instruction->IsRem()); DCHECK(instruction->GetResultType() == Primitive::kPrimInt); LocationSummary* locations = instruction->GetLocations(); Location second = locations->InAt(1); DCHECK(second.IsConstant()); Register out = locations->Out().AsRegister(); Register dividend = locations->InAt(0).AsRegister(); Register temp = locations->GetTemp(0).AsRegister(); int32_t imm = second.GetConstant()->AsIntConstant()->GetValue(); uint32_t abs_imm = static_cast(AbsOrMin(imm)); int ctz_imm = CTZ(abs_imm); if (ctz_imm == 1) { __ Lsr(temp, dividend, 32 - ctz_imm); } else { __ Asr(temp, dividend, 31); __ Lsr(temp, temp, 32 - ctz_imm); } __ add(out, temp, ShifterOperand(dividend)); if (instruction->IsDiv()) { __ Asr(out, out, ctz_imm); if (imm < 0) { __ rsb(out, out, ShifterOperand(0)); } } else { __ ubfx(out, out, 0, ctz_imm); __ sub(out, out, ShifterOperand(temp)); } } void InstructionCodeGeneratorARM::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) { DCHECK(instruction->IsDiv() || instruction->IsRem()); DCHECK(instruction->GetResultType() == Primitive::kPrimInt); LocationSummary* locations = instruction->GetLocations(); Location second = locations->InAt(1); DCHECK(second.IsConstant()); Register out = locations->Out().AsRegister(); Register dividend = locations->InAt(0).AsRegister(); Register temp1 = locations->GetTemp(0).AsRegister(); Register temp2 = locations->GetTemp(1).AsRegister(); int64_t imm = second.GetConstant()->AsIntConstant()->GetValue(); int64_t magic; int shift; CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift); __ LoadImmediate(temp1, magic); __ smull(temp2, temp1, dividend, temp1); if (imm > 0 && magic < 0) { __ add(temp1, temp1, ShifterOperand(dividend)); } else if (imm < 0 && magic > 0) { __ sub(temp1, temp1, ShifterOperand(dividend)); } if (shift != 0) { __ Asr(temp1, temp1, shift); } if (instruction->IsDiv()) { __ sub(out, temp1, ShifterOperand(temp1, ASR, 31)); } else { __ sub(temp1, temp1, ShifterOperand(temp1, ASR, 31)); // TODO: Strength reduction for mls. __ LoadImmediate(temp2, imm); __ mls(out, temp1, temp2, dividend); } } void InstructionCodeGeneratorARM::GenerateDivRemConstantIntegral(HBinaryOperation* instruction) { DCHECK(instruction->IsDiv() || instruction->IsRem()); DCHECK(instruction->GetResultType() == Primitive::kPrimInt); LocationSummary* locations = instruction->GetLocations(); Location second = locations->InAt(1); DCHECK(second.IsConstant()); int32_t imm = second.GetConstant()->AsIntConstant()->GetValue(); if (imm == 0) { // Do not generate anything. DivZeroCheck would prevent any code to be executed. } else if (imm == 1 || imm == -1) { DivRemOneOrMinusOne(instruction); } else if (IsPowerOfTwo(AbsOrMin(imm))) { DivRemByPowerOfTwo(instruction); } else { DCHECK(imm <= -2 || imm >= 2); GenerateDivRemWithAnyConstant(instruction); } } void LocationsBuilderARM::VisitDiv(HDiv* div) { LocationSummary::CallKind call_kind = LocationSummary::kNoCall; if (div->GetResultType() == Primitive::kPrimLong) { // pLdiv runtime call. call_kind = LocationSummary::kCallOnMainOnly; } else if (div->GetResultType() == Primitive::kPrimInt && div->InputAt(1)->IsConstant()) { // sdiv will be replaced by other instruction sequence. } else if (div->GetResultType() == Primitive::kPrimInt && !codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { // pIdivmod runtime call. call_kind = LocationSummary::kCallOnMainOnly; } LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind); switch (div->GetResultType()) { case Primitive::kPrimInt: { if (div->InputAt(1)->IsConstant()) { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::ConstantLocation(div->InputAt(1)->AsConstant())); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); int32_t value = div->InputAt(1)->AsIntConstant()->GetValue(); if (value == 1 || value == 0 || value == -1) { // No temp register required. } else { locations->AddTemp(Location::RequiresRegister()); if (!IsPowerOfTwo(AbsOrMin(value))) { locations->AddTemp(Location::RequiresRegister()); } } } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } else { InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); // Note: divrem will compute both the quotient and the remainder as the pair R0 and R1, but // we only need the former. locations->SetOut(Location::RegisterLocation(R0)); } break; } case Primitive::kPrimLong: { InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterPairLocation( calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); locations->SetInAt(1, Location::RegisterPairLocation( calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); locations->SetOut(Location::RegisterPairLocation(R0, R1)); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; } default: LOG(FATAL) << "Unexpected div type " << div->GetResultType(); } } void InstructionCodeGeneratorARM::VisitDiv(HDiv* div) { LocationSummary* locations = div->GetLocations(); Location out = locations->Out(); Location first = locations->InAt(0); Location second = locations->InAt(1); switch (div->GetResultType()) { case Primitive::kPrimInt: { if (second.IsConstant()) { GenerateDivRemConstantIntegral(div); } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { __ sdiv(out.AsRegister(), first.AsRegister(), second.AsRegister()); } else { InvokeRuntimeCallingConvention calling_convention; DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegister()); DCHECK_EQ(calling_convention.GetRegisterAt(1), second.AsRegister()); DCHECK_EQ(R0, out.AsRegister()); codegen_->InvokeRuntime(kQuickIdivmod, div, div->GetDexPc()); CheckEntrypointTypes(); } break; } case Primitive::kPrimLong: { InvokeRuntimeCallingConvention calling_convention; DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegisterPairLow()); DCHECK_EQ(calling_convention.GetRegisterAt(1), first.AsRegisterPairHigh()); DCHECK_EQ(calling_convention.GetRegisterAt(2), second.AsRegisterPairLow()); DCHECK_EQ(calling_convention.GetRegisterAt(3), second.AsRegisterPairHigh()); DCHECK_EQ(R0, out.AsRegisterPairLow()); DCHECK_EQ(R1, out.AsRegisterPairHigh()); codegen_->InvokeRuntime(kQuickLdiv, div, div->GetDexPc()); CheckEntrypointTypes(); break; } case Primitive::kPrimFloat: { __ vdivs(out.AsFpuRegister(), first.AsFpuRegister(), second.AsFpuRegister()); break; } case Primitive::kPrimDouble: { __ vdivd(FromLowSToD(out.AsFpuRegisterPairLow()), FromLowSToD(first.AsFpuRegisterPairLow()), FromLowSToD(second.AsFpuRegisterPairLow())); break; } default: LOG(FATAL) << "Unexpected div type " << div->GetResultType(); } } void LocationsBuilderARM::VisitRem(HRem* rem) { Primitive::Type type = rem->GetResultType(); // Most remainders are implemented in the runtime. LocationSummary::CallKind call_kind = LocationSummary::kCallOnMainOnly; if (rem->GetResultType() == Primitive::kPrimInt && rem->InputAt(1)->IsConstant()) { // sdiv will be replaced by other instruction sequence. call_kind = LocationSummary::kNoCall; } else if ((rem->GetResultType() == Primitive::kPrimInt) && codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { // Have hardware divide instruction for int, do it with three instructions. call_kind = LocationSummary::kNoCall; } LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind); switch (type) { case Primitive::kPrimInt: { if (rem->InputAt(1)->IsConstant()) { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::ConstantLocation(rem->InputAt(1)->AsConstant())); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); int32_t value = rem->InputAt(1)->AsIntConstant()->GetValue(); if (value == 1 || value == 0 || value == -1) { // No temp register required. } else { locations->AddTemp(Location::RequiresRegister()); if (!IsPowerOfTwo(AbsOrMin(value))) { locations->AddTemp(Location::RequiresRegister()); } } } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); locations->AddTemp(Location::RequiresRegister()); } else { InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); // Note: divrem will compute both the quotient and the remainder as the pair R0 and R1, but // we only need the latter. locations->SetOut(Location::RegisterLocation(R1)); } break; } case Primitive::kPrimLong: { InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterPairLocation( calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); locations->SetInAt(1, Location::RegisterPairLocation( calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); // The runtime helper puts the output in R2,R3. locations->SetOut(Location::RegisterPairLocation(R2, R3)); break; } case Primitive::kPrimFloat: { InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1))); locations->SetOut(Location::FpuRegisterLocation(S0)); break; } case Primitive::kPrimDouble: { InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::FpuRegisterPairLocation( calling_convention.GetFpuRegisterAt(0), calling_convention.GetFpuRegisterAt(1))); locations->SetInAt(1, Location::FpuRegisterPairLocation( calling_convention.GetFpuRegisterAt(2), calling_convention.GetFpuRegisterAt(3))); locations->SetOut(Location::Location::FpuRegisterPairLocation(S0, S1)); break; } default: LOG(FATAL) << "Unexpected rem type " << type; } } void InstructionCodeGeneratorARM::VisitRem(HRem* rem) { LocationSummary* locations = rem->GetLocations(); Location out = locations->Out(); Location first = locations->InAt(0); Location second = locations->InAt(1); Primitive::Type type = rem->GetResultType(); switch (type) { case Primitive::kPrimInt: { if (second.IsConstant()) { GenerateDivRemConstantIntegral(rem); } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { Register reg1 = first.AsRegister(); Register reg2 = second.AsRegister(); Register temp = locations->GetTemp(0).AsRegister(); // temp = reg1 / reg2 (integer division) // dest = reg1 - temp * reg2 __ sdiv(temp, reg1, reg2); __ mls(out.AsRegister(), temp, reg2, reg1); } else { InvokeRuntimeCallingConvention calling_convention; DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegister()); DCHECK_EQ(calling_convention.GetRegisterAt(1), second.AsRegister()); DCHECK_EQ(R1, out.AsRegister()); codegen_->InvokeRuntime(kQuickIdivmod, rem, rem->GetDexPc()); CheckEntrypointTypes(); } break; } case Primitive::kPrimLong: { codegen_->InvokeRuntime(kQuickLmod, rem, rem->GetDexPc()); CheckEntrypointTypes(); break; } case Primitive::kPrimFloat: { codegen_->InvokeRuntime(kQuickFmodf, rem, rem->GetDexPc()); CheckEntrypointTypes(); break; } case Primitive::kPrimDouble: { codegen_->InvokeRuntime(kQuickFmod, rem, rem->GetDexPc()); CheckEntrypointTypes(); break; } default: LOG(FATAL) << "Unexpected rem type " << type; } } void LocationsBuilderARM::VisitDivZeroCheck(HDivZeroCheck* instruction) { LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); } void InstructionCodeGeneratorARM::VisitDivZeroCheck(HDivZeroCheck* instruction) { SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathARM(instruction); codegen_->AddSlowPath(slow_path); LocationSummary* locations = instruction->GetLocations(); Location value = locations->InAt(0); switch (instruction->GetType()) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: { if (value.IsRegister()) { __ CompareAndBranchIfZero(value.AsRegister(), slow_path->GetEntryLabel()); } else { DCHECK(value.IsConstant()) << value; if (value.GetConstant()->AsIntConstant()->GetValue() == 0) { __ b(slow_path->GetEntryLabel()); } } break; } case Primitive::kPrimLong: { if (value.IsRegisterPair()) { __ orrs(IP, value.AsRegisterPairLow(), ShifterOperand(value.AsRegisterPairHigh())); __ b(slow_path->GetEntryLabel(), EQ); } else { DCHECK(value.IsConstant()) << value; if (value.GetConstant()->AsLongConstant()->GetValue() == 0) { __ b(slow_path->GetEntryLabel()); } } break; default: LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType(); } } } void InstructionCodeGeneratorARM::HandleIntegerRotate(LocationSummary* locations) { Register in = locations->InAt(0).AsRegister(); Location rhs = locations->InAt(1); Register out = locations->Out().AsRegister(); if (rhs.IsConstant()) { // Arm32 and Thumb2 assemblers require a rotation on the interval [1,31], // so map all rotations to a +ve. equivalent in that range. // (e.g. left *or* right by -2 bits == 30 bits in the same direction.) uint32_t rot = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()) & 0x1F; if (rot) { // Rotate, mapping left rotations to right equivalents if necessary. // (e.g. left by 2 bits == right by 30.) __ Ror(out, in, rot); } else if (out != in) { __ Mov(out, in); } } else { __ Ror(out, in, rhs.AsRegister()); } } // Gain some speed by mapping all Long rotates onto equivalent pairs of Integer // rotates by swapping input regs (effectively rotating by the first 32-bits of // a larger rotation) or flipping direction (thus treating larger right/left // rotations as sub-word sized rotations in the other direction) as appropriate. void InstructionCodeGeneratorARM::HandleLongRotate(LocationSummary* locations) { Register in_reg_lo = locations->InAt(0).AsRegisterPairLow(); Register in_reg_hi = locations->InAt(0).AsRegisterPairHigh(); Location rhs = locations->InAt(1); Register out_reg_lo = locations->Out().AsRegisterPairLow(); Register out_reg_hi = locations->Out().AsRegisterPairHigh(); if (rhs.IsConstant()) { uint64_t rot = CodeGenerator::GetInt64ValueOf(rhs.GetConstant()); // Map all rotations to +ve. equivalents on the interval [0,63]. rot &= kMaxLongShiftDistance; // For rotates over a word in size, 'pre-rotate' by 32-bits to keep rotate // logic below to a simple pair of binary orr. // (e.g. 34 bits == in_reg swap + 2 bits right.) if (rot >= kArmBitsPerWord) { rot -= kArmBitsPerWord; std::swap(in_reg_hi, in_reg_lo); } // Rotate, or mov to out for zero or word size rotations. if (rot != 0u) { __ Lsr(out_reg_hi, in_reg_hi, rot); __ orr(out_reg_hi, out_reg_hi, ShifterOperand(in_reg_lo, arm::LSL, kArmBitsPerWord - rot)); __ Lsr(out_reg_lo, in_reg_lo, rot); __ orr(out_reg_lo, out_reg_lo, ShifterOperand(in_reg_hi, arm::LSL, kArmBitsPerWord - rot)); } else { __ Mov(out_reg_lo, in_reg_lo); __ Mov(out_reg_hi, in_reg_hi); } } else { Register shift_right = locations->GetTemp(0).AsRegister(); Register shift_left = locations->GetTemp(1).AsRegister(); Label end; Label shift_by_32_plus_shift_right; __ and_(shift_right, rhs.AsRegister(), ShifterOperand(0x1F)); __ Lsrs(shift_left, rhs.AsRegister(), 6); __ rsb(shift_left, shift_right, ShifterOperand(kArmBitsPerWord), AL, kCcKeep); __ b(&shift_by_32_plus_shift_right, CC); // out_reg_hi = (reg_hi << shift_left) | (reg_lo >> shift_right). // out_reg_lo = (reg_lo << shift_left) | (reg_hi >> shift_right). __ Lsl(out_reg_hi, in_reg_hi, shift_left); __ Lsr(out_reg_lo, in_reg_lo, shift_right); __ add(out_reg_hi, out_reg_hi, ShifterOperand(out_reg_lo)); __ Lsl(out_reg_lo, in_reg_lo, shift_left); __ Lsr(shift_left, in_reg_hi, shift_right); __ add(out_reg_lo, out_reg_lo, ShifterOperand(shift_left)); __ b(&end); __ Bind(&shift_by_32_plus_shift_right); // Shift by 32+shift_right. // out_reg_hi = (reg_hi >> shift_right) | (reg_lo << shift_left). // out_reg_lo = (reg_lo >> shift_right) | (reg_hi << shift_left). __ Lsr(out_reg_hi, in_reg_hi, shift_right); __ Lsl(out_reg_lo, in_reg_lo, shift_left); __ add(out_reg_hi, out_reg_hi, ShifterOperand(out_reg_lo)); __ Lsr(out_reg_lo, in_reg_lo, shift_right); __ Lsl(shift_right, in_reg_hi, shift_left); __ add(out_reg_lo, out_reg_lo, ShifterOperand(shift_right)); __ Bind(&end); } } void LocationsBuilderARM::VisitRor(HRor* ror) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(ror, LocationSummary::kNoCall); switch (ror->GetResultType()) { case Primitive::kPrimInt: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(ror->InputAt(1))); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); if (ror->InputAt(1)->IsConstant()) { locations->SetInAt(1, Location::ConstantLocation(ror->InputAt(1)->AsConstant())); } else { locations->SetInAt(1, Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); break; } default: LOG(FATAL) << "Unexpected operation type " << ror->GetResultType(); } } void InstructionCodeGeneratorARM::VisitRor(HRor* ror) { LocationSummary* locations = ror->GetLocations(); Primitive::Type type = ror->GetResultType(); switch (type) { case Primitive::kPrimInt: { HandleIntegerRotate(locations); break; } case Primitive::kPrimLong: { HandleLongRotate(locations); break; } default: LOG(FATAL) << "Unexpected operation type " << type; UNREACHABLE(); } } void LocationsBuilderARM::HandleShift(HBinaryOperation* op) { DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall); switch (op->GetResultType()) { case Primitive::kPrimInt: { locations->SetInAt(0, Location::RequiresRegister()); if (op->InputAt(1)->IsConstant()) { locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant())); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } else { locations->SetInAt(1, Location::RequiresRegister()); // Make the output overlap, as it will be used to hold the masked // second input. locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); } break; } case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); if (op->InputAt(1)->IsConstant()) { locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant())); // For simplicity, use kOutputOverlap even though we only require that low registers // don't clash with high registers which the register allocator currently guarantees. locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); } else { locations->SetInAt(1, Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); } break; } default: LOG(FATAL) << "Unexpected operation type " << op->GetResultType(); } } void InstructionCodeGeneratorARM::HandleShift(HBinaryOperation* op) { DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); LocationSummary* locations = op->GetLocations(); Location out = locations->Out(); Location first = locations->InAt(0); Location second = locations->InAt(1); Primitive::Type type = op->GetResultType(); switch (type) { case Primitive::kPrimInt: { Register out_reg = out.AsRegister(); Register first_reg = first.AsRegister(); if (second.IsRegister()) { Register second_reg = second.AsRegister(); // ARM doesn't mask the shift count so we need to do it ourselves. __ and_(out_reg, second_reg, ShifterOperand(kMaxIntShiftDistance)); if (op->IsShl()) { __ Lsl(out_reg, first_reg, out_reg); } else if (op->IsShr()) { __ Asr(out_reg, first_reg, out_reg); } else { __ Lsr(out_reg, first_reg, out_reg); } } else { int32_t cst = second.GetConstant()->AsIntConstant()->GetValue(); uint32_t shift_value = cst & kMaxIntShiftDistance; if (shift_value == 0) { // ARM does not support shifting with 0 immediate. __ Mov(out_reg, first_reg); } else if (op->IsShl()) { __ Lsl(out_reg, first_reg, shift_value); } else if (op->IsShr()) { __ Asr(out_reg, first_reg, shift_value); } else { __ Lsr(out_reg, first_reg, shift_value); } } break; } case Primitive::kPrimLong: { Register o_h = out.AsRegisterPairHigh(); Register o_l = out.AsRegisterPairLow(); Register high = first.AsRegisterPairHigh(); Register low = first.AsRegisterPairLow(); if (second.IsRegister()) { Register temp = locations->GetTemp(0).AsRegister(); Register second_reg = second.AsRegister(); if (op->IsShl()) { __ and_(o_l, second_reg, ShifterOperand(kMaxLongShiftDistance)); // Shift the high part __ Lsl(o_h, high, o_l); // Shift the low part and `or` what overflew on the high part __ rsb(temp, o_l, ShifterOperand(kArmBitsPerWord)); __ Lsr(temp, low, temp); __ orr(o_h, o_h, ShifterOperand(temp)); // If the shift is > 32 bits, override the high part __ subs(temp, o_l, ShifterOperand(kArmBitsPerWord)); __ it(PL); __ Lsl(o_h, low, temp, PL); // Shift the low part __ Lsl(o_l, low, o_l); } else if (op->IsShr()) { __ and_(o_h, second_reg, ShifterOperand(kMaxLongShiftDistance)); // Shift the low part __ Lsr(o_l, low, o_h); // Shift the high part and `or` what underflew on the low part __ rsb(temp, o_h, ShifterOperand(kArmBitsPerWord)); __ Lsl(temp, high, temp); __ orr(o_l, o_l, ShifterOperand(temp)); // If the shift is > 32 bits, override the low part __ subs(temp, o_h, ShifterOperand(kArmBitsPerWord)); __ it(PL); __ Asr(o_l, high, temp, PL); // Shift the high part __ Asr(o_h, high, o_h); } else { __ and_(o_h, second_reg, ShifterOperand(kMaxLongShiftDistance)); // same as Shr except we use `Lsr`s and not `Asr`s __ Lsr(o_l, low, o_h); __ rsb(temp, o_h, ShifterOperand(kArmBitsPerWord)); __ Lsl(temp, high, temp); __ orr(o_l, o_l, ShifterOperand(temp)); __ subs(temp, o_h, ShifterOperand(kArmBitsPerWord)); __ it(PL); __ Lsr(o_l, high, temp, PL); __ Lsr(o_h, high, o_h); } } else { // Register allocator doesn't create partial overlap. DCHECK_NE(o_l, high); DCHECK_NE(o_h, low); int32_t cst = second.GetConstant()->AsIntConstant()->GetValue(); uint32_t shift_value = cst & kMaxLongShiftDistance; if (shift_value > 32) { if (op->IsShl()) { __ Lsl(o_h, low, shift_value - 32); __ LoadImmediate(o_l, 0); } else if (op->IsShr()) { __ Asr(o_l, high, shift_value - 32); __ Asr(o_h, high, 31); } else { __ Lsr(o_l, high, shift_value - 32); __ LoadImmediate(o_h, 0); } } else if (shift_value == 32) { if (op->IsShl()) { __ mov(o_h, ShifterOperand(low)); __ LoadImmediate(o_l, 0); } else if (op->IsShr()) { __ mov(o_l, ShifterOperand(high)); __ Asr(o_h, high, 31); } else { __ mov(o_l, ShifterOperand(high)); __ LoadImmediate(o_h, 0); } } else if (shift_value == 1) { if (op->IsShl()) { __ Lsls(o_l, low, 1); __ adc(o_h, high, ShifterOperand(high)); } else if (op->IsShr()) { __ Asrs(o_h, high, 1); __ Rrx(o_l, low); } else { __ Lsrs(o_h, high, 1); __ Rrx(o_l, low); } } else { DCHECK(2 <= shift_value && shift_value < 32) << shift_value; if (op->IsShl()) { __ Lsl(o_h, high, shift_value); __ orr(o_h, o_h, ShifterOperand(low, LSR, 32 - shift_value)); __ Lsl(o_l, low, shift_value); } else if (op->IsShr()) { __ Lsr(o_l, low, shift_value); __ orr(o_l, o_l, ShifterOperand(high, LSL, 32 - shift_value)); __ Asr(o_h, high, shift_value); } else { __ Lsr(o_l, low, shift_value); __ orr(o_l, o_l, ShifterOperand(high, LSL, 32 - shift_value)); __ Lsr(o_h, high, shift_value); } } } break; } default: LOG(FATAL) << "Unexpected operation type " << type; UNREACHABLE(); } } void LocationsBuilderARM::VisitShl(HShl* shl) { HandleShift(shl); } void InstructionCodeGeneratorARM::VisitShl(HShl* shl) { HandleShift(shl); } void LocationsBuilderARM::VisitShr(HShr* shr) { HandleShift(shr); } void InstructionCodeGeneratorARM::VisitShr(HShr* shr) { HandleShift(shr); } void LocationsBuilderARM::VisitUShr(HUShr* ushr) { HandleShift(ushr); } void InstructionCodeGeneratorARM::VisitUShr(HUShr* ushr) { HandleShift(ushr); } void LocationsBuilderARM::VisitNewInstance(HNewInstance* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); if (instruction->IsStringAlloc()) { locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument)); } else { InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); } locations->SetOut(Location::RegisterLocation(R0)); } void InstructionCodeGeneratorARM::VisitNewInstance(HNewInstance* instruction) { // Note: if heap poisoning is enabled, the entry point takes cares // of poisoning the reference. if (instruction->IsStringAlloc()) { // String is allocated through StringFactory. Call NewEmptyString entry point. Register temp = instruction->GetLocations()->GetTemp(0).AsRegister(); MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize); __ LoadFromOffset(kLoadWord, temp, TR, QUICK_ENTRY_POINT(pNewEmptyString)); __ LoadFromOffset(kLoadWord, LR, temp, code_offset.Int32Value()); __ blx(LR); codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); } else { codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc()); CheckEntrypointTypes(); } } void LocationsBuilderARM::VisitNewArray(HNewArray* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); InvokeRuntimeCallingConvention calling_convention; locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetOut(Location::RegisterLocation(R0)); locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); } void InstructionCodeGeneratorARM::VisitNewArray(HNewArray* instruction) { InvokeRuntimeCallingConvention calling_convention; __ LoadImmediate(calling_convention.GetRegisterAt(0), instruction->GetTypeIndex()); // Note: if heap poisoning is enabled, the entry point takes cares // of poisoning the reference. codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc()); CheckEntrypointTypes(); } void LocationsBuilderARM::VisitParameterValue(HParameterValue* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); Location location = parameter_visitor_.GetNextLocation(instruction->GetType()); if (location.IsStackSlot()) { location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); } else if (location.IsDoubleStackSlot()) { location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); } locations->SetOut(location); } void InstructionCodeGeneratorARM::VisitParameterValue( HParameterValue* instruction ATTRIBUTE_UNUSED) { // Nothing to do, the parameter is already at its location. } void LocationsBuilderARM::VisitCurrentMethod(HCurrentMethod* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument)); } void InstructionCodeGeneratorARM::VisitCurrentMethod(HCurrentMethod* instruction ATTRIBUTE_UNUSED) { // Nothing to do, the method is already at its location. } void LocationsBuilderARM::VisitNot(HNot* not_) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorARM::VisitNot(HNot* not_) { LocationSummary* locations = not_->GetLocations(); Location out = locations->Out(); Location in = locations->InAt(0); switch (not_->GetResultType()) { case Primitive::kPrimInt: __ mvn(out.AsRegister(), ShifterOperand(in.AsRegister())); break; case Primitive::kPrimLong: __ mvn(out.AsRegisterPairLow(), ShifterOperand(in.AsRegisterPairLow())); __ mvn(out.AsRegisterPairHigh(), ShifterOperand(in.AsRegisterPairHigh())); break; default: LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType(); } } void LocationsBuilderARM::VisitBooleanNot(HBooleanNot* bool_not) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorARM::VisitBooleanNot(HBooleanNot* bool_not) { LocationSummary* locations = bool_not->GetLocations(); Location out = locations->Out(); Location in = locations->InAt(0); __ eor(out.AsRegister(), in.AsRegister(), ShifterOperand(1)); } void LocationsBuilderARM::VisitCompare(HCompare* compare) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall); switch (compare->InputAt(0)->GetType()) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimChar: case Primitive::kPrimInt: case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); // Output overlaps because it is written before doing the low comparison. locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, ArithmeticZeroOrFpuRegister(compare->InputAt(1))); locations->SetOut(Location::RequiresRegister()); break; } default: LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType(); } } void InstructionCodeGeneratorARM::VisitCompare(HCompare* compare) { LocationSummary* locations = compare->GetLocations(); Register out = locations->Out().AsRegister(); Location left = locations->InAt(0); Location right = locations->InAt(1); Label less, greater, done; Primitive::Type type = compare->InputAt(0)->GetType(); Condition less_cond; switch (type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimChar: case Primitive::kPrimInt: { __ LoadImmediate(out, 0); __ cmp(left.AsRegister(), ShifterOperand(right.AsRegister())); // Signed compare. less_cond = LT; break; } case Primitive::kPrimLong: { __ cmp(left.AsRegisterPairHigh(), ShifterOperand(right.AsRegisterPairHigh())); // Signed compare. __ b(&less, LT); __ b(&greater, GT); // Do LoadImmediate before the last `cmp`, as LoadImmediate might affect the status flags. __ LoadImmediate(out, 0); __ cmp(left.AsRegisterPairLow(), ShifterOperand(right.AsRegisterPairLow())); // Unsigned compare. less_cond = LO; break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { __ LoadImmediate(out, 0); GenerateVcmp(compare); __ vmstat(); // transfer FP status register to ARM APSR. less_cond = ARMFPCondition(kCondLT, compare->IsGtBias()); break; } default: LOG(FATAL) << "Unexpected compare type " << type; UNREACHABLE(); } __ b(&done, EQ); __ b(&less, less_cond); __ Bind(&greater); __ LoadImmediate(out, 1); __ b(&done); __ Bind(&less); __ LoadImmediate(out, -1); __ Bind(&done); } void LocationsBuilderARM::VisitPhi(HPhi* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { locations->SetInAt(i, Location::Any()); } locations->SetOut(Location::Any()); } void InstructionCodeGeneratorARM::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) { LOG(FATAL) << "Unreachable"; } void CodeGeneratorARM::GenerateMemoryBarrier(MemBarrierKind kind) { // TODO (ported from quick): revisit ARM barrier kinds. DmbOptions flavor = DmbOptions::ISH; // Quiet C++ warnings. switch (kind) { case MemBarrierKind::kAnyStore: case MemBarrierKind::kLoadAny: case MemBarrierKind::kAnyAny: { flavor = DmbOptions::ISH; break; } case MemBarrierKind::kStoreStore: { flavor = DmbOptions::ISHST; break; } default: LOG(FATAL) << "Unexpected memory barrier " << kind; } __ dmb(flavor); } void InstructionCodeGeneratorARM::GenerateWideAtomicLoad(Register addr, uint32_t offset, Register out_lo, Register out_hi) { if (offset != 0) { // Ensure `out_lo` is different from `addr`, so that loading // `offset` into `out_lo` does not clutter `addr`. DCHECK_NE(out_lo, addr); __ LoadImmediate(out_lo, offset); __ add(IP, addr, ShifterOperand(out_lo)); addr = IP; } __ ldrexd(out_lo, out_hi, addr); } void InstructionCodeGeneratorARM::GenerateWideAtomicStore(Register addr, uint32_t offset, Register value_lo, Register value_hi, Register temp1, Register temp2, HInstruction* instruction) { Label fail; if (offset != 0) { __ LoadImmediate(temp1, offset); __ add(IP, addr, ShifterOperand(temp1)); addr = IP; } __ Bind(&fail); // We need a load followed by store. (The address used in a STREX instruction must // be the same as the address in the most recently executed LDREX instruction.) __ ldrexd(temp1, temp2, addr); codegen_->MaybeRecordImplicitNullCheck(instruction); __ strexd(temp1, value_lo, value_hi, addr); __ CompareAndBranchIfNonZero(temp1, &fail); } void LocationsBuilderARM::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) { DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); Primitive::Type field_type = field_info.GetFieldType(); if (Primitive::IsFloatingPointType(field_type)) { locations->SetInAt(1, Location::RequiresFpuRegister()); } else { locations->SetInAt(1, Location::RequiresRegister()); } bool is_wide = field_type == Primitive::kPrimLong || field_type == Primitive::kPrimDouble; bool generate_volatile = field_info.IsVolatile() && is_wide && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd(); bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1)); // Temporary registers for the write barrier. // TODO: consider renaming StoreNeedsWriteBarrier to StoreNeedsGCMark. if (needs_write_barrier) { locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too. locations->AddTemp(Location::RequiresRegister()); } else if (generate_volatile) { // ARM encoding have some additional constraints for ldrexd/strexd: // - registers need to be consecutive // - the first register should be even but not R14. // We don't test for ARM yet, and the assertion makes sure that we // revisit this if we ever enable ARM encoding. DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); if (field_type == Primitive::kPrimDouble) { // For doubles we need two more registers to copy the value. locations->AddTemp(Location::RegisterLocation(R2)); locations->AddTemp(Location::RegisterLocation(R3)); } } } void InstructionCodeGeneratorARM::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info, bool value_can_be_null) { DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); LocationSummary* locations = instruction->GetLocations(); Register base = locations->InAt(0).AsRegister(); Location value = locations->InAt(1); bool is_volatile = field_info.IsVolatile(); bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd(); Primitive::Type field_type = field_info.GetFieldType(); uint32_t offset = field_info.GetFieldOffset().Uint32Value(); bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1)); if (is_volatile) { codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore); } switch (field_type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: { __ StoreToOffset(kStoreByte, value.AsRegister(), base, offset); break; } case Primitive::kPrimShort: case Primitive::kPrimChar: { __ StoreToOffset(kStoreHalfword, value.AsRegister(), base, offset); break; } case Primitive::kPrimInt: case Primitive::kPrimNot: { if (kPoisonHeapReferences && needs_write_barrier) { // Note that in the case where `value` is a null reference, // we do not enter this block, as a null reference does not // need poisoning. DCHECK_EQ(field_type, Primitive::kPrimNot); Register temp = locations->GetTemp(0).AsRegister(); __ Mov(temp, value.AsRegister()); __ PoisonHeapReference(temp); __ StoreToOffset(kStoreWord, temp, base, offset); } else { __ StoreToOffset(kStoreWord, value.AsRegister(), base, offset); } break; } case Primitive::kPrimLong: { if (is_volatile && !atomic_ldrd_strd) { GenerateWideAtomicStore(base, offset, value.AsRegisterPairLow(), value.AsRegisterPairHigh(), locations->GetTemp(0).AsRegister(), locations->GetTemp(1).AsRegister(), instruction); } else { __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow(), base, offset); codegen_->MaybeRecordImplicitNullCheck(instruction); } break; } case Primitive::kPrimFloat: { __ StoreSToOffset(value.AsFpuRegister(), base, offset); break; } case Primitive::kPrimDouble: { DRegister value_reg = FromLowSToD(value.AsFpuRegisterPairLow()); if (is_volatile && !atomic_ldrd_strd) { Register value_reg_lo = locations->GetTemp(0).AsRegister(); Register value_reg_hi = locations->GetTemp(1).AsRegister(); __ vmovrrd(value_reg_lo, value_reg_hi, value_reg); GenerateWideAtomicStore(base, offset, value_reg_lo, value_reg_hi, locations->GetTemp(2).AsRegister(), locations->GetTemp(3).AsRegister(), instruction); } else { __ StoreDToOffset(value_reg, base, offset); codegen_->MaybeRecordImplicitNullCheck(instruction); } break; } case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable type " << field_type; UNREACHABLE(); } // Longs and doubles are handled in the switch. if (field_type != Primitive::kPrimLong && field_type != Primitive::kPrimDouble) { codegen_->MaybeRecordImplicitNullCheck(instruction); } if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) { Register temp = locations->GetTemp(0).AsRegister(); Register card = locations->GetTemp(1).AsRegister(); codegen_->MarkGCCard( temp, card, base, value.AsRegister(), value_can_be_null); } if (is_volatile) { codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny); } } void LocationsBuilderARM::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) { DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); bool object_field_get_with_read_barrier = kEmitCompilerReadBarrier && (field_info.GetFieldType() == Primitive::kPrimNot); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, object_field_get_with_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall); if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. } locations->SetInAt(0, Location::RequiresRegister()); bool volatile_for_double = field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimDouble) && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd(); // The output overlaps in case of volatile long: we don't want the // code generated by GenerateWideAtomicLoad to overwrite the // object's location. Likewise, in the case of an object field get // with read barriers enabled, we do not want the load to overwrite // the object's location, as we need it to emit the read barrier. bool overlap = (field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimLong)) || object_field_get_with_read_barrier; if (Primitive::IsFloatingPointType(instruction->GetType())) { locations->SetOut(Location::RequiresFpuRegister()); } else { locations->SetOut(Location::RequiresRegister(), (overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap)); } if (volatile_for_double) { // ARM encoding have some additional constraints for ldrexd/strexd: // - registers need to be consecutive // - the first register should be even but not R14. // We don't test for ARM yet, and the assertion makes sure that we // revisit this if we ever enable ARM encoding. DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } else if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { // We need a temporary register for the read barrier marking slow // path in CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier. locations->AddTemp(Location::RequiresRegister()); } } Location LocationsBuilderARM::ArithmeticZeroOrFpuRegister(HInstruction* input) { DCHECK(input->GetType() == Primitive::kPrimDouble || input->GetType() == Primitive::kPrimFloat) << input->GetType(); if ((input->IsFloatConstant() && (input->AsFloatConstant()->IsArithmeticZero())) || (input->IsDoubleConstant() && (input->AsDoubleConstant()->IsArithmeticZero()))) { return Location::ConstantLocation(input->AsConstant()); } else { return Location::RequiresFpuRegister(); } } Location LocationsBuilderARM::ArmEncodableConstantOrRegister(HInstruction* constant, Opcode opcode) { DCHECK(!Primitive::IsFloatingPointType(constant->GetType())); if (constant->IsConstant() && CanEncodeConstantAsImmediate(constant->AsConstant(), opcode)) { return Location::ConstantLocation(constant->AsConstant()); } return Location::RequiresRegister(); } bool LocationsBuilderARM::CanEncodeConstantAsImmediate(HConstant* input_cst, Opcode opcode) { uint64_t value = static_cast(Int64FromConstant(input_cst)); if (Primitive::Is64BitType(input_cst->GetType())) { Opcode high_opcode = opcode; SetCc low_set_cc = kCcDontCare; switch (opcode) { case SUB: // Flip the operation to an ADD. value = -value; opcode = ADD; FALLTHROUGH_INTENDED; case ADD: if (Low32Bits(value) == 0u) { return CanEncodeConstantAsImmediate(High32Bits(value), opcode, kCcDontCare); } high_opcode = ADC; low_set_cc = kCcSet; break; default: break; } return CanEncodeConstantAsImmediate(Low32Bits(value), opcode, low_set_cc) && CanEncodeConstantAsImmediate(High32Bits(value), high_opcode, kCcDontCare); } else { return CanEncodeConstantAsImmediate(Low32Bits(value), opcode); } } bool LocationsBuilderARM::CanEncodeConstantAsImmediate(uint32_t value, Opcode opcode, SetCc set_cc) { ShifterOperand so; ArmAssembler* assembler = codegen_->GetAssembler(); if (assembler->ShifterOperandCanHold(kNoRegister, kNoRegister, opcode, value, set_cc, &so)) { return true; } Opcode neg_opcode = kNoOperand; switch (opcode) { case AND: neg_opcode = BIC; value = ~value; break; case ORR: neg_opcode = ORN; value = ~value; break; case ADD: neg_opcode = SUB; value = -value; break; case ADC: neg_opcode = SBC; value = ~value; break; case SUB: neg_opcode = ADD; value = -value; break; case SBC: neg_opcode = ADC; value = ~value; break; default: return false; } return assembler->ShifterOperandCanHold(kNoRegister, kNoRegister, neg_opcode, value, set_cc, &so); } void InstructionCodeGeneratorARM::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) { DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); LocationSummary* locations = instruction->GetLocations(); Location base_loc = locations->InAt(0); Register base = base_loc.AsRegister(); Location out = locations->Out(); bool is_volatile = field_info.IsVolatile(); bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd(); Primitive::Type field_type = field_info.GetFieldType(); uint32_t offset = field_info.GetFieldOffset().Uint32Value(); switch (field_type) { case Primitive::kPrimBoolean: __ LoadFromOffset(kLoadUnsignedByte, out.AsRegister(), base, offset); break; case Primitive::kPrimByte: __ LoadFromOffset(kLoadSignedByte, out.AsRegister(), base, offset); break; case Primitive::kPrimShort: __ LoadFromOffset(kLoadSignedHalfword, out.AsRegister(), base, offset); break; case Primitive::kPrimChar: __ LoadFromOffset(kLoadUnsignedHalfword, out.AsRegister(), base, offset); break; case Primitive::kPrimInt: __ LoadFromOffset(kLoadWord, out.AsRegister(), base, offset); break; case Primitive::kPrimNot: { // /* HeapReference */ out = *(base + offset) if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { Location temp_loc = locations->GetTemp(0); // Note that a potential implicit null check is handled in this // CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier call. codegen_->GenerateFieldLoadWithBakerReadBarrier( instruction, out, base, offset, temp_loc, /* needs_null_check */ true); if (is_volatile) { codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); } } else { __ LoadFromOffset(kLoadWord, out.AsRegister(), base, offset); codegen_->MaybeRecordImplicitNullCheck(instruction); if (is_volatile) { codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); } // If read barriers are enabled, emit read barriers other than // Baker's using a slow path (and also unpoison the loaded // reference, if heap poisoning is enabled). codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset); } break; } case Primitive::kPrimLong: if (is_volatile && !atomic_ldrd_strd) { GenerateWideAtomicLoad(base, offset, out.AsRegisterPairLow(), out.AsRegisterPairHigh()); } else { __ LoadFromOffset(kLoadWordPair, out.AsRegisterPairLow(), base, offset); } break; case Primitive::kPrimFloat: __ LoadSFromOffset(out.AsFpuRegister(), base, offset); break; case Primitive::kPrimDouble: { DRegister out_reg = FromLowSToD(out.AsFpuRegisterPairLow()); if (is_volatile && !atomic_ldrd_strd) { Register lo = locations->GetTemp(0).AsRegister(); Register hi = locations->GetTemp(1).AsRegister(); GenerateWideAtomicLoad(base, offset, lo, hi); codegen_->MaybeRecordImplicitNullCheck(instruction); __ vmovdrr(out_reg, lo, hi); } else { __ LoadDFromOffset(out_reg, base, offset); codegen_->MaybeRecordImplicitNullCheck(instruction); } break; } case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable type " << field_type; UNREACHABLE(); } if (field_type == Primitive::kPrimNot || field_type == Primitive::kPrimDouble) { // Potential implicit null checks, in the case of reference or // double fields, are handled in the previous switch statement. } else { codegen_->MaybeRecordImplicitNullCheck(instruction); } if (is_volatile) { if (field_type == Primitive::kPrimNot) { // Memory barriers, in the case of references, are also handled // in the previous switch statement. } else { codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); } } } void LocationsBuilderARM::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo()); } void InstructionCodeGeneratorARM::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); } void LocationsBuilderARM::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void InstructionCodeGeneratorARM::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void LocationsBuilderARM::VisitStaticFieldGet(HStaticFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void InstructionCodeGeneratorARM::VisitStaticFieldGet(HStaticFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void LocationsBuilderARM::VisitStaticFieldSet(HStaticFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo()); } void InstructionCodeGeneratorARM::VisitStaticFieldSet(HStaticFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); } void LocationsBuilderARM::VisitUnresolvedInstanceFieldGet( HUnresolvedInstanceFieldGet* instruction) { FieldAccessCallingConventionARM calling_convention; codegen_->CreateUnresolvedFieldLocationSummary( instruction, instruction->GetFieldType(), calling_convention); } void InstructionCodeGeneratorARM::VisitUnresolvedInstanceFieldGet( HUnresolvedInstanceFieldGet* instruction) { FieldAccessCallingConventionARM calling_convention; codegen_->GenerateUnresolvedFieldAccess(instruction, instruction->GetFieldType(), instruction->GetFieldIndex(), instruction->GetDexPc(), calling_convention); } void LocationsBuilderARM::VisitUnresolvedInstanceFieldSet( HUnresolvedInstanceFieldSet* instruction) { FieldAccessCallingConventionARM calling_convention; codegen_->CreateUnresolvedFieldLocationSummary( instruction, instruction->GetFieldType(), calling_convention); } void InstructionCodeGeneratorARM::VisitUnresolvedInstanceFieldSet( HUnresolvedInstanceFieldSet* instruction) { FieldAccessCallingConventionARM calling_convention; codegen_->GenerateUnresolvedFieldAccess(instruction, instruction->GetFieldType(), instruction->GetFieldIndex(), instruction->GetDexPc(), calling_convention); } void LocationsBuilderARM::VisitUnresolvedStaticFieldGet( HUnresolvedStaticFieldGet* instruction) { FieldAccessCallingConventionARM calling_convention; codegen_->CreateUnresolvedFieldLocationSummary( instruction, instruction->GetFieldType(), calling_convention); } void InstructionCodeGeneratorARM::VisitUnresolvedStaticFieldGet( HUnresolvedStaticFieldGet* instruction) { FieldAccessCallingConventionARM calling_convention; codegen_->GenerateUnresolvedFieldAccess(instruction, instruction->GetFieldType(), instruction->GetFieldIndex(), instruction->GetDexPc(), calling_convention); } void LocationsBuilderARM::VisitUnresolvedStaticFieldSet( HUnresolvedStaticFieldSet* instruction) { FieldAccessCallingConventionARM calling_convention; codegen_->CreateUnresolvedFieldLocationSummary( instruction, instruction->GetFieldType(), calling_convention); } void InstructionCodeGeneratorARM::VisitUnresolvedStaticFieldSet( HUnresolvedStaticFieldSet* instruction) { FieldAccessCallingConventionARM calling_convention; codegen_->GenerateUnresolvedFieldAccess(instruction, instruction->GetFieldType(), instruction->GetFieldIndex(), instruction->GetDexPc(), calling_convention); } void LocationsBuilderARM::VisitNullCheck(HNullCheck* instruction) { LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); locations->SetInAt(0, Location::RequiresRegister()); } void CodeGeneratorARM::GenerateImplicitNullCheck(HNullCheck* instruction) { if (CanMoveNullCheckToUser(instruction)) { return; } Location obj = instruction->GetLocations()->InAt(0); __ LoadFromOffset(kLoadWord, IP, obj.AsRegister(), 0); RecordPcInfo(instruction, instruction->GetDexPc()); } void CodeGeneratorARM::GenerateExplicitNullCheck(HNullCheck* instruction) { SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathARM(instruction); AddSlowPath(slow_path); LocationSummary* locations = instruction->GetLocations(); Location obj = locations->InAt(0); __ CompareAndBranchIfZero(obj.AsRegister(), slow_path->GetEntryLabel()); } void InstructionCodeGeneratorARM::VisitNullCheck(HNullCheck* instruction) { codegen_->GenerateNullCheck(instruction); } static LoadOperandType GetLoadOperandType(Primitive::Type type) { switch (type) { case Primitive::kPrimNot: return kLoadWord; case Primitive::kPrimBoolean: return kLoadUnsignedByte; case Primitive::kPrimByte: return kLoadSignedByte; case Primitive::kPrimChar: return kLoadUnsignedHalfword; case Primitive::kPrimShort: return kLoadSignedHalfword; case Primitive::kPrimInt: return kLoadWord; case Primitive::kPrimLong: return kLoadWordPair; case Primitive::kPrimFloat: return kLoadSWord; case Primitive::kPrimDouble: return kLoadDWord; default: LOG(FATAL) << "Unreachable type " << type; UNREACHABLE(); } } static StoreOperandType GetStoreOperandType(Primitive::Type type) { switch (type) { case Primitive::kPrimNot: return kStoreWord; case Primitive::kPrimBoolean: case Primitive::kPrimByte: return kStoreByte; case Primitive::kPrimChar: case Primitive::kPrimShort: return kStoreHalfword; case Primitive::kPrimInt: return kStoreWord; case Primitive::kPrimLong: return kStoreWordPair; case Primitive::kPrimFloat: return kStoreSWord; case Primitive::kPrimDouble: return kStoreDWord; default: LOG(FATAL) << "Unreachable type " << type; UNREACHABLE(); } } void CodeGeneratorARM::LoadFromShiftedRegOffset(Primitive::Type type, Location out_loc, Register base, Register reg_offset, Condition cond) { uint32_t shift_count = Primitive::ComponentSizeShift(type); Address mem_address(base, reg_offset, Shift::LSL, shift_count); switch (type) { case Primitive::kPrimByte: __ ldrsb(out_loc.AsRegister(), mem_address, cond); break; case Primitive::kPrimBoolean: __ ldrb(out_loc.AsRegister(), mem_address, cond); break; case Primitive::kPrimShort: __ ldrsh(out_loc.AsRegister(), mem_address, cond); break; case Primitive::kPrimChar: __ ldrh(out_loc.AsRegister(), mem_address, cond); break; case Primitive::kPrimNot: case Primitive::kPrimInt: __ ldr(out_loc.AsRegister(), mem_address, cond); break; // T32 doesn't support LoadFromShiftedRegOffset mem address mode for these types. case Primitive::kPrimLong: case Primitive::kPrimFloat: case Primitive::kPrimDouble: default: LOG(FATAL) << "Unreachable type " << type; UNREACHABLE(); } } void CodeGeneratorARM::StoreToShiftedRegOffset(Primitive::Type type, Location loc, Register base, Register reg_offset, Condition cond) { uint32_t shift_count = Primitive::ComponentSizeShift(type); Address mem_address(base, reg_offset, Shift::LSL, shift_count); switch (type) { case Primitive::kPrimByte: case Primitive::kPrimBoolean: __ strb(loc.AsRegister(), mem_address, cond); break; case Primitive::kPrimShort: case Primitive::kPrimChar: __ strh(loc.AsRegister(), mem_address, cond); break; case Primitive::kPrimNot: case Primitive::kPrimInt: __ str(loc.AsRegister(), mem_address, cond); break; // T32 doesn't support StoreToShiftedRegOffset mem address mode for these types. case Primitive::kPrimLong: case Primitive::kPrimFloat: case Primitive::kPrimDouble: default: LOG(FATAL) << "Unreachable type " << type; UNREACHABLE(); } } void LocationsBuilderARM::VisitArrayGet(HArrayGet* instruction) { bool object_array_get_with_read_barrier = kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, object_array_get_with_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall); if (object_array_get_with_read_barrier && kUseBakerReadBarrier) { locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. } locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); if (Primitive::IsFloatingPointType(instruction->GetType())) { locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); } else { // The output overlaps in the case of an object array get with // read barriers enabled: we do not want the move to overwrite the // array's location, as we need it to emit the read barrier. locations->SetOut( Location::RequiresRegister(), object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap); } // We need a temporary register for the read barrier marking slow // path in CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier. // Also need for String compression feature. if ((object_array_get_with_read_barrier && kUseBakerReadBarrier) || (mirror::kUseStringCompression && instruction->IsStringCharAt())) { locations->AddTemp(Location::RequiresRegister()); } } void InstructionCodeGeneratorARM::VisitArrayGet(HArrayGet* instruction) { LocationSummary* locations = instruction->GetLocations(); Location obj_loc = locations->InAt(0); Register obj = obj_loc.AsRegister(); Location index = locations->InAt(1); Location out_loc = locations->Out(); uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction); Primitive::Type type = instruction->GetType(); const bool maybe_compressed_char_at = mirror::kUseStringCompression && instruction->IsStringCharAt(); HInstruction* array_instr = instruction->GetArray(); bool has_intermediate_address = array_instr->IsIntermediateAddress(); switch (type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimChar: case Primitive::kPrimInt: { Register length; if (maybe_compressed_char_at) { length = locations->GetTemp(0).AsRegister(); uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); __ LoadFromOffset(kLoadWord, length, obj, count_offset); codegen_->MaybeRecordImplicitNullCheck(instruction); } if (index.IsConstant()) { int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue(); if (maybe_compressed_char_at) { Label uncompressed_load, done; __ Lsrs(length, length, 1u); // LSRS has a 16-bit encoding, TST (immediate) does not. static_assert(static_cast(mirror::StringCompressionFlag::kCompressed) == 0u, "Expecting 0=compressed, 1=uncompressed"); __ b(&uncompressed_load, CS); __ LoadFromOffset(kLoadUnsignedByte, out_loc.AsRegister(), obj, data_offset + const_index); __ b(&done); __ Bind(&uncompressed_load); __ LoadFromOffset(GetLoadOperandType(Primitive::kPrimChar), out_loc.AsRegister(), obj, data_offset + (const_index << 1)); __ Bind(&done); } else { uint32_t full_offset = data_offset + (const_index << Primitive::ComponentSizeShift(type)); LoadOperandType load_type = GetLoadOperandType(type); __ LoadFromOffset(load_type, out_loc.AsRegister(), obj, full_offset); } } else { Register temp = IP; if (has_intermediate_address) { // We do not need to compute the intermediate address from the array: the // input instruction has done it already. See the comment in // `TryExtractArrayAccessAddress()`. if (kIsDebugBuild) { HIntermediateAddress* tmp = array_instr->AsIntermediateAddress(); DCHECK_EQ(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64(), data_offset); } temp = obj; } else { __ add(temp, obj, ShifterOperand(data_offset)); } if (maybe_compressed_char_at) { Label uncompressed_load, done; __ Lsrs(length, length, 1u); // LSRS has a 16-bit encoding, TST (immediate) does not. static_assert(static_cast(mirror::StringCompressionFlag::kCompressed) == 0u, "Expecting 0=compressed, 1=uncompressed"); __ b(&uncompressed_load, CS); __ ldrb(out_loc.AsRegister(), Address(temp, index.AsRegister(), Shift::LSL, 0)); __ b(&done); __ Bind(&uncompressed_load); __ ldrh(out_loc.AsRegister(), Address(temp, index.AsRegister(), Shift::LSL, 1)); __ Bind(&done); } else { codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, index.AsRegister()); } } break; } case Primitive::kPrimNot: { // The read barrier instrumentation of object ArrayGet // instructions does not support the HIntermediateAddress // instruction. DCHECK(!