/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "builder.h" #include "art_field-inl.h" #include "base/arena_bit_vector.h" #include "base/bit_vector-inl.h" #include "base/logging.h" #include "class_linker.h" #include "dex/verified_method.h" #include "dex_file-inl.h" #include "dex_instruction-inl.h" #include "dex/verified_method.h" #include "driver/compiler_driver-inl.h" #include "driver/compiler_options.h" #include "mirror/class_loader.h" #include "mirror/dex_cache.h" #include "nodes.h" #include "primitive.h" #include "scoped_thread_state_change.h" #include "ssa_builder.h" #include "thread.h" #include "utils/dex_cache_arrays_layout-inl.h" namespace art { void HGraphBuilder::InitializeLocals(uint16_t count) { graph_->SetNumberOfVRegs(count); locals_.resize(count); for (int i = 0; i < count; i++) { HLocal* local = new (arena_) HLocal(i); entry_block_->AddInstruction(local); locals_[i] = local; } } void HGraphBuilder::InitializeParameters(uint16_t number_of_parameters) { // dex_compilation_unit_ is null only when unit testing. if (dex_compilation_unit_ == nullptr) { return; } graph_->SetNumberOfInVRegs(number_of_parameters); const char* shorty = dex_compilation_unit_->GetShorty(); int locals_index = locals_.size() - number_of_parameters; int parameter_index = 0; const DexFile::MethodId& referrer_method_id = dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex()); if (!dex_compilation_unit_->IsStatic()) { // Add the implicit 'this' argument, not expressed in the signature. HParameterValue* parameter = new (arena_) HParameterValue(*dex_file_, referrer_method_id.class_idx_, parameter_index++, Primitive::kPrimNot, true); entry_block_->AddInstruction(parameter); HLocal* local = GetLocalAt(locals_index++); entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter, local->GetDexPc())); number_of_parameters--; } const DexFile::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id); const DexFile::TypeList* arg_types = dex_file_->GetProtoParameters(proto); for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) { HParameterValue* parameter = new (arena_) HParameterValue( *dex_file_, arg_types->GetTypeItem(shorty_pos - 1).type_idx_, parameter_index++, Primitive::GetType(shorty[shorty_pos]), false); ++shorty_pos; entry_block_->AddInstruction(parameter); HLocal* local = GetLocalAt(locals_index++); // Store the parameter value in the local that the dex code will use // to reference that parameter. entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter, local->GetDexPc())); bool is_wide = (parameter->GetType() == Primitive::kPrimLong) || (parameter->GetType() == Primitive::kPrimDouble); if (is_wide) { i++; locals_index++; parameter_index++; } } } template void HGraphBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) { int32_t target_offset = instruction.GetTargetOffset(); HBasicBlock* branch_target = FindBlockStartingAt(dex_pc + target_offset); HBasicBlock* fallthrough_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits()); DCHECK(branch_target != nullptr); DCHECK(fallthrough_target != nullptr); PotentiallyAddSuspendCheck(branch_target, dex_pc); HInstruction* first = LoadLocal(instruction.VRegA(), Primitive::kPrimInt, dex_pc); HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc); T* comparison = new (arena_) T(first, second, dex_pc); current_block_->AddInstruction(comparison); HInstruction* ifinst = new (arena_) HIf(comparison, dex_pc); current_block_->AddInstruction(ifinst); current_block_->AddSuccessor(branch_target); current_block_->AddSuccessor(fallthrough_target); current_block_ = nullptr; } template void HGraphBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) { int32_t target_offset = instruction.GetTargetOffset(); HBasicBlock* branch_target = FindBlockStartingAt(dex_pc + target_offset); HBasicBlock* fallthrough_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits()); DCHECK(branch_target != nullptr); DCHECK(fallthrough_target != nullptr); PotentiallyAddSuspendCheck(branch_target, dex_pc); HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt, dex_pc); T* comparison = new (arena_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc); current_block_->AddInstruction(comparison); HInstruction* ifinst = new (arena_) HIf(comparison, dex_pc); current_block_->AddInstruction(ifinst); current_block_->AddSuccessor(branch_target); current_block_->AddSuccessor(fallthrough_target); current_block_ = nullptr; } void HGraphBuilder::MaybeRecordStat(MethodCompilationStat compilation_stat) { if (compilation_stats_ != nullptr) { compilation_stats_->RecordStat(compilation_stat); } } bool HGraphBuilder::SkipCompilation(const DexFile::CodeItem& code_item, size_t number_of_branches) { const CompilerOptions& compiler_options = compiler_driver_->GetCompilerOptions(); CompilerOptions::CompilerFilter compiler_filter = compiler_options.GetCompilerFilter(); if (compiler_filter == CompilerOptions::kEverything) { return false; } if (compiler_options.IsHugeMethod(code_item.insns_size_in_code_units_)) { VLOG(compiler) << "Skip compilation of huge method " << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_) << ": " << code_item.insns_size_in_code_units_ << " code units"; MaybeRecordStat(MethodCompilationStat::kNotCompiledHugeMethod); return true; } // If it's large and contains no branches, it's likely to be machine generated initialization. if (compiler_options.IsLargeMethod(code_item.insns_size_in_code_units_) && (number_of_branches == 0)) { VLOG(compiler) << "Skip compilation of large method with no branch " << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_) << ": " << code_item.insns_size_in_code_units_ << " code units"; MaybeRecordStat(MethodCompilationStat::kNotCompiledLargeMethodNoBranches); return true; } return false; } void HGraphBuilder::CreateBlocksForTryCatch(const DexFile::CodeItem& code_item) { if (code_item.tries_size_ == 0) { return; } // Create branch targets at the start/end of the TryItem range. These are // places where the program might fall through into/out of the a block and // where TryBoundary instructions will be inserted later. Other edges which // enter/exit the try blocks are a result of branches/switches. for (size_t idx = 0; idx < code_item.tries_size_; ++idx) { const DexFile::TryItem* try_item = DexFile::GetTryItems(code_item, idx); uint32_t dex_pc_start = try_item->start_addr_; uint32_t dex_pc_end = dex_pc_start + try_item->insn_count_; FindOrCreateBlockStartingAt(dex_pc_start); if (dex_pc_end < code_item.insns_size_in_code_units_) { // TODO: Do not create block if the last instruction cannot fall through. FindOrCreateBlockStartingAt(dex_pc_end); } else { // The TryItem spans until the very end of the CodeItem (or beyond if // invalid) and therefore cannot have any code afterwards. } } // Create branch targets for exception handlers. const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(code_item, 0); uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr); for (uint32_t idx = 0; idx < handlers_size; ++idx) { CatchHandlerIterator iterator(handlers_ptr); for (; iterator.HasNext(); iterator.Next()) { uint32_t address = iterator.GetHandlerAddress(); HBasicBlock* block = FindOrCreateBlockStartingAt(address); block->SetTryCatchInformation( new (arena_) TryCatchInformation(iterator.GetHandlerTypeIndex(), *dex_file_)); } handlers_ptr = iterator.EndDataPointer(); } } // Returns the TryItem stored for `block` or nullptr if there is no info for it. static const DexFile::TryItem* GetTryItem( HBasicBlock* block, const ArenaSafeMap& try_block_info) { auto iterator = try_block_info.find(block->GetBlockId()); return (iterator == try_block_info.end()) ? nullptr : iterator->second; } void HGraphBuilder::LinkToCatchBlocks(HTryBoundary* try_boundary, const DexFile::CodeItem& code_item, const DexFile::TryItem* try_item) { for (CatchHandlerIterator it(code_item, *try_item); it.HasNext(); it.Next()) { try_boundary->AddExceptionHandler(FindBlockStartingAt(it.GetHandlerAddress())); } } void HGraphBuilder::InsertTryBoundaryBlocks(const DexFile::CodeItem& code_item) { if (code_item.tries_size_ == 0) { return; } // Keep a map of all try blocks and their respective TryItems. We do not use // the block's pointer but rather its id to ensure deterministic iteration. ArenaSafeMap try_block_info( std::less(), arena_->Adapter(kArenaAllocGraphBuilder)); // Obtain TryItem information for blocks with throwing instructions, and split // blocks which are both try & catch to simplify the graph. // NOTE: We are appending new blocks inside the loop, so we need to use index // because iterators can be invalidated. We remember the initial size to avoid // iterating over the new blocks which cannot throw. for (size_t i = 0, e = graph_->GetBlocks().size(); i < e; ++i) { HBasicBlock* block = graph_->GetBlocks()[i]; // Do not bother creating exceptional edges for try blocks which have no // throwing instructions. In that case we simply assume that the block is // not covered by a TryItem. This prevents us from creating a throw-catch // loop for synchronized blocks. if (block->HasThrowingInstructions()) { // Try to find a TryItem covering the block. DCHECK_NE(block->GetDexPc(), kNoDexPc) << "Block must have a dex_pc to find its TryItem."; const int32_t try_item_idx = DexFile::FindTryItem(code_item, block->GetDexPc()); if (try_item_idx != -1) { // Block throwing and in a TryItem. Store the try block information. HBasicBlock* throwing_block = block; if (block->IsCatchBlock()) { // Simplify blocks which are both try and catch, otherwise we would // need a strategy for splitting exceptional edges. We split the block // after the move-exception (if present) and mark the first part not // throwing. The normal-flow edge between them will be split later. throwing_block = block->SplitCatchBlockAfterMoveException(); // Move-exception does not throw and the block has throwing insructions // so it must have been possible to split it. DCHECK(throwing_block != nullptr); } try_block_info.Put(throwing_block->GetBlockId(), DexFile::GetTryItems(code_item, try_item_idx)); } } } // Do a pass over the try blocks and insert entering TryBoundaries where at // least one predecessor is not covered by the same TryItem as the try block. // We do not split each edge separately, but rather create one boundary block // that all predecessors are relinked to. This preserves loop headers (b/23895756). for (auto entry : try_block_info) { HBasicBlock* try_block = graph_->GetBlocks()[entry.first]; for (HBasicBlock* predecessor : try_block->GetPredecessors()) { if (GetTryItem(predecessor, try_block_info) != entry.second) { // Found a predecessor not covered by the same TryItem. Insert entering // boundary block. HTryBoundary* try_entry = new (arena_) HTryBoundary(HTryBoundary::BoundaryKind::kEntry, try_block->GetDexPc()); try_block->CreateImmediateDominator()->AddInstruction(try_entry); LinkToCatchBlocks(try_entry, code_item, entry.second); break; } } } // Do a second pass over the try blocks and insert exit TryBoundaries where // the successor is not in the same TryItem. for (auto entry : try_block_info) { HBasicBlock* try_block = graph_->GetBlocks()[entry.first]; // NOTE: Do not use iterators because SplitEdge would invalidate them. for (size_t i = 0, e = try_block->GetSuccessors().size(); i < e; ++i) { HBasicBlock* successor = try_block->GetSuccessors()[i]; // If the successor is a try block, all of its predecessors must be // covered by the same TryItem. Otherwise the previous pass would have // created a non-throwing boundary block. if (GetTryItem(successor, try_block_info) != nullptr) { DCHECK_EQ(entry.second, GetTryItem(successor, try_block_info)); continue; } // Preserve the invariant that Return(Void) always jumps to Exit by moving // it outside the try block if necessary. HInstruction* last_instruction = try_block->GetLastInstruction(); if (last_instruction->IsReturn() || last_instruction->IsReturnVoid()) { DCHECK_EQ(successor, exit_block_); successor = try_block->SplitBefore(last_instruction); } // Insert TryBoundary and link to catch blocks. HTryBoundary* try_exit = new (arena_) HTryBoundary(HTryBoundary::BoundaryKind::kExit, successor->GetDexPc()); graph_->SplitEdge(try_block, successor)->AddInstruction(try_exit); LinkToCatchBlocks(try_exit, code_item, entry.second); } } } GraphAnalysisResult HGraphBuilder::BuildGraph(const DexFile::CodeItem& code_item, StackHandleScopeCollection* handles) { DCHECK(graph_->GetBlocks().empty()); const uint16_t* code_ptr = code_item.insns_; const uint16_t* code_end = code_item.insns_ + code_item.insns_size_in_code_units_; code_start_ = code_ptr; // Setup the graph with the entry block and exit block. entry_block_ = new (arena_) HBasicBlock(graph_, 0); graph_->AddBlock(entry_block_); exit_block_ = new (arena_) HBasicBlock(graph_, kNoDexPc); graph_->SetEntryBlock(entry_block_); graph_->SetExitBlock(exit_block_); graph_->SetHasTryCatch(code_item.tries_size_ != 0); InitializeLocals(code_item.registers_size_); graph_->SetMaximumNumberOfOutVRegs(code_item.outs_size_); // Compute the number of dex instructions, blocks, and branches. We will // check these values against limits given to the compiler. size_t number_of_branches = 0; // To avoid splitting blocks, we compute ahead of time the instructions that // start a new block, and create these blocks. if (!ComputeBranchTargets(code_ptr, code_end, &number_of_branches)) { MaybeRecordStat(MethodCompilationStat::kNotCompiledBranchOutsideMethodCode); return kAnalysisInvalidBytecode; } // Note that the compiler driver is null when unit testing. if ((compiler_driver_ != nullptr) && SkipCompilation(code_item, number_of_branches)) { return kAnalysisInvalidBytecode; } // Find locations where we want to generate extra stackmaps for native debugging. // This allows us to generate the info only at interesting points (for example, // at start of java statement) rather than before every dex instruction. const bool native_debuggable = compiler_driver_ != nullptr && compiler_driver_->GetCompilerOptions().GetNativeDebuggable(); ArenaBitVector* native_debug_info_locations; if (native_debuggable) { const uint32_t num_instructions = code_item.insns_size_in_code_units_; native_debug_info_locations = ArenaBitVector::Create(arena_, num_instructions, false, kArenaAllocGraphBuilder); FindNativeDebugInfoLocations(code_item, native_debug_info_locations); } CreateBlocksForTryCatch(code_item); InitializeParameters(code_item.ins_size_); size_t dex_pc = 0; while (code_ptr < code_end) { // Update the current block if dex_pc starts a new block. MaybeUpdateCurrentBlock(dex_pc); const Instruction& instruction = *Instruction::At(code_ptr); if (native_debuggable && native_debug_info_locations->IsBitSet(dex_pc)) { if (current_block_ != nullptr) { current_block_->AddInstruction(new (arena_) HNativeDebugInfo(dex_pc)); } } if (!AnalyzeDexInstruction(instruction, dex_pc)) { return kAnalysisInvalidBytecode; } dex_pc += instruction.SizeInCodeUnits(); code_ptr += instruction.SizeInCodeUnits(); } // Add Exit to the exit block. exit_block_->AddInstruction(new (arena_) HExit()); // Add the suspend check to the entry block. entry_block_->AddInstruction(new (arena_) HSuspendCheck(0)); entry_block_->AddInstruction(new (arena_) HGoto()); // Add the exit block at the end. graph_->AddBlock(exit_block_); // Iterate over blocks covered by TryItems and insert TryBoundaries at entry // and exit points. This requires all control-flow instructions and // non-exceptional edges to have been created. InsertTryBoundaryBlocks(code_item); GraphAnalysisResult result = graph_->BuildDominatorTree(); if (result != kAnalysisSuccess) { return result; } graph_->InitializeInexactObjectRTI(handles); return SsaBuilder(graph_, handles).BuildSsa(); } void HGraphBuilder::MaybeUpdateCurrentBlock(size_t dex_pc) { HBasicBlock* block = FindBlockStartingAt(dex_pc); if (block == nullptr) { return; } if (current_block_ != nullptr) { // Branching instructions clear current_block, so we know // the last instruction of the current block is not a branching // instruction. We add an unconditional goto to the found block. current_block_->AddInstruction(new (arena_) HGoto(dex_pc)); current_block_->AddSuccessor(block); } graph_->AddBlock(block); current_block_ = block; } void HGraphBuilder::FindNativeDebugInfoLocations(const DexFile::CodeItem& code_item, ArenaBitVector* locations) { // The callback gets called when the line number changes. // In other words, it marks the start of new java statement. struct Callback { static bool Position(void* ctx, const DexFile::PositionInfo& entry) { static_cast(ctx)->SetBit(entry.address_); return false; } }; dex_file_->DecodeDebugPositionInfo(&code_item, Callback::Position, locations); // Instruction-specific tweaks. const Instruction* const begin = Instruction::At(code_item.insns_); const Instruction* const end = begin->RelativeAt(code_item.insns_size_in_code_units_); for (const Instruction* inst = begin; inst < end; inst = inst->Next()) { switch (inst->Opcode()) { case Instruction::MOVE_EXCEPTION: { // Stop in native debugger after the exception has been moved. // The compiler also