(has_intermediate_address && kEmitCompilerReadBarrier)); static_assert( sizeof(mirror::HeapReference) == sizeof(int32_t), "art::mirror::HeapReference and int32_t have different sizes."); // /* HeapReference */ out = // *(obj + data_offset + index * sizeof(HeapReference)) if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { Location temp = locations->GetTemp(0); // Note that a potential implicit null check is handled in this // CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier call. codegen_->GenerateArrayLoadWithBakerReadBarrier( instruction, out_loc, obj, data_offset, index, temp, /* needs_null_check */ true); } else { Register out = out_loc.AsRegister(); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; __ LoadFromOffset(kLoadWord, out, obj, offset); codegen_->MaybeRecordImplicitNullCheck(instruction); // If read barriers are enabled, emit read barriers other than // Baker's using a slow path (and also unpoison the loaded // reference, if heap poisoning is enabled). codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset); } else { Register temp = IP; if (has_intermediate_address) { // We do not need to compute the intermediate address from the array: the // input instruction has done it already. See the comment in // `TryExtractArrayAccessAddress()`. if (kIsDebugBuild) { HIntermediateAddress* tmp = array_instr->AsIntermediateAddress(); DCHECK_EQ(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64(), data_offset); } temp = obj; } else { __ add(temp, obj, ShifterOperand(data_offset)); } codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, index.AsRegister()); codegen_->MaybeRecordImplicitNullCheck(instruction); // If read barriers are enabled, emit read barriers other than // Baker's using a slow path (and also unpoison the loaded // reference, if heap poisoning is enabled). codegen_->MaybeGenerateReadBarrierSlow( instruction, out_loc, out_loc, obj_loc, data_offset, index); } } break; } case Primitive::kPrimLong: { if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; __ LoadFromOffset(kLoadWordPair, out_loc.AsRegisterPairLow(), obj, offset); } else { __ add(IP, obj, ShifterOperand(index.AsRegister(), LSL, TIMES_8)); __ LoadFromOffset(kLoadWordPair, out_loc.AsRegisterPairLow(), IP, data_offset); } break; } case Primitive::kPrimFloat: { SRegister out = out_loc.AsFpuRegister(); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; __ LoadSFromOffset(out, obj, offset); } else { __ add(IP, obj, ShifterOperand(index.AsRegister(), LSL, TIMES_4)); __ LoadSFromOffset(out, IP, data_offset); } break; } case Primitive::kPrimDouble: { SRegister out = out_loc.AsFpuRegisterPairLow(); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; __ LoadDFromOffset(FromLowSToD(out), obj, offset); } else { __ add(IP, obj, ShifterOperand(index.AsRegister(), LSL, TIMES_8)); __ LoadDFromOffset(FromLowSToD(out), IP, data_offset); } break; } case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable type " << type; UNREACHABLE(); } if (type == Primitive::kPrimNot) { // Potential implicit null checks, in the case of reference // arrays, are handled in the previous switch statement. } else if (!maybe_compressed_char_at) { codegen_->MaybeRecordImplicitNullCheck(instruction); } } void LocationsBuilderARM::VisitArraySet(HArraySet* instruction) { Primitive::Type value_type = instruction->GetComponentType(); bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary( instruction, may_need_runtime_call_for_type_check ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); if (Primitive::IsFloatingPointType(value_type)) { locations->SetInAt(2, Location::RequiresFpuRegister()); } else { locations->SetInAt(2, Location::RequiresRegister()); } if (needs_write_barrier) { // Temporary registers for the write barrier. locations->AddTemp(Location::RequiresRegister()); // Possibly used for ref. poisoning too. locations->AddTemp(Location::RequiresRegister()); } } void InstructionCodeGeneratorARM::VisitArraySet(HArraySet* instruction) { LocationSummary* locations = instruction->GetLocations(); Location array_loc = locations->InAt(0); Register array = array_loc.AsRegister(); Location index = locations->InAt(1); Primitive::Type value_type = instruction->GetComponentType(); bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); uint32_t data_offset = mirror::Array::DataOffset(Primitive::ComponentSize(value_type)).Uint32Value(); Location value_loc = locations->InAt(2); HInstruction* array_instr = instruction->GetArray(); bool has_intermediate_address = array_instr->IsIntermediateAddress(); switch (value_type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimChar: case Primitive::kPrimInt: { if (index.IsConstant()) { int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue(); uint32_t full_offset = data_offset + (const_index << Primitive::ComponentSizeShift(value_type)); StoreOperandType store_type = GetStoreOperandType(value_type); __ StoreToOffset(store_type, value_loc.AsRegister(), array, full_offset); } else { Register temp = IP; if (has_intermediate_address) { // We do not need to compute the intermediate address from the array: the // input instruction has done it already. See the comment in // `TryExtractArrayAccessAddress()`. if (kIsDebugBuild) { HIntermediateAddress* tmp = array_instr->AsIntermediateAddress(); DCHECK(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64() == data_offset); } temp = array; } else { __ add(temp, array, ShifterOperand(data_offset)); } codegen_->StoreToShiftedRegOffset(value_type, value_loc, temp, index.AsRegister()); } break; } case Primitive::kPrimNot: { Register value = value_loc.AsRegister(); // TryExtractArrayAccessAddress optimization is never applied for non-primitive ArraySet. // See the comment in instruction_simplifier_shared.cc. DCHECK(!has_intermediate_address); if (instruction->InputAt(2)->IsNullConstant()) { // Just setting null. if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; __ StoreToOffset(kStoreWord, value, array, offset); } else { DCHECK(index.IsRegister()) << index; __ add(IP, array, ShifterOperand(data_offset)); codegen_->StoreToShiftedRegOffset(value_type, value_loc, IP, index.AsRegister()); } codegen_->MaybeRecordImplicitNullCheck(instruction); DCHECK(!needs_write_barrier); DCHECK(!may_need_runtime_call_for_type_check); break; } DCHECK(needs_write_barrier); Location temp1_loc = locations->GetTemp(0); Register temp1 = temp1_loc.AsRegister(); Location temp2_loc = locations->GetTemp(1); Register temp2 = temp2_loc.AsRegister(); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); Label done; SlowPathCodeARM* slow_path = nullptr; if (may_need_runtime_call_for_type_check) { slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathARM(instruction); codegen_->AddSlowPath(slow_path); if (instruction->GetValueCanBeNull()) { Label non_zero; __ CompareAndBranchIfNonZero(value, &non_zero); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; __ StoreToOffset(kStoreWord, value, array, offset); } else { DCHECK(index.IsRegister()) << index; __ add(IP, array, ShifterOperand(data_offset)); codegen_->StoreToShiftedRegOffset(value_type, value_loc, IP, index.AsRegister()); } codegen_->MaybeRecordImplicitNullCheck(instruction); __ b(&done); __ Bind(&non_zero); } // Note that when read barriers are enabled, the type checks // are performed without read barriers. This is fine, even in // the case where a class object is in the from-space after // the flip, as a comparison involving such a type would not // produce a false positive; it may of course produce a false // negative, in which case we would take the ArraySet slow // path. // /* HeapReference */ temp1 = array->klass_ __ LoadFromOffset(kLoadWord, temp1, array, class_offset); codegen_->MaybeRecordImplicitNullCheck(instruction); __ MaybeUnpoisonHeapReference(temp1); // /* HeapReference */ temp1 = temp1->component_type_ __ LoadFromOffset(kLoadWord, temp1, temp1, component_offset); // /* HeapReference */ temp2 = value->klass_ __ LoadFromOffset(kLoadWord, temp2, value, class_offset); // If heap poisoning is enabled, no need to unpoison `temp1` // nor `temp2`, as we are comparing two poisoned references. __ cmp(temp1, ShifterOperand(temp2)); if (instruction->StaticTypeOfArrayIsObjectArray()) { Label do_put; __ b(&do_put, EQ); // If heap poisoning is enabled, the `temp1` reference has // not been unpoisoned yet; unpoison it now. __ MaybeUnpoisonHeapReference(temp1); // /* HeapReference */ temp1 = temp1->super_class_ __ LoadFromOffset(kLoadWord, temp1, temp1, super_offset); // If heap poisoning is enabled, no need to unpoison // `temp1`, as we are comparing against null below. __ CompareAndBranchIfNonZero(temp1, slow_path->GetEntryLabel()); __ Bind(&do_put); } else { __ b(slow_path->GetEntryLabel(), NE); } } Register source = value; if (kPoisonHeapReferences) { // Note that in the case where `value` is a null reference, // we do not enter this block, as a null reference does not // need poisoning. DCHECK_EQ(value_type, Primitive::kPrimNot); __ Mov(temp1, value); __ PoisonHeapReference(temp1); source = temp1; } if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; __ StoreToOffset(kStoreWord, source, array, offset); } else { DCHECK(index.IsRegister()) << index; __ add(IP, array, ShifterOperand(data_offset)); codegen_->StoreToShiftedRegOffset(value_type, Location::RegisterLocation(source), IP, index.AsRegister()); } if (!may_need_runtime_call_for_type_check) { codegen_->MaybeRecordImplicitNullCheck(instruction); } codegen_->MarkGCCard(temp1, temp2, array, value, instruction->GetValueCanBeNull()); if (done.IsLinked()) { __ Bind(&done); } if (slow_path != nullptr) { __ Bind(slow_path->GetExitLabel()); } break; } case Primitive::kPrimLong: { Location value = locations->InAt(2); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow(), array, offset); } else { __ add(IP, array, ShifterOperand(index.AsRegister(), LSL, TIMES_8)); __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow(), IP, data_offset); } break; } case Primitive::kPrimFloat: { Location value = locations->InAt(2); DCHECK(value.IsFpuRegister()); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; __ StoreSToOffset(value.AsFpuRegister(), array, offset); } else { __ add(IP, array, ShifterOperand(index.AsRegister(), LSL, TIMES_4)); __ StoreSToOffset(value.AsFpuRegister(), IP, data_offset); } break; } case Primitive::kPrimDouble: { Location value = locations->InAt(2); DCHECK(value.IsFpuRegisterPair()); if (index.IsConstant()) { size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; __ StoreDToOffset(FromLowSToD(value.AsFpuRegisterPairLow()), array, offset); } else { __ add(IP, array, ShifterOperand(index.AsRegister(), LSL, TIMES_8)); __ StoreDToOffset(FromLowSToD(value.AsFpuRegisterPairLow()), IP, data_offset); } break; } case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable type " << value_type; UNREACHABLE(); } // Objects are handled in the switch. if (value_type != Primitive::kPrimNot) { codegen_->MaybeRecordImplicitNullCheck(instruction); } } void LocationsBuilderARM::VisitArrayLength(HArrayLength* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorARM::VisitArrayLength(HArrayLength* instruction) { LocationSummary* locations = instruction->GetLocations(); uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction); Register obj = locations->InAt(0).AsRegister(); Register out = locations->Out().AsRegister(); __ LoadFromOffset(kLoadWord, out, obj, offset); codegen_->MaybeRecordImplicitNullCheck(instruction); // Mask out compression flag from String's array length. if (mirror::kUseStringCompression && instruction->IsStringLength()) { __ Lsr(out, out, 1u); } } void LocationsBuilderARM::VisitIntermediateAddress(HIntermediateAddress* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(instruction->GetOffset())); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorARM::VisitIntermediateAddress(HIntermediateAddress* instruction) { LocationSummary* locations = instruction->GetLocations(); Location out = locations->Out(); Location first = locations->InAt(0); Location second = locations->InAt(1); if (second.IsRegister()) { __ add(out.AsRegister(), first.AsRegister(), ShifterOperand(second.AsRegister())); } else { __ AddConstant(out.AsRegister(), first.AsRegister(), second.GetConstant()->AsIntConstant()->GetValue()); } } void LocationsBuilderARM::VisitBoundsCheck(HBoundsCheck* instruction) { RegisterSet caller_saves = RegisterSet::Empty(); InvokeRuntimeCallingConvention calling_convention; caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1))); LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); } void InstructionCodeGeneratorARM::VisitBoundsCheck(HBoundsCheck* instruction) { LocationSummary* locations = instruction->GetLocations(); SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) BoundsCheckSlowPathARM(instruction); codegen_->AddSlowPath(slow_path); Register index = locations->InAt(0).AsRegister(); Register length = locations->InAt(1).AsRegister(); __ cmp(index, ShifterOperand(length)); __ b(slow_path->GetEntryLabel(), HS); } void CodeGeneratorARM::MarkGCCard(Register temp, Register card, Register object, Register value, bool can_be_null) { Label is_null; if (can_be_null) { __ CompareAndBranchIfZero(value, &is_null); } __ LoadFromOffset(kLoadWord, card, TR, Thread::CardTableOffset().Int32Value()); __ Lsr(temp, object, gc::accounting::CardTable::kCardShift); __ strb(card, Address(card, temp)); if (can_be_null) { __ Bind(&is_null); } } void LocationsBuilderARM::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) { LOG(FATAL) << "Unreachable"; } void InstructionCodeGeneratorARM::VisitParallelMove(HParallelMove* instruction) { codegen_->GetMoveResolver()->EmitNativeCode(instruction); } void LocationsBuilderARM::VisitSuspendCheck(HSuspendCheck* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath); locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. } void InstructionCodeGeneratorARM::VisitSuspendCheck(HSuspendCheck* instruction) { HBasicBlock* block = instruction->GetBlock(); if (block->GetLoopInformation() != nullptr) { DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction); // The back edge will generate the suspend check. return; } if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) { // The goto will generate the suspend check. return; } GenerateSuspendCheck(instruction, nullptr); } void InstructionCodeGeneratorARM::GenerateSuspendCheck(HSuspendCheck* instruction, HBasicBlock* successor) { SuspendCheckSlowPathARM* slow_path = down_cast(instruction->GetSlowPath()); if (slow_path == nullptr) { slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathARM(instruction, successor); instruction->SetSlowPath(slow_path); codegen_->AddSlowPath(slow_path); if (successor != nullptr) { DCHECK(successor->IsLoopHeader()); codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction); } } else { DCHECK_EQ(slow_path->GetSuccessor(), successor); } __ LoadFromOffset( kLoadUnsignedHalfword, IP, TR, Thread::ThreadFlagsOffset().Int32Value()); if (successor == nullptr) { __ CompareAndBranchIfNonZero(IP, slow_path->GetEntryLabel()); __ Bind(slow_path->GetReturnLabel()); } else { __ CompareAndBranchIfZero(IP, codegen_->GetLabelOf(successor)); __ b(slow_path->GetEntryLabel()); } } ArmAssembler* ParallelMoveResolverARM::GetAssembler() const { return codegen_->GetAssembler(); } void ParallelMoveResolverARM::EmitMove(size_t index) { MoveOperands* move = moves_[index]; Location source = move->GetSource(); Location destination = move->GetDestination(); if (source.IsRegister()) { if (destination.IsRegister()) { __ Mov(destination.AsRegister(), source.AsRegister()); } else if (destination.IsFpuRegister()) { __ vmovsr(destination.AsFpuRegister(), source.AsRegister()); } else { DCHECK(destination.IsStackSlot()); __ StoreToOffset(kStoreWord, source.AsRegister(), SP, destination.GetStackIndex()); } } else if (source.IsStackSlot()) { if (destination.IsRegister()) { __ LoadFromOffset(kLoadWord, destination.AsRegister(), SP, source.GetStackIndex()); } else if (destination.IsFpuRegister()) { __ LoadSFromOffset(destination.AsFpuRegister(), SP, source.GetStackIndex()); } else { DCHECK(destination.IsStackSlot()); __ LoadFromOffset(kLoadWord, IP, SP, source.GetStackIndex()); __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex()); } } else if (source.IsFpuRegister()) { if (destination.IsRegister()) { __ vmovrs(destination.AsRegister(), source.AsFpuRegister()); } else if (destination.IsFpuRegister()) { __ vmovs(destination.AsFpuRegister(), source.AsFpuRegister()); } else { DCHECK(destination.IsStackSlot()); __ StoreSToOffset(source.AsFpuRegister(), SP, destination.GetStackIndex()); } } else if (source.IsDoubleStackSlot()) { if (destination.IsDoubleStackSlot()) { __ LoadDFromOffset(DTMP, SP, source.GetStackIndex()); __ StoreDToOffset(DTMP, SP, destination.GetStackIndex()); } else if (destination.IsRegisterPair()) { DCHECK(ExpectedPairLayout(destination)); __ LoadFromOffset( kLoadWordPair, destination.AsRegisterPairLow(), SP, source.GetStackIndex()); } else { DCHECK(destination.IsFpuRegisterPair()) << destination; __ LoadDFromOffset(FromLowSToD(destination.AsFpuRegisterPairLow()), SP, source.GetStackIndex()); } } else if (source.IsRegisterPair()) { if (destination.IsRegisterPair()) { __ Mov(destination.AsRegisterPairLow(), source.AsRegisterPairLow()); __ Mov(destination.AsRegisterPairHigh(), source.AsRegisterPairHigh()); } else if (destination.IsFpuRegisterPair()) { __ vmovdrr(FromLowSToD(destination.AsFpuRegisterPairLow()), source.AsRegisterPairLow(), source.AsRegisterPairHigh()); } else { DCHECK(destination.IsDoubleStackSlot()) << destination; DCHECK(ExpectedPairLayout(source)); __ StoreToOffset( kStoreWordPair, source.AsRegisterPairLow(), SP, destination.GetStackIndex()); } } else if (source.IsFpuRegisterPair()) { if (destination.IsRegisterPair()) { __ vmovrrd(destination.AsRegisterPairLow(), destination.AsRegisterPairHigh(), FromLowSToD(source.AsFpuRegisterPairLow())); } else if (destination.IsFpuRegisterPair()) { __ vmovd(FromLowSToD(destination.AsFpuRegisterPairLow()), FromLowSToD(source.AsFpuRegisterPairLow())); } else { DCHECK(destination.IsDoubleStackSlot()) << destination; __ StoreDToOffset(FromLowSToD(source.AsFpuRegisterPairLow()), SP, destination.GetStackIndex()); } } else { DCHECK(source.IsConstant()) << source; HConstant* constant = source.GetConstant(); if (constant->IsIntConstant() || constant->IsNullConstant()) { int32_t value = CodeGenerator::GetInt32ValueOf(constant); if (destination.IsRegister()) { __ LoadImmediate(destination.AsRegister(), value); } else { DCHECK(destination.IsStackSlot()); __ LoadImmediate(IP, value); __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex()); } } else if (constant->IsLongConstant()) { int64_t value = constant->AsLongConstant()->GetValue(); if (destination.IsRegisterPair()) { __ LoadImmediate(destination.AsRegisterPairLow(), Low32Bits(value)); __ LoadImmediate(destination.AsRegisterPairHigh(), High32Bits(value)); } else { DCHECK(destination.IsDoubleStackSlot()) << destination; __ LoadImmediate(IP, Low32Bits(value)); __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex()); __ LoadImmediate(IP, High32Bits(value)); __ StoreToOffset(kStoreWord, IP, SP, destination.GetHighStackIndex(kArmWordSize)); } } else if (constant->IsDoubleConstant()) { double value = constant->AsDoubleConstant()->GetValue(); if (destination.IsFpuRegisterPair()) { __ LoadDImmediate(FromLowSToD(destination.AsFpuRegisterPairLow()), value); } else { DCHECK(destination.IsDoubleStackSlot()) << destination; uint64_t int_value = bit_cast(value); __ LoadImmediate(IP, Low32Bits(int_value)); __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex()); __ LoadImmediate(IP, High32Bits(int_value)); __ StoreToOffset(kStoreWord, IP, SP, destination.GetHighStackIndex(kArmWordSize)); } } else { DCHECK(constant->IsFloatConstant()) << constant->DebugName(); float value = constant->AsFloatConstant()->GetValue(); if (destination.IsFpuRegister()) { __ LoadSImmediate(destination.AsFpuRegister(), value); } else { DCHECK(destination.IsStackSlot()); __ LoadImmediate(IP, bit_cast(value)); __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex()); } } } } void ParallelMoveResolverARM::Exchange(Register reg, int mem) { __ Mov(IP, reg); __ LoadFromOffset(kLoadWord, reg, SP, mem); __ StoreToOffset(kStoreWord, IP, SP, mem); } void ParallelMoveResolverARM::Exchange(int mem1, int mem2) { ScratchRegisterScope ensure_scratch(this, IP, R0, codegen_->GetNumberOfCoreRegisters()); int stack_offset = ensure_scratch.IsSpilled() ? kArmWordSize : 0; __ LoadFromOffset(kLoadWord, static_cast(ensure_scratch.GetRegister()), SP, mem1 + stack_offset); __ LoadFromOffset(kLoadWord, IP, SP, mem2 + stack_offset); __ StoreToOffset(kStoreWord, static_cast(ensure_scratch.GetRegister()), SP, mem2 + stack_offset); __ StoreToOffset(kStoreWord, IP, SP, mem1 + stack_offset); } void ParallelMoveResolverARM::EmitSwap(size_t index) { MoveOperands* move = moves_[index]; Location source = move->GetSource(); Location destination = move->GetDestination(); if (source.IsRegister() && destination.IsRegister()) { DCHECK_NE(source.AsRegister(), IP); DCHECK_NE(destination.AsRegister(), IP); __ Mov(IP, source.AsRegister()); __ Mov(source.AsRegister(), destination.AsRegister()); __ Mov(destination.AsRegister(), IP); } else if (source.IsRegister() && destination.IsStackSlot()) { Exchange(source.AsRegister(), destination.GetStackIndex()); } else if (source.IsStackSlot() && destination.IsRegister()) { Exchange(destination.AsRegister(), source.GetStackIndex()); } else if (source.IsStackSlot() && destination.IsStackSlot()) { Exchange(source.GetStackIndex(), destination.GetStackIndex()); } else if (source.IsFpuRegister() && destination.IsFpuRegister()) { __ vmovrs(IP, source.AsFpuRegister()); __ vmovs(source.AsFpuRegister(), destination.AsFpuRegister()); __ vmovsr(destination.AsFpuRegister(), IP); } else if (source.IsRegisterPair() && destination.IsRegisterPair()) { __ vmovdrr(DTMP, source.AsRegisterPairLow(), source.AsRegisterPairHigh()); __ Mov(source.AsRegisterPairLow(), destination.AsRegisterPairLow()); __ Mov(source.AsRegisterPairHigh(), destination.AsRegisterPairHigh()); __ vmovrrd(destination.AsRegisterPairLow(), destination.AsRegisterPairHigh(), DTMP); } else if (source.IsRegisterPair() || destination.IsRegisterPair()) { Register low_reg = source.IsRegisterPair() ? source.AsRegisterPairLow() : destination.AsRegisterPairLow(); int mem = source.IsRegisterPair() ? destination.GetStackIndex() : source.GetStackIndex(); DCHECK(ExpectedPairLayout(source.IsRegisterPair() ? source : destination)); __ vmovdrr(DTMP, low_reg, static_cast(low_reg + 1)); __ LoadFromOffset(kLoadWordPair, low_reg, SP, mem); __ StoreDToOffset(DTMP, SP, mem); } else if (source.IsFpuRegisterPair() && destination.IsFpuRegisterPair()) { DRegister first = FromLowSToD(source.AsFpuRegisterPairLow()); DRegister second = FromLowSToD(destination.AsFpuRegisterPairLow()); __ vmovd(DTMP, first); __ vmovd(first, second); __ vmovd(second, DTMP); } else if (source.IsFpuRegisterPair() || destination.IsFpuRegisterPair()) { DRegister reg = source.IsFpuRegisterPair() ? FromLowSToD(source.AsFpuRegisterPairLow()) : FromLowSToD(destination.AsFpuRegisterPairLow()); int mem = source.IsFpuRegisterPair() ? destination.GetStackIndex() : source.GetStackIndex(); __ vmovd(DTMP, reg); __ LoadDFromOffset(reg, SP, mem); __ StoreDToOffset(DTMP, SP, mem); } else if (source.IsFpuRegister() || destination.IsFpuRegister()) { SRegister reg = source.IsFpuRegister() ? source.AsFpuRegister() : destination.AsFpuRegister(); int mem = source.IsFpuRegister() ? destination.GetStackIndex() : source.GetStackIndex(); __ vmovrs(IP, reg); __ LoadSFromOffset(reg, SP, mem); __ StoreToOffset(kStoreWord, IP, SP, mem); } else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) { Exchange(source.GetStackIndex(), destination.GetStackIndex()); Exchange(source.GetHighStackIndex(kArmWordSize), destination.GetHighStackIndex(kArmWordSize)); } else { LOG(FATAL) << "Unimplemented" << source << " <-> " << destination; } } void ParallelMoveResolverARM::SpillScratch(int reg) { __ Push(static_cast(reg)); } void ParallelMoveResolverARM::RestoreScratch(int reg) { __ Pop(static_cast(reg)); } HLoadClass::LoadKind CodeGeneratorARM::GetSupportedLoadClassKind( HLoadClass::LoadKind desired_class_load_kind) { switch (desired_class_load_kind) { case HLoadClass::LoadKind::kReferrersClass: break; case HLoadClass::LoadKind::kBootImageLinkTimeAddress: DCHECK(!GetCompilerOptions().GetCompilePic()); break; case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: DCHECK(GetCompilerOptions().GetCompilePic()); break; case HLoadClass::LoadKind::kBootImageAddress: break; case HLoadClass::LoadKind::kDexCacheAddress: DCHECK(Runtime::Current()->UseJitCompilation()); break; case HLoadClass::LoadKind::kDexCachePcRelative: DCHECK(!Runtime::Current()->UseJitCompilation()); // We disable pc-relative load when there is an irreducible loop, as the optimization // is incompatible with it. // TODO: Create as many ArmDexCacheArraysBase instructions as needed for methods // with irreducible loops. if (GetGraph()->HasIrreducibleLoops()) { return HLoadClass::LoadKind::kDexCacheViaMethod; } break; case HLoadClass::LoadKind::kDexCacheViaMethod: break; } return desired_class_load_kind; } void LocationsBuilderARM::VisitLoadClass(HLoadClass* cls) { if (cls->NeedsAccessCheck()) { InvokeRuntimeCallingConvention calling_convention; CodeGenerator::CreateLoadClassLocationSummary( cls, Location::RegisterLocation(calling_convention.GetRegisterAt(0)), Location::RegisterLocation(R0), /* code_generator_supports_read_barrier */ true); return; } const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage(); LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier) ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cls, call_kind); if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) { locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. } HLoadClass::LoadKind load_kind = cls->GetLoadKind(); if (load_kind == HLoadClass::LoadKind::kReferrersClass || load_kind == HLoadClass::LoadKind::kDexCacheViaMethod || load_kind == HLoadClass::LoadKind::kDexCachePcRelative) { locations->SetInAt(0, Location::RequiresRegister()); } locations->SetOut(Location::RequiresRegister()); } void InstructionCodeGeneratorARM::VisitLoadClass(HLoadClass* cls) { LocationSummary* locations = cls->GetLocations(); if (cls->NeedsAccessCheck()) { codegen_->MoveConstant(locations->GetTemp(0), cls->GetTypeIndex()); codegen_->InvokeRuntime(kQuickInitializeTypeAndVerifyAccess, cls, cls->GetDexPc()); CheckEntrypointTypes(); return; } Location out_loc = locations->Out(); Register out = out_loc.AsRegister(); const ReadBarrierOption read_barrier_option = cls->IsInBootImage() ? kWithoutReadBarrier : kCompilerReadBarrierOption; bool generate_null_check = false; switch (cls->GetLoadKind()) { case HLoadClass::LoadKind::kReferrersClass: { DCHECK(!cls->CanCallRuntime()); DCHECK(!cls->MustGenerateClinitCheck()); // /* GcRoot */ out = current_method->declaring_class_ Register current_method = locations->InAt(0).AsRegister(); GenerateGcRootFieldLoad(cls, out_loc, current_method, ArtMethod::DeclaringClassOffset().Int32Value(), read_barrier_option); break; } case HLoadClass::LoadKind::kBootImageLinkTimeAddress: { DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); __ LoadLiteral(out, codegen_->DeduplicateBootImageTypeLiteral(cls->GetDexFile(), cls->GetTypeIndex())); break; } case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: { DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); CodeGeneratorARM::PcRelativePatchInfo* labels = codegen_->NewPcRelativeTypePatch(cls->GetDexFile(), cls->GetTypeIndex()); __ BindTrackedLabel(&labels->movw_label); __ movw(out, /* placeholder */ 0u); __ BindTrackedLabel(&labels->movt_label); __ movt(out, /* placeholder */ 0u); __ BindTrackedLabel(&labels->add_pc_label); __ add(out, out, ShifterOperand(PC)); break; } case HLoadClass::LoadKind::kBootImageAddress: { DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); DCHECK_NE(cls->GetAddress(), 0u); uint32_t address = dchecked_integral_cast(cls->GetAddress()); __ LoadLiteral(out, codegen_->DeduplicateBootImageAddressLiteral(address)); break; } case HLoadClass::LoadKind::kDexCacheAddress: { DCHECK_NE(cls->GetAddress(), 0u); uint32_t address = dchecked_integral_cast(cls->GetAddress()); // 16-bit LDR immediate has a 5-bit offset multiplied by the size and that gives // a 128B range. To try and reduce the number of literals if we load multiple types, // simply split the dex cache address to a 128B aligned base loaded from a literal // and the remaining offset embedded in the load. static_assert(sizeof(GcRoot) == 4u, "Expected GC root to be 4 bytes."); DCHECK_ALIGNED(cls->GetAddress(), 4u); constexpr size_t offset_bits = /* encoded bits */ 5 + /* scale */ 2; uint32_t base_address = address & ~MaxInt(offset_bits); uint32_t offset = address & MaxInt(offset_bits); __ LoadLiteral(out, codegen_->DeduplicateDexCacheAddressLiteral(base_address)); // /* GcRoot */ out = *(base_address + offset) GenerateGcRootFieldLoad(cls, out_loc, out, offset, read_barrier_option); generate_null_check = !cls->IsInDexCache(); break; } case HLoadClass::LoadKind::kDexCachePcRelative: { Register base_reg = locations->InAt(0).AsRegister(); HArmDexCacheArraysBase* base = cls->InputAt(0)->AsArmDexCacheArraysBase(); int32_t offset = cls->GetDexCacheElementOffset() - base->GetElementOffset(); // /* GcRoot */ out = *(dex_cache_arrays_base + offset) GenerateGcRootFieldLoad(cls, out_loc, base_reg, offset, read_barrier_option); generate_null_check = !cls->IsInDexCache(); break; } case HLoadClass::LoadKind::kDexCacheViaMethod: { // /* GcRoot[] */ out = // current_method.ptr_sized_fields_->dex_cache_resolved_types_ Register current_method = locations->InAt(0).AsRegister(); __ LoadFromOffset(kLoadWord, out, current_method, ArtMethod::DexCacheResolvedTypesOffset(kArmPointerSize).Int32Value()); // /* GcRoot */ out = out[type_index] size_t offset = CodeGenerator::GetCacheOffset(cls->GetTypeIndex()); GenerateGcRootFieldLoad(cls, out_loc, out, offset, read_barrier_option); generate_null_check = !cls->IsInDexCache(); } } if (generate_null_check || cls->MustGenerateClinitCheck()) { DCHECK(cls->CanCallRuntime()); SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM( cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck()); codegen_->AddSlowPath(slow_path); if (generate_null_check) { __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel()); } if (cls->MustGenerateClinitCheck()) { GenerateClassInitializationCheck(slow_path, out); } else { __ Bind(slow_path->GetExitLabel()); } } } void LocationsBuilderARM::VisitClinitCheck(HClinitCheck* check) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath); locations->SetInAt(0, Location::RequiresRegister()); if (check->HasUses()) { locations->SetOut(Location::SameAsFirstInput()); } } void InstructionCodeGeneratorARM::VisitClinitCheck(HClinitCheck* check) { // We assume the class is not null. SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM( check->GetLoadClass(), check, check->GetDexPc(), true); codegen_->AddSlowPath(slow_path); GenerateClassInitializationCheck(slow_path, check->GetLocations()->InAt(0).AsRegister()); } void InstructionCodeGeneratorARM::GenerateClassInitializationCheck( SlowPathCodeARM* slow_path, Register class_reg) { __ LoadFromOffset(kLoadWord, IP, class_reg, mirror::Class::StatusOffset().Int32Value()); __ cmp(IP, ShifterOperand(mirror::Class::kStatusInitialized)); __ b(slow_path->GetEntryLabel(), LT); // Even if the initialized flag is set, we may be in a situation where caches are not synced // properly. Therefore, we do a memory fence. __ dmb(ISH); __ Bind(slow_path->GetExitLabel()); } HLoadString::LoadKind CodeGeneratorARM::GetSupportedLoadStringKind( HLoadString::LoadKind desired_string_load_kind) { switch (desired_string_load_kind) { case HLoadString::LoadKind::kBootImageLinkTimeAddress: DCHECK(!GetCompilerOptions().GetCompilePic()); break; case HLoadString::LoadKind::kBootImageLinkTimePcRelative: DCHECK(GetCompilerOptions().GetCompilePic()); break; case HLoadString::LoadKind::kBootImageAddress: break; case HLoadString::LoadKind::kBssEntry: DCHECK(!Runtime::Current()->UseJitCompilation()); break; case HLoadString::LoadKind::kJitTableAddress: DCHECK(Runtime::Current()->UseJitCompilation()); break; case HLoadString::LoadKind::kDexCacheViaMethod: break; } return desired_string_load_kind; } void LocationsBuilderARM::VisitLoadString(HLoadString* load) { LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind); HLoadString::LoadKind load_kind = load->GetLoadKind(); if (load_kind == HLoadString::LoadKind::kDexCacheViaMethod) { locations->SetOut(Location::RegisterLocation(R0)); } else { locations->SetOut(Location::RequiresRegister()); if (load_kind == HLoadString::LoadKind::kBssEntry) { if (!kUseReadBarrier || kUseBakerReadBarrier) { // Rely on the pResolveString and/or marking to save everything, including temps. // Note that IP may theoretically be clobbered by saving/restoring the live register // (only one thanks to the custom calling convention), so we request a different temp. locations->AddTemp(Location::RequiresRegister()); RegisterSet caller_saves = RegisterSet::Empty(); InvokeRuntimeCallingConvention calling_convention; caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); // TODO: Add GetReturnLocation() to the calling convention so that we can DCHECK() // that the the kPrimNot result register is the same as the first argument register. locations->SetCustomSlowPathCallerSaves(caller_saves); } else { // For non-Baker read barrier we have a temp-clobbering call. } } } } void InstructionCodeGeneratorARM::VisitLoadString(HLoadString* load) { LocationSummary* locations = load->GetLocations(); Location out_loc = locations->Out(); Register out = out_loc.AsRegister(); HLoadString::LoadKind load_kind = load->GetLoadKind(); switch (load_kind) { case HLoadString::LoadKind::kBootImageLinkTimeAddress: { __ LoadLiteral(out, codegen_->DeduplicateBootImageStringLiteral(load->GetDexFile(), load->GetStringIndex())); return; // No dex cache slow path. } case HLoadString::LoadKind::kBootImageLinkTimePcRelative: { DCHECK(codegen_->GetCompilerOptions().IsBootImage()); CodeGeneratorARM::PcRelativePatchInfo* labels = codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex()); __ BindTrackedLabel(&labels->movw_label); __ movw(out, /* placeholder */ 0u); __ BindTrackedLabel(&labels->movt_label); __ movt(out, /* placeholder */ 0u); __ BindTrackedLabel(&labels->add_pc_label); __ add(out, out, ShifterOperand(PC)); return; // No dex cache slow path. } case HLoadString::LoadKind::kBootImageAddress: { DCHECK_NE(load->GetAddress(), 0u); uint32_t address = dchecked_integral_cast(load->GetAddress()); __ LoadLiteral(out, codegen_->DeduplicateBootImageAddressLiteral(address)); return; // No dex cache slow path. } case HLoadString::LoadKind::kBssEntry: { DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); Register temp = locations->GetTemp(0).AsRegister(); CodeGeneratorARM::PcRelativePatchInfo* labels = codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex()); __ BindTrackedLabel(&labels->movw_label); __ movw(temp, /* placeholder */ 0u); __ BindTrackedLabel(&labels->movt_label); __ movt(temp, /* placeholder */ 0u); __ BindTrackedLabel(&labels->add_pc_label); __ add(temp, temp, ShifterOperand(PC)); GenerateGcRootFieldLoad(load, out_loc, temp, /* offset */ 0, kCompilerReadBarrierOption); SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathARM(load); codegen_->AddSlowPath(slow_path); __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); return; } case HLoadString::LoadKind::kJitTableAddress: { __ LoadLiteral(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(), load->GetStringIndex())); // /* GcRoot */ out = *out GenerateGcRootFieldLoad(load, out_loc, out, /* offset */ 0, kCompilerReadBarrierOption); return; } default: break; } // TODO: Consider re-adding the compiler code to do string dex cache lookup again. DCHECK(load_kind == HLoadString::LoadKind::kDexCacheViaMethod); InvokeRuntimeCallingConvention calling_convention; DCHECK_EQ(calling_convention.GetRegisterAt(0), out); __ LoadImmediate(calling_convention.GetRegisterAt(0), load->GetStringIndex()); codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc()); CheckEntrypointTypes(); } static int32_t GetExceptionTlsOffset() { return Thread::ExceptionOffset().Int32Value(); } void LocationsBuilderARM::VisitLoadException(HLoadException* load) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall); locations->SetOut(Location::RequiresRegister()); } void InstructionCodeGeneratorARM::VisitLoadException(HLoadException* load) { Register out = load->GetLocations()->Out().AsRegister(); __ LoadFromOffset(kLoadWord, out, TR, GetExceptionTlsOffset()); } void LocationsBuilderARM::VisitClearException(HClearException* clear) { new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall); } void InstructionCodeGeneratorARM::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) { __ LoadImmediate(IP, 0); __ StoreToOffset(kStoreWord, IP, TR, GetExceptionTlsOffset()); } void LocationsBuilderARM::VisitThrow(HThrow* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); } void InstructionCodeGeneratorARM::VisitThrow(HThrow* instruction) { codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc()); CheckEntrypointTypes(); } // Temp is used for read barrier. static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) { if (kEmitCompilerReadBarrier && (kUseBakerReadBarrier || type_check_kind == TypeCheckKind::kAbstractClassCheck || type_check_kind == TypeCheckKind::kClassHierarchyCheck || type_check_kind == TypeCheckKind::kArrayObjectCheck)) { return 1; } return 0; } // Interface case has 3 temps, one for holding the number of interfaces, one for the current // interface pointer, one for loading the current interface. // The other checks have one temp for loading the object's class. static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) { if (type_check_kind == TypeCheckKind::kInterfaceCheck) { return 3; } return 1 + NumberOfInstanceOfTemps(type_check_kind); } void LocationsBuilderARM::VisitInstanceOf(HInstanceOf* instruction) { LocationSummary::CallKind call_kind = LocationSummary::kNoCall; TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); bool baker_read_barrier_slow_path = false; switch (type_check_kind) { case TypeCheckKind::kExactCheck: case TypeCheckKind::kAbstractClassCheck: case TypeCheckKind::kClassHierarchyCheck: case TypeCheckKind::kArrayObjectCheck: call_kind = kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; baker_read_barrier_slow_path = kUseBakerReadBarrier; break; case TypeCheckKind::kArrayCheck: case TypeCheckKind::kUnresolvedCheck: case TypeCheckKind::kInterfaceCheck: call_kind = LocationSummary::kCallOnSlowPath; break; } LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); if (baker_read_barrier_slow_path) { locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. } locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); // The "out" register is used as a temporary, so it overlaps with the inputs. // Note that TypeCheckSlowPathARM uses this register too. locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind)); } void InstructionCodeGeneratorARM::VisitInstanceOf(HInstanceOf* instruction) { TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); LocationSummary* locations = instruction->GetLocations(); Location obj_loc = locations->InAt(0); Register obj = obj_loc.AsRegister(); Register cls = locations->InAt(1).AsRegister(); Location out_loc = locations->Out(); Register out = out_loc.AsRegister(); const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind); DCHECK_LE(num_temps, 1u); Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation(); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); Label done, zero; SlowPathCodeARM* slow_path = nullptr; // Return 0 if `obj` is null. // avoid null check if we know obj is not null. if (instruction->MustDoNullCheck()) { __ CompareAndBranchIfZero(obj, &zero); } switch (type_check_kind) { case TypeCheckKind::kExactCheck: { // /* HeapReference */ out = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, kCompilerReadBarrierOption); __ cmp(out, ShifterOperand(cls)); // Classes must be equal for the instanceof to succeed. __ b(&zero, NE); __ LoadImmediate(out, 1); __ b(&done); break; } case TypeCheckKind::kAbstractClassCheck: { // /* HeapReference */ out = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, kCompilerReadBarrierOption); // If the class is abstract, we eagerly fetch the super class of the // object to avoid doing a comparison we know will fail. Label loop; __ Bind(&loop); // /* HeapReference */ out = out->super_class_ GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc, kCompilerReadBarrierOption); // If `out` is null, we use it for the result, and jump to `done`. __ CompareAndBranchIfZero(out, &done); __ cmp(out, ShifterOperand(cls)); __ b(&loop, NE); __ LoadImmediate(out, 1); if (zero.IsLinked()) { __ b(&done); } break; } case TypeCheckKind::kClassHierarchyCheck: { // /* HeapReference */ out = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, kCompilerReadBarrierOption); // Walk over the class hierarchy to find a match. Label loop, success; __ Bind(&loop); __ cmp(out, ShifterOperand(cls)); __ b(&success, EQ); // /* HeapReference */ out = out->super_class_ GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc, kCompilerReadBarrierOption); __ CompareAndBranchIfNonZero(out, &loop); // If `out` is null, we use it for the result, and jump to `done`. __ b(&done); __ Bind(&success); __ LoadImmediate(out, 1); if (zero.IsLinked()) { __ b(&done); } break; } case TypeCheckKind::kArrayObjectCheck: { // /* HeapReference */ out = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, kCompilerReadBarrierOption); // Do an exact check. Label exact_check; __ cmp(out, ShifterOperand(cls)); __ b(&exact_check, EQ); // Otherwise, we need to check that the object's class is a non-primitive array. // /* HeapReference */ out = out->component_type_ GenerateReferenceLoadOneRegister(instruction, out_loc, component_offset, maybe_temp_loc, kCompilerReadBarrierOption); // If `out` is null, we use it for the result, and jump to `done`. __ CompareAndBranchIfZero(out, &done); __ LoadFromOffset(kLoadUnsignedHalfword, out, out, primitive_offset); static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); __ CompareAndBranchIfNonZero(out, &zero); __ Bind(&exact_check); __ LoadImmediate(out, 1); __ b(&done); break; } case TypeCheckKind::kArrayCheck: { // No read barrier since the slow path will retry upon failure. // /* HeapReference */ out = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, kWithoutReadBarrier); __ cmp(out, ShifterOperand(cls)); DCHECK(locations->OnlyCallsOnSlowPath()); slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction, /* is_fatal */ false); codegen_->AddSlowPath(slow_path); __ b(slow_path->GetEntryLabel(), NE); __ LoadImmediate(out, 1); if (zero.IsLinked()) { __ b(&done); } break; } case TypeCheckKind::kUnresolvedCheck: case TypeCheckKind::kInterfaceCheck: { // Note that we indeed only call on slow path, but we always go // into the slow path for the unresolved and interface check // cases. // // We cannot directly call the InstanceofNonTrivial runtime // entry point without resorting to a type checking slow path // here (i.e. by calling InvokeRuntime directly), as it would // require to assign fixed registers for the inputs of this // HInstanceOf instruction (following the runtime calling // convention), which might be cluttered by the potential first // read barrier emission at the beginning of this method. // // TODO: Introduce a new runtime entry point taking the object // to test (instead of its class) as argument, and let it deal // with the read barrier issues. This will let us refactor this // case of the `switch` code as it was previously (with a direct // call to the runtime not using a type checking slow path). // This should also be beneficial for the other cases above. DCHECK(locations->OnlyCallsOnSlowPath()); slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction, /* is_fatal */ false); codegen_->AddSlowPath(slow_path); __ b(slow_path->GetEntryLabel()); if (zero.IsLinked()) { __ b(&done); } break; } } if (zero.IsLinked()) { __ Bind(&zero); __ LoadImmediate(out, 0); } if (done.IsLinked()) { __ Bind(&done); } if (slow_path != nullptr) { __ Bind(slow_path->GetExitLabel()); } } void LocationsBuilderARM::VisitCheckCast(HCheckCast* instruction) { LocationSummary::CallKind call_kind = LocationSummary::kNoCall; bool throws_into_catch = instruction->CanThrowIntoCatchBlock(); TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); switch (type_check_kind) { case TypeCheckKind::kExactCheck: case TypeCheckKind::kAbstractClassCheck: case TypeCheckKind::kClassHierarchyCheck: case TypeCheckKind::kArrayObjectCheck: call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; // In fact, call on a fatal (non-returning) slow path. break; case TypeCheckKind::kArrayCheck: case TypeCheckKind::kUnresolvedCheck: case TypeCheckKind::kInterfaceCheck: call_kind = LocationSummary::kCallOnSlowPath; break; } LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind)); } void InstructionCodeGeneratorARM::VisitCheckCast(HCheckCast* instruction) { TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); LocationSummary* locations = instruction->GetLocations(); Location obj_loc = locations->InAt(0); Register obj = obj_loc.AsRegister(); Register cls = locations->InAt(1).AsRegister(); Location temp_loc = locations->GetTemp(0); Register temp = temp_loc.AsRegister(); const size_t num_temps = NumberOfCheckCastTemps(type_check_kind); DCHECK_LE(num_temps, 3u); Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation(); Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation(); const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value(); const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value(); const uint32_t object_array_data_offset = mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value(); // Always false for read barriers since we may need to go to the entrypoint for non-fatal cases // from false negatives. The false negatives may come from avoiding read barriers below. Avoiding // read barriers is done for performance and code size reasons. bool is_type_check_slow_path_fatal = false; if (!kEmitCompilerReadBarrier) { is_type_check_slow_path_fatal = (type_check_kind == TypeCheckKind::kExactCheck || type_check_kind == TypeCheckKind::kAbstractClassCheck || type_check_kind == TypeCheckKind::kClassHierarchyCheck || type_check_kind == TypeCheckKind::kArrayObjectCheck) && !instruction->CanThrowIntoCatchBlock(); } SlowPathCodeARM* type_check_slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction, is_type_check_slow_path_fatal); codegen_->AddSlowPath(type_check_slow_path); Label done; // Avoid null check if we know obj is not null. if (instruction->MustDoNullCheck()) { __ CompareAndBranchIfZero(obj, &done); } switch (type_check_kind) { case TypeCheckKind::kExactCheck: case TypeCheckKind::kArrayCheck: { // /* HeapReference */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc, kWithoutReadBarrier); __ cmp(temp, ShifterOperand(cls)); // Jump to slow path for throwing the exception or doing a // more involved array check. __ b(type_check_slow_path->GetEntryLabel(), NE); break; } case TypeCheckKind::kAbstractClassCheck: { // /* HeapReference */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc, kWithoutReadBarrier); // If the class is abstract, we eagerly fetch the super class of the // object to avoid doing a comparison we know will fail. Label loop; __ Bind(&loop); // /* HeapReference */ temp = temp->super_class_ GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc, kWithoutReadBarrier); // If the class reference currently in `temp` is null, jump to the slow path to throw the // exception. __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel()); // Otherwise, compare the classes. __ cmp(temp, ShifterOperand(cls)); __ b(&loop, NE); break; } case TypeCheckKind::kClassHierarchyCheck: { // /* HeapReference */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc, kWithoutReadBarrier); // Walk over the class hierarchy to find a match. Label loop; __ Bind(&loop); __ cmp(temp, ShifterOperand(cls)); __ b(&done, EQ); // /* HeapReference */ temp = temp->super_class_ GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc, kWithoutReadBarrier); // If the class reference currently in `temp` is null, jump to the slow path to throw the // exception. __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel()); // Otherwise, jump to the beginning of the loop. __ b(&loop); break; } case TypeCheckKind::kArrayObjectCheck: { // /* HeapReference */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc, kWithoutReadBarrier); // Do an exact check. __ cmp(temp, ShifterOperand(cls)); __ b(&done, EQ); // Otherwise, we need to check that the object's class is a non-primitive array. // /* HeapReference */ temp = temp->component_type_ GenerateReferenceLoadOneRegister(instruction, temp_loc, component_offset, maybe_temp2_loc, kWithoutReadBarrier); // If the component type is null, jump to the slow path to throw the exception. __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel()); // Otherwise,the object is indeed an array, jump to label `check_non_primitive_component_type` // to further check that this component type is not a primitive type. __ LoadFromOffset(kLoadUnsignedHalfword, temp, temp, primitive_offset); static_assert(Primitive::kPrimNot == 0, "Expected 0 for art::Primitive::kPrimNot"); __ CompareAndBranchIfNonZero(temp, type_check_slow_path->GetEntryLabel()); break; } case TypeCheckKind::kUnresolvedCheck: // We always go into the type check slow path for the unresolved check case. // We cannot directly call the CheckCast runtime entry point // without resorting to a type checking slow path here (i.e. by // calling InvokeRuntime directly), as it would require to // assign fixed registers for the inputs of this HInstanceOf // instruction (following the runtime calling convention), which // might be cluttered by the potential first read barrier // emission at the beginning of this method. __ b(type_check_slow_path->GetEntryLabel()); break; case TypeCheckKind::kInterfaceCheck: { // Avoid read barriers to improve performance of the fast path. We can not get false // positives by doing this. // /* HeapReference */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc, kWithoutReadBarrier); // /* HeapReference */ temp = temp->iftable_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, temp_loc, iftable_offset, maybe_temp2_loc, kWithoutReadBarrier); // Iftable is never null. __ ldr(maybe_temp2_loc.AsRegister(), Address(temp, array_length_offset)); // Loop through the iftable and check if any class matches. Label start_loop; __ Bind(&start_loop); __ CompareAndBranchIfZero(maybe_temp2_loc.AsRegister(), type_check_slow_path->GetEntryLabel()); __ ldr(maybe_temp3_loc.AsRegister(), Address(temp, object_array_data_offset)); __ MaybeUnpoisonHeapReference(maybe_temp3_loc.AsRegister()); // Go to next interface. __ add(temp, temp, ShifterOperand(2 * kHeapReferenceSize)); __ sub(maybe_temp2_loc.AsRegister(), maybe_temp2_loc.AsRegister(), ShifterOperand(2)); // Compare the classes and continue the loop if they do not match. __ cmp(cls, ShifterOperand(maybe_temp3_loc.AsRegister())); __ b(&start_loop, NE); break; } } __ Bind(&done); __ Bind(type_check_slow_path->GetExitLabel()); } void LocationsBuilderARM::VisitMonitorOperation(HMonitorOperation* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); } void InstructionCodeGeneratorARM::VisitMonitorOperation(HMonitorOperation* instruction) { codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject, instruction, instruction->GetDexPc()); if (instruction->IsEnter()) { CheckEntrypointTypes(); } else { CheckEntrypointTypes(); } } void LocationsBuilderARM::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction, AND); } void LocationsBuilderARM::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction, ORR); } void LocationsBuilderARM::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction, EOR); } void LocationsBuilderARM::HandleBitwiseOperation(HBinaryOperation* instruction, Opcode opcode) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); DCHECK(instruction->GetResultType() == Primitive::kPrimInt || instruction->GetResultType() == Primitive::kPrimLong); // Note: GVN reorders commutative operations to have the constant on the right hand side. locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, ArmEncodableConstantOrRegister(instruction->InputAt(1), opcode)); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorARM::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction); } void InstructionCodeGeneratorARM::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction); } void InstructionCodeGeneratorARM::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction); } void LocationsBuilderARM::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); DCHECK(instruction->GetResultType() == Primitive::kPrimInt || instruction->GetResultType() == Primitive::kPrimLong); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void InstructionCodeGeneratorARM::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) { LocationSummary* locations = instruction->GetLocations(); Location first = locations->InAt(0); Location second = locations->InAt(1); Location out = locations->Out(); if (instruction->GetResultType() == Primitive::kPrimInt) { Register first_reg = first.AsRegister(); ShifterOperand second_reg(second.AsRegister()); Register out_reg = out.AsRegister(); switch (instruction->GetOpKind()) { case HInstruction::kAnd: __ bic(out_reg, first_reg, second_reg); break; case HInstruction::kOr: __ orn(out_reg, first_reg, second_reg); break; // There is no EON on arm. case HInstruction::kXor: default: LOG(FATAL) << "Unexpected instruction " << instruction->DebugName(); UNREACHABLE(); } return; } else { DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); Register first_low = first.AsRegisterPairLow(); Register first_high = first.AsRegisterPairHigh(); ShifterOperand second_low(second.AsRegisterPairLow()); ShifterOperand second_high(second.AsRegisterPairHigh()); Register out_low = out.AsRegisterPairLow(); Register out_high = out.AsRegisterPairHigh(); switch (instruction->GetOpKind()) { case HInstruction::kAnd: __ bic(out_low, first_low, second_low); __ bic(out_high, first_high, second_high); break; case HInstruction::kOr: __ orn(out_low, first_low, second_low); __ orn(out_high, first_high, second_high); break; // There is no EON on arm. case HInstruction::kXor: default: LOG(FATAL) << "Unexpected instruction " << instruction->DebugName(); UNREACHABLE(); } } } void InstructionCodeGeneratorARM::GenerateAndConst(Register out, Register first, uint32_t value) { // Optimize special cases for individual halfs of `and-long` (`and` is simplified earlier). if (value == 0xffffffffu) { if (out != first) { __ mov(out, ShifterOperand(first)); } return; } if (value == 0u) { __ mov(out, ShifterOperand(0)); return; } ShifterOperand so; if (__ ShifterOperandCanHold(kNoRegister, kNoRegister, AND, value, &so)) { __ and_(out, first, so); } else { DCHECK(__ ShifterOperandCanHold(kNoRegister, kNoRegister, BIC, ~value, &so)); __ bic(out, first, ShifterOperand(~value)); } } void InstructionCodeGeneratorARM::GenerateOrrConst(Register out, Register first, uint32_t value) { // Optimize special cases for individual halfs of `or-long` (`or` is simplified earlier). if (value == 0u) { if (out != first) { __ mov(out, ShifterOperand(first)); } return; } if (value == 0xffffffffu) { __ mvn(out, ShifterOperand(0)); return; } ShifterOperand so; if (__ ShifterOperandCanHold(kNoRegister, kNoRegister, ORR, value, &so)) { __ orr(out, first, so); } else { DCHECK(__ ShifterOperandCanHold(kNoRegister, kNoRegister, ORN, ~value, &so)); __ orn(out, first, ShifterOperand(~value)); } } void InstructionCodeGeneratorARM::GenerateEorConst(Register out, Register first, uint32_t value) { // Optimize special case for individual halfs of `xor-long` (`xor` is simplified earlier). if (value == 0u) { if (out != first) { __ mov(out, ShifterOperand(first)); } return; } __ eor(out, first, ShifterOperand(value)); } void InstructionCodeGeneratorARM::GenerateAddLongConst(Location out, Location first, uint64_t value) { Register out_low = out.AsRegisterPairLow(); Register out_high = out.AsRegisterPairHigh(); Register first_low = first.AsRegisterPairLow(); Register first_high = first.AsRegisterPairHigh(); uint32_t value_low = Low32Bits(value); uint32_t value_high = High32Bits(value); if (value_low == 0u) { if (out_low != first_low) { __ mov(out_low, ShifterOperand(first_low)); } __ AddConstant(out_high, first_high, value_high); return; } __ AddConstantSetFlags(out_low, first_low, value_low); ShifterOperand so; if (__ ShifterOperandCanHold(out_high, first_high, ADC, value_high, kCcDontCare, &so)) { __ adc(out_high, first_high, so); } else if (__ ShifterOperandCanHold(out_low, first_low, SBC, ~value_high, kCcDontCare, &so)) { __ sbc(out_high, first_high, so); } else { LOG(FATAL) << "Unexpected constant " << value_high; UNREACHABLE(); } } void InstructionCodeGeneratorARM::HandleBitwiseOperation(HBinaryOperation* instruction) { LocationSummary* locations = instruction->GetLocations(); Location first = locations->InAt(0); Location second = locations->InAt(1); Location out = locations->Out(); if (second.IsConstant()) { uint64_t value = static_cast(Int64FromConstant(second.GetConstant())); uint32_t value_low = Low32Bits(value); if (instruction->GetResultType() == Primitive::kPrimInt) { Register first_reg = first.AsRegister(); Register out_reg = out.AsRegister(); if (instruction->IsAnd()) { GenerateAndConst(out_reg, first_reg, value_low); } else if (instruction->IsOr()) { GenerateOrrConst(out_reg, first_reg, value_low); } else { DCHECK(instruction->IsXor()); GenerateEorConst(out_reg, first_reg, value_low); } } else { DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); uint32_t value_high = High32Bits(value); Register first_low = first.AsRegisterPairLow(); Register first_high = first.AsRegisterPairHigh(); Register out_low = out.AsRegisterPairLow(); Register out_high = out.AsRegisterPairHigh(); if (instruction->IsAnd()) { GenerateAndConst(out_low, first_low, value_low); GenerateAndConst(out_high, first_high, value_high); } else if (instruction->IsOr()) { GenerateOrrConst(out_low, first_low, value_low); GenerateOrrConst(out_high, first_high, value_high); } else { DCHECK(instruction->IsXor()); GenerateEorConst(out_low, first_low, value_low); GenerateEorConst(out_high, first_high, value_high); } } return; } if (instruction->GetResultType() == Primitive::kPrimInt) { Register first_reg = first.AsRegister(); ShifterOperand second_reg(second.AsRegister()); Register out_reg = out.AsRegister(); if (instruction->IsAnd()) { __ and_(out_reg, first_reg, second_reg); } else if (instruction->IsOr()) { __ orr(out_reg, first_reg, second_reg); } else { DCHECK(instruction->IsXor()); __ eor(out_reg, first_reg, second_reg); } } else { DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); Register first_low = first.AsRegisterPairLow(); Register first_high = first.AsRegisterPairHigh(); ShifterOperand second_low(second.AsRegisterPairLow()); ShifterOperand second_high(second.AsRegisterPairHigh()); Register out_low = out.AsRegisterPairLow(); Register out_high = out.AsRegisterPairHigh(); if (instruction->IsAnd()) { __ and_(out_low, first_low, second_low); __ and_(out_high, first_high, second_high); } else if (instruction->IsOr()) { __ orr(out_low, first_low, second_low); __ orr(out_high, first_high, second_high); } else { DCHECK(instruction->IsXor()); __ eor(out_low, first_low, second_low); __ eor(out_high, first_high, second_high); } } } void InstructionCodeGeneratorARM::GenerateReferenceLoadOneRegister( HInstruction* instruction, Location out, uint32_t offset, Location maybe_temp, ReadBarrierOption read_barrier_option) { Register out_reg = out.AsRegister(); if (read_barrier_option == kWithReadBarrier) { CHECK(kEmitCompilerReadBarrier); DCHECK(maybe_temp.IsRegister()) << maybe_temp; if (kUseBakerReadBarrier) { // Load with fast path based Baker's read barrier. // /* HeapReference */ out = *(out + offset) codegen_->GenerateFieldLoadWithBakerReadBarrier( instruction, out, out_reg, offset, maybe_temp, /* needs_null_check */ false); } else { // Load with slow path based read barrier. // Save the value of `out` into `maybe_temp` before overwriting it // in the following move operation, as we will need it for the // read barrier below. __ Mov(maybe_temp.AsRegister(), out_reg); // /* HeapReference */ out = *(out + offset) __ LoadFromOffset(kLoadWord, out_reg, out_reg, offset); codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset); } } else { // Plain load with no read barrier. // /* HeapReference */ out = *(out + offset) __ LoadFromOffset(kLoadWord, out_reg, out_reg, offset); __ MaybeUnpoisonHeapReference(out_reg); } } void InstructionCodeGeneratorARM::GenerateReferenceLoadTwoRegisters( HInstruction* instruction, Location out, Location obj, uint32_t offset, Location maybe_temp, ReadBarrierOption read_barrier_option) { Register out_reg = out.AsRegister(); Register obj_reg = obj.AsRegister(); if (read_barrier_option == kWithReadBarrier) { CHECK(kEmitCompilerReadBarrier); if (kUseBakerReadBarrier) { DCHECK(maybe_temp.IsRegister()) << maybe_temp; // Load with fast path based Baker's read barrier. // /* HeapReference */ out = *(obj + offset) codegen_->GenerateFieldLoadWithBakerReadBarrier( instruction, out, obj_reg, offset, maybe_temp, /* needs_null_check */ false); } else { // Load with slow path based read barrier. // /* HeapReference */ out = *(obj + offset) __ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset); codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset); } } else { // Plain load with no read barrier. // /* HeapReference */ out = *(obj + offset) __ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset); __ MaybeUnpoisonHeapReference(out_reg); } } void InstructionCodeGeneratorARM::GenerateGcRootFieldLoad(HInstruction* instruction, Location root, Register obj, uint32_t offset, ReadBarrierOption read_barrier_option) { Register root_reg = root.AsRegister(); if (read_barrier_option == kWithReadBarrier) { DCHECK(kEmitCompilerReadBarrier); if (kUseBakerReadBarrier) { // Fast path implementation of art::ReadBarrier::BarrierForRoot when // Baker's read barrier are used: // // root = obj.field; // temp = Thread::Current()->pReadBarrierMarkReg ## root.reg() // if (temp != null) { // root = temp(root) // } // /* GcRoot */ root = *(obj + offset) __ LoadFromOffset(kLoadWord, root_reg, obj, offset); static_assert( sizeof(mirror::CompressedReference) == sizeof(GcRoot), "art::mirror::CompressedReference and art::GcRoot " "have different sizes."); static_assert(sizeof(mirror::CompressedReference) == sizeof(int32_t), "art::mirror::CompressedReference and int32_t " "have different sizes."); // Slow path marking the GC root `root`. Location temp = Location::RegisterLocation(LR); SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM( instruction, root, /*entrypoint*/ temp); codegen_->AddSlowPath(slow_path); // temp = Thread::Current()->pReadBarrierMarkReg ## root.reg() const int32_t entry_point_offset = CodeGenerator::GetReadBarrierMarkEntryPointsOffset(root.reg()); // Loading the entrypoint does not require a load acquire since it is only changed when // threads are suspended or running a checkpoint. __ LoadFromOffset(kLoadWord, temp.AsRegister(), TR, entry_point_offset); // The entrypoint is null when the GC is not marking, this prevents one load compared to // checking GetIsGcMarking. __ CompareAndBranchIfNonZero(temp.AsRegister(), slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); } else { // GC root loaded through a slow path for read barriers other // than Baker's. // /* GcRoot* */ root = obj + offset __ AddConstant(root_reg, obj, offset); // /* mirror::Object* */ root = root->Read() codegen_->GenerateReadBarrierForRootSlow(instruction, root, root); } } else { // Plain GC root load with no read barrier. // /* GcRoot */ root = *(obj + offset) __ LoadFromOffset(kLoadWord, root_reg, obj, offset); // Note that GC roots are not affected by heap poisoning, thus we // do not have to unpoison `root_reg` here. } } void CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, Location ref, Register obj, uint32_t offset, Location temp, bool needs_null_check) { DCHECK(kEmitCompilerReadBarrier); DCHECK(kUseBakerReadBarrier); // /* HeapReference */ ref = *(obj + offset) Location no_index = Location::NoLocation(); ScaleFactor no_scale_factor = TIMES_1; GenerateReferenceLoadWithBakerReadBarrier( instruction, ref, obj, offset, no_index, no_scale_factor, temp, needs_null_check); } void CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction, Location ref, Register obj, uint32_t data_offset, Location index, Location temp, bool needs_null_check) { DCHECK(kEmitCompilerReadBarrier); DCHECK(kUseBakerReadBarrier); static_assert( sizeof(mirror::HeapReference) == sizeof(int32_t), "art::mirror::HeapReference and int32_t have different sizes."); // /* HeapReference */ ref = // *(obj + data_offset + index * sizeof(HeapReference)) ScaleFactor scale_factor = TIMES_4; GenerateReferenceLoadWithBakerReadBarrier( instruction, ref, obj, data_offset, index, scale_factor, temp, needs_null_check); } void CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction, Location ref, Register obj, uint32_t offset, Location index, ScaleFactor scale_factor, Location temp, bool needs_null_check, bool always_update_field, Register* temp2) { DCHECK(kEmitCompilerReadBarrier); DCHECK(kUseBakerReadBarrier); // In slow path based read barriers, the read barrier call is // inserted after the original load. However, in fast path based // Baker's read barriers, we need to perform the load of // mirror::Object::monitor_ *before* the original reference load. // This load-load ordering is required by the read barrier. // The fast path/slow path (for Baker's algorithm) should look like: // // uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState(); // lfence; // Load fence or artificial data dependency to prevent load-load reordering // HeapReference ref = *src; // Original reference load. // bool is_gray = (rb_state == ReadBarrier::GrayState()); // if (is_gray) { // ref = ReadBarrier::Mark(ref); // Performed by runtime entrypoint slow path. // } // // Note: the original implementation in ReadBarrier::Barrier is // slightly more complex as it performs additional checks that we do // not do here for performance reasons. Register ref_reg = ref.AsRegister(); Register temp_reg = temp.AsRegister(); uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); // /* int32_t */ monitor = obj->monitor_ __ LoadFromOffset(kLoadWord, temp_reg, obj, monitor_offset); if (needs_null_check) { MaybeRecordImplicitNullCheck(instruction); } // /* LockWord */ lock_word = LockWord(monitor) static_assert(sizeof(LockWord) == sizeof(int32_t), "art::LockWord and int32_t have different sizes."); // Introduce a dependency on the lock_word including the rb_state, // which shall prevent load-load reordering without using // a memory barrier (which would be more expensive). // `obj` is unchanged by this operation, but its value now depends // on `temp_reg`. __ add(obj, obj, ShifterOperand(temp_reg, LSR, 32)); // The actual reference load. if (index.IsValid()) { // Load types involving an "index": ArrayGet, // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject // intrinsics. // /* HeapReference */ ref = *(obj + offset + (index << scale_factor)) if (index.IsConstant()) { size_t computed_offset = (index.GetConstant()->AsIntConstant()->GetValue() << scale_factor) + offset; __ LoadFromOffset(kLoadWord, ref_reg, obj, computed_offset); } else { // Handle the special case of the // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject // intrinsics, which use a register pair as index ("long // offset"), of which only the low part contains data. Register index_reg = index.IsRegisterPair() ? index.AsRegisterPairLow() : index.AsRegister(); __ add(IP, obj, ShifterOperand(index_reg, LSL, scale_factor)); __ LoadFromOffset(kLoadWord, ref_reg, IP, offset); } } else { // /* HeapReference */ ref = *(obj + offset) __ LoadFromOffset(kLoadWord, ref_reg, obj, offset); } // Object* ref = ref_addr->AsMirrorPtr() __ MaybeUnpoisonHeapReference(ref_reg); // Slow path marking the object `ref` when it is gray. SlowPathCodeARM* slow_path; if (always_update_field) { DCHECK(temp2 != nullptr); // ReadBarrierMarkAndUpdateFieldSlowPathARM only supports address // of the form `obj + field_offset`, where `obj` is a register and // `field_offset` is a register pair (of which only the lower half // is used). Thus `offset` and `scale_factor` above are expected // to be null in this code path. DCHECK_EQ(offset, 0u); DCHECK_EQ(scale_factor, ScaleFactor::TIMES_1); slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkAndUpdateFieldSlowPathARM( instruction, ref, obj, /* field_offset */ index, temp_reg, *temp2); } else { slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM(instruction, ref); } AddSlowPath(slow_path); // if (rb_state == ReadBarrier::GrayState()) // ref = ReadBarrier::Mark(ref); // Given the numeric representation, it's enough to check the low bit of the // rb_state. We do that by shifting the bit out of the lock word with LSRS // which can be a 16-bit instruction unlike the TST immediate. static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0"); static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); __ Lsrs(temp_reg, temp_reg, LockWord::kReadBarrierStateShift + 1); __ b(slow_path->GetEntryLabel(), CS); // Carry flag is the last bit shifted out by LSRS. __ Bind(slow_path->GetExitLabel()); } void CodeGeneratorARM::GenerateReadBarrierSlow(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index) { DCHECK(kEmitCompilerReadBarrier); // Insert a slow path based read barrier *after* the reference load. // // If heap poisoning is enabled, the unpoisoning of the loaded // reference will be carried out by the runtime within the slow // path. // // Note that `ref` currently does not get unpoisoned (when heap // poisoning is enabled), which is alright as the `ref` argument is // not used by the artReadBarrierSlow entry point. // // TODO: Unpoison `ref` when it is used by artReadBarrierSlow. SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) ReadBarrierForHeapReferenceSlowPathARM(instruction, out, ref, obj, offset, index); AddSlowPath(slow_path); __ b(slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); } void CodeGeneratorARM::MaybeGenerateReadBarrierSlow(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index) { if (kEmitCompilerReadBarrier) { // Baker's read barriers shall be handled by the fast path // (CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier). DCHECK(!kUseBakerReadBarrier); // If heap poisoning is enabled, unpoisoning will be taken care of // by the runtime within the slow path. GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index); } else if (kPoisonHeapReferences) { __ UnpoisonHeapReference(out.AsRegister()); } } void CodeGeneratorARM::GenerateReadBarrierForRootSlow(HInstruction* instruction, Location out, Location root) { DCHECK(kEmitCompilerReadBarrier); // Insert a slow path based read barrier *after* the GC root load. // // Note that GC roots are not affected by heap poisoning, so we do // not need to do anything special for this here. SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathARM(instruction, out, root); AddSlowPath(slow_path); __ b(slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); } HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM::GetSupportedInvokeStaticOrDirectDispatch( const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, HInvokeStaticOrDirect* invoke) { HInvokeStaticOrDirect::DispatchInfo dispatch_info = desired_dispatch_info; // We disable pc-relative load when there is an irreducible loop, as the optimization // is incompatible with it. // TODO: Create as many ArmDexCacheArraysBase instructions as needed for methods // with irreducible loops. if (GetGraph()->HasIrreducibleLoops() && (dispatch_info.method_load_kind == HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative)) { dispatch_info.method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod; } if (dispatch_info.code_ptr_location == HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative) { const DexFile& outer_dex_file = GetGraph()->GetDexFile(); if (&outer_dex_file != invoke->GetTargetMethod().dex_file) { // Calls across dex files are more likely to exceed the available BL range, // so use absolute patch with fixup if available and kCallArtMethod otherwise. HInvokeStaticOrDirect::CodePtrLocation code_ptr_location = (desired_dispatch_info.method_load_kind == HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup) ? HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup : HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod; return HInvokeStaticOrDirect::DispatchInfo { dispatch_info.method_load_kind, code_ptr_location, dispatch_info.method_load_data, 0u }; } } return dispatch_info; } Register CodeGeneratorARM::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke, Register temp) { DCHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u); Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); if (!invoke->GetLocations()->Intrinsified()) { return location.AsRegister(); } // For intrinsics we allow any location, so it may be on the stack. if (!location.IsRegister()) { __ LoadFromOffset(kLoadWord, temp, SP, location.GetStackIndex()); return temp; } // For register locations, check if the register was saved. If so, get it from the stack. // Note: There is a chance that the register was saved but not overwritten, so we could // save one load. However, since this is just an intrinsic slow path we prefer this // simple and more robust approach rather that trying to determine if that's the case. SlowPathCode* slow_path = GetCurrentSlowPath(); DCHECK(slow_path != nullptr); // For intrinsified invokes the call is emitted on the slow path. if (slow_path->IsCoreRegisterSaved(location.AsRegister())) { int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister()); __ LoadFromOffset(kLoadWord, temp, SP, stack_offset); return temp; } return location.AsRegister(); } void CodeGeneratorARM::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) { // For better instruction scheduling we load the direct code pointer before the method pointer. switch (invoke->GetCodePtrLocation()) { case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup: // LR = code address from literal pool with link-time patch. __ LoadLiteral(LR, DeduplicateMethodCodeLiteral(invoke->GetTargetMethod())); break; case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect: // LR = invoke->GetDirectCodePtr(); __ LoadImmediate(LR, invoke->GetDirectCodePtr()); break; default: break; } Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp. switch (invoke->GetMethodLoadKind()) { case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: { uint32_t offset = GetThreadOffset(invoke->GetStringInitEntryPoint()).Int32Value(); // temp = thread->string_init_entrypoint __ LoadFromOffset(kLoadWord, temp.AsRegister(), TR, offset); break; } case HInvokeStaticOrDirect::MethodLoadKind::kRecursive: callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); break; case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress: __ LoadImmediate(temp.AsRegister(), invoke->GetMethodAddress()); break; case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup: __ LoadLiteral(temp.AsRegister(), DeduplicateMethodAddressLiteral(invoke->GetTargetMethod())); break; case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: { HArmDexCacheArraysBase* base = invoke->InputAt(invoke->GetSpecialInputIndex())->AsArmDexCacheArraysBase(); Register base_reg = GetInvokeStaticOrDirectExtraParameter(invoke, temp.AsRegister()); int32_t offset = invoke->GetDexCacheArrayOffset() - base->GetElementOffset(); __ LoadFromOffset(kLoadWord, temp.AsRegister(), base_reg, offset); break; } case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: { Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); Register method_reg; Register reg = temp.AsRegister(); if (current_method.IsRegister()) { method_reg = current_method.AsRegister(); } else { DCHECK(invoke->GetLocations()->Intrinsified()); DCHECK(!current_method.IsValid()); method_reg = reg; __ LoadFromOffset(kLoadWord, reg, SP, kCurrentMethodStackOffset); } // /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_; __ LoadFromOffset(kLoadWord, reg, method_reg, ArtMethod::DexCacheResolvedMethodsOffset(kArmPointerSize).Int32Value()); // temp = temp[index_in_cache]; // Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file. uint32_t index_in_cache = invoke->GetDexMethodIndex(); __ LoadFromOffset(kLoadWord, reg, reg, CodeGenerator::GetCachePointerOffset(index_in_cache)); break; } } switch (invoke->GetCodePtrLocation()) { case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf: __ bl(GetFrameEntryLabel()); break; case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative: relative_call_patches_.emplace_back(*invoke->GetTargetMethod().dex_file, invoke->GetTargetMethod().dex_method_index); __ BindTrackedLabel(&relative_call_patches_.back().label); // Arbitrarily branch to the BL itself, override at link time. __ bl(&relative_call_patches_.back().label); break; case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup: case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect: // LR prepared above for better instruction scheduling. // LR() __ blx(LR); break; case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod: // LR = callee_method->entry_point_from_quick_compiled_code_ __ LoadFromOffset( kLoadWord, LR, callee_method.AsRegister(), ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value()); // LR() __ blx(LR); break; } DCHECK(!IsLeafMethod()); } void CodeGeneratorARM::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_location) { Register temp = temp_location.AsRegister(); uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( invoke->GetVTableIndex(), kArmPointerSize).Uint32Value(); // Use the calling convention instead of the location of the receiver, as // intrinsics may have put the receiver in a different register. In the intrinsics // slow path, the arguments have been moved to the right place, so here we are // guaranteed that the receiver is the first register of the calling convention. InvokeDexCallingConvention calling_convention; Register receiver = calling_convention.GetRegisterAt(0); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); // /* HeapReference */ temp = receiver->klass_ __ LoadFromOffset(kLoadWord, temp, receiver, class_offset); MaybeRecordImplicitNullCheck(invoke); // Instead of simply (possibly) unpoisoning `temp` here, we should // emit a read barrier for the previous class reference load. // However this is not required in practice, as this is an // intermediate/temporary reference and because the current // concurrent copying collector keeps the from-space memory // intact/accessible until the end of the marking phase (the // concurrent copying collector may not in the future). __ MaybeUnpoisonHeapReference(temp); // temp = temp->GetMethodAt(method_offset); uint32_t entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset( kArmPointerSize).Int32Value(); __ LoadFromOffset(kLoadWord, temp, temp, method_offset); // LR = temp->GetEntryPoint(); __ LoadFromOffset(kLoadWord, LR, temp, entry_point); // LR(); __ blx(LR); } CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeStringPatch( const DexFile& dex_file, uint32_t string_index) { return NewPcRelativePatch(dex_file, string_index, &pc_relative_string_patches_); } CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeTypePatch( const DexFile& dex_file, uint32_t type_index) { return NewPcRelativePatch(dex_file, type_index, &pc_relative_type_patches_); } CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeDexCacheArrayPatch( const DexFile& dex_file, uint32_t element_offset) { return NewPcRelativePatch(dex_file, element_offset, &pc_relative_dex_cache_patches_); } CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativePatch( const DexFile& dex_file, uint32_t offset_or_index, ArenaDeque* patches) { patches->emplace_back(dex_file, offset_or_index); return &patches->back(); } Literal* CodeGeneratorARM::DeduplicateBootImageStringLiteral(const DexFile& dex_file, uint32_t string_index) { return boot_image_string_patches_.GetOrCreate( StringReference(&dex_file, string_index), [this]() { return __ NewLiteral(/* placeholder */ 0u); }); } Literal* CodeGeneratorARM::DeduplicateBootImageTypeLiteral(const DexFile& dex_file, uint32_t type_index) { return boot_image_type_patches_.GetOrCreate( TypeReference(&dex_file, type_index), [this]() { return __ NewLiteral(/* placeholder */ 0u); }); } Literal* CodeGeneratorARM::DeduplicateBootImageAddressLiteral(uint32_t address) { bool needs_patch = GetCompilerOptions().GetIncludePatchInformation(); Uint32ToLiteralMap* map = needs_patch ? &boot_image_address_patches_ : &uint32_literals_; return DeduplicateUint32Literal(dchecked_integral_cast(address), map); } Literal* CodeGeneratorARM::DeduplicateDexCacheAddressLiteral(uint32_t address) { return DeduplicateUint32Literal(address, &uint32_literals_); } Literal* CodeGeneratorARM::DeduplicateJitStringLiteral(const DexFile& dex_file, uint32_t string_index) { jit_string_roots_.Overwrite(StringReference(&dex_file, string_index), /* placeholder */ 0u); return jit_string_patches_.GetOrCreate( StringReference(&dex_file, string_index), [this]() { return __ NewLiteral(/* placeholder */ 0u); }); } template inline void CodeGeneratorARM::EmitPcRelativeLinkerPatches( const ArenaDeque& infos, ArenaVector* linker_patches) { for (const PcRelativePatchInfo& info : infos) { const DexFile& dex_file = info.target_dex_file; size_t offset_or_index = info.offset_or_index; DCHECK(info.add_pc_label.IsBound()); uint32_t add_pc_offset = dchecked_integral_cast(info.add_pc_label.Position()); // Add MOVW patch. DCHECK(info.movw_label.IsBound()); uint32_t movw_offset = dchecked_integral_cast(info.movw_label.Position()); linker_patches->push_back(Factory(movw_offset, &dex_file, add_pc_offset, offset_or_index)); // Add MOVT patch. DCHECK(info.movt_label.IsBound()); uint32_t movt_offset = dchecked_integral_cast(info.movt_label.Position()); linker_patches->push_back(Factory(movt_offset, &dex_file, add_pc_offset, offset_or_index)); } } void CodeGeneratorARM::EmitLinkerPatches(ArenaVector* linker_patches) { DCHECK(linker_patches->empty()); size_t size = method_patches_.size() + call_patches_.size() + relative_call_patches_.size() + /* MOVW+MOVT for each entry */ 2u * pc_relative_dex_cache_patches_.size() + boot_image_string_patches_.size() + /* MOVW+MOVT for each entry */ 2u * pc_relative_string_patches_.size() + boot_image_type_patches_.size() + /* MOVW+MOVT for each entry */ 2u * pc_relative_type_patches_.size() + boot_image_address_patches_.size(); linker_patches->reserve(size); for (const auto& entry : method_patches_) { const MethodReference& target_method = entry.first; Literal* literal = entry.second; DCHECK(literal->GetLabel()->IsBound()); uint32_t literal_offset = literal->GetLabel()->Position(); linker_patches->push_back(LinkerPatch::MethodPatch(literal_offset, target_method.dex_file, target_method.dex_method_index)); } for (const auto& entry : call_patches_) { const MethodReference& target_method = entry.first; Literal* literal = entry.second; DCHECK(literal->GetLabel()->IsBound()); uint32_t literal_offset = literal->GetLabel()->Position(); linker_patches->push_back(LinkerPatch::CodePatch(literal_offset, target_method.dex_file, target_method.dex_method_index)); } for (const PatchInfo