expects the move at the start of basic block so // we do not want to interfere by inserting native-debug-info before it. locations->ClearBit(inst->GetDexPc(code_item.insns_)); const Instruction* next = inst->Next(); if (next < end) { locations->SetBit(next->GetDexPc(code_item.insns_)); } break; } default: break; } } } bool HGraphBuilder::ComputeBranchTargets(const uint16_t* code_ptr, const uint16_t* code_end, size_t* number_of_branches) { branch_targets_.resize(code_end - code_ptr, nullptr); // Create the first block for the dex instructions, single successor of the entry block. HBasicBlock* block = new (arena_) HBasicBlock(graph_, 0); branch_targets_[0] = block; entry_block_->AddSuccessor(block); // Iterate over all instructions and find branching instructions. Create blocks for // the locations these instructions branch to. uint32_t dex_pc = 0; while (code_ptr < code_end) { const Instruction& instruction = *Instruction::At(code_ptr); if (instruction.IsBranch()) { (*number_of_branches)++; int32_t target = instruction.GetTargetOffset() + dex_pc; // Create a block for the target instruction. FindOrCreateBlockStartingAt(target); dex_pc += instruction.SizeInCodeUnits(); code_ptr += instruction.SizeInCodeUnits(); if (instruction.CanFlowThrough()) { if (code_ptr >= code_end) { // In the normal case we should never hit this but someone can artificially forge a dex // file to fall-through out the method code. In this case we bail out compilation. return false; } else { FindOrCreateBlockStartingAt(dex_pc); } } } else if (instruction.IsSwitch()) { SwitchTable table(instruction, dex_pc, instruction.Opcode() == Instruction::SPARSE_SWITCH); uint16_t num_entries = table.GetNumEntries(); // In a packed-switch, the entry at index 0 is the starting key. In a sparse-switch, the // entry at index 0 is the first key, and values are after *all* keys. size_t offset = table.GetFirstValueIndex(); // Use a larger loop counter type to avoid overflow issues. for (size_t i = 0; i < num_entries; ++i) { // The target of the case. uint32_t target = dex_pc + table.GetEntryAt(i + offset); FindOrCreateBlockStartingAt(target); // Create a block for the switch-case logic. The block gets the dex_pc // of the SWITCH instruction because it is part of its semantics. block = new (arena_) HBasicBlock(graph_, dex_pc); branch_targets_[table.GetDexPcForIndex(i)] = block; } // Fall-through. Add a block if there is more code afterwards. dex_pc += instruction.SizeInCodeUnits(); code_ptr += instruction.SizeInCodeUnits(); if (code_ptr >= code_end) { // In the normal case we should never hit this but someone can artificially forge a dex // file to fall-through out the method code. In this case we bail out compilation. // (A switch can fall-through so we don't need to check CanFlowThrough().) return false; } else { FindOrCreateBlockStartingAt(dex_pc); } } else { code_ptr += instruction.SizeInCodeUnits(); dex_pc += instruction.SizeInCodeUnits(); } } return true; } HBasicBlock* HGraphBuilder::FindBlockStartingAt(int32_t dex_pc) const { DCHECK_GE(dex_pc, 0); return branch_targets_[dex_pc]; } HBasicBlock* HGraphBuilder::FindOrCreateBlockStartingAt(int32_t dex_pc) { HBasicBlock* block = FindBlockStartingAt(dex_pc); if (block == nullptr) { block = new (arena_) HBasicBlock(graph_, dex_pc); branch_targets_[dex_pc] = block; } return block; } template void HGraphBuilder::Unop_12x(const Instruction& instruction, Primitive::Type type, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegB(), type, dex_pc); current_block_->AddInstruction(new (arena_) T(type, first, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc); } void HGraphBuilder::Conversion_12x(const Instruction& instruction, Primitive::Type input_type, Primitive::Type result_type, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegB(), input_type, dex_pc); current_block_->AddInstruction(new (arena_) HTypeConversion(result_type, first, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc); } template void HGraphBuilder::Binop_23x(const Instruction& instruction, Primitive::Type type, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegB(), type, dex_pc); HInstruction* second = LoadLocal(instruction.VRegC(), type, dex_pc); current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc); } template void HGraphBuilder::Binop_23x_shift(const Instruction& instruction, Primitive::Type type, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegB(), type, dex_pc); HInstruction* second = LoadLocal(instruction.VRegC(), Primitive::kPrimInt, dex_pc); current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc); } void HGraphBuilder::Binop_23x_cmp(const Instruction& instruction, Primitive::Type type, ComparisonBias bias, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegB(), type, dex_pc); HInstruction* second = LoadLocal(instruction.VRegC(), type, dex_pc); current_block_->AddInstruction(new (arena_) HCompare(type, first, second, bias, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc); } template void HGraphBuilder::Binop_12x_shift(const Instruction& instruction, Primitive::Type type, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegA(), type, dex_pc); HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc); current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc); } template void HGraphBuilder::Binop_12x(const Instruction& instruction, Primitive::Type type, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegA(), type, dex_pc); HInstruction* second = LoadLocal(instruction.VRegB(), type, dex_pc); current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc); } template void HGraphBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc); HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc); if (reverse) { std::swap(first, second); } current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc); } template void HGraphBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc); HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc); if (reverse) { std::swap(first, second); } current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc); } static bool RequiresConstructorBarrier(const DexCompilationUnit* cu, const CompilerDriver& driver) { Thread* self = Thread::Current(); return cu->IsConstructor() && driver.RequiresConstructorBarrier(self, cu->GetDexFile(), cu->GetClassDefIndex()); } void HGraphBuilder::BuildReturn(const Instruction& instruction, Primitive::Type type, uint32_t dex_pc) { if (type == Primitive::kPrimVoid) { if (graph_->ShouldGenerateConstructorBarrier()) { // The compilation unit is null during testing. if (dex_compilation_unit_ != nullptr) { DCHECK(RequiresConstructorBarrier(dex_compilation_unit_, *compiler_driver_)) << "Inconsistent use of ShouldGenerateConstructorBarrier. Should not generate a barrier."; } current_block_->AddInstruction(new (arena_) HMemoryBarrier(kStoreStore, dex_pc)); } current_block_->AddInstruction(new (arena_) HReturnVoid(dex_pc)); } else { HInstruction* value = LoadLocal(instruction.VRegA(), type, dex_pc); current_block_->AddInstruction(new (arena_) HReturn(value, dex_pc)); } current_block_->AddSuccessor(exit_block_); current_block_ = nullptr; } static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) { switch (opcode) { case Instruction::INVOKE_STATIC: case Instruction::INVOKE_STATIC_RANGE: return kStatic; case Instruction::INVOKE_DIRECT: case Instruction::INVOKE_DIRECT_RANGE: return kDirect; case Instruction::INVOKE_VIRTUAL: case Instruction::INVOKE_VIRTUAL_QUICK: case Instruction::INVOKE_VIRTUAL_RANGE: case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: return kVirtual; case Instruction::INVOKE_INTERFACE: case Instruction::INVOKE_INTERFACE_RANGE: return kInterface; case Instruction::INVOKE_SUPER_RANGE: case Instruction::INVOKE_SUPER: return kSuper; default: LOG(FATAL) << "Unexpected invoke opcode: " << opcode; UNREACHABLE(); } } ArtMethod* HGraphBuilder::ResolveMethod(uint16_t method_idx, InvokeType invoke_type) { ScopedObjectAccess soa(Thread::Current()); StackHandleScope<3> hs(soa.Self()); ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker(); Handle class_loader(hs.NewHandle( soa.Decode(dex_compilation_unit_->GetClassLoader()))); Handle compiling_class(hs.NewHandle(GetCompilingClass())); ArtMethod* resolved_method = class_linker->ResolveMethod( *dex_compilation_unit_->GetDexFile(), method_idx, dex_compilation_unit_->GetDexCache(), class_loader, /* referrer */ nullptr, invoke_type); if (UNLIKELY(resolved_method == nullptr)) { // Clean up any exception left by type resolution. soa.Self()->ClearException(); return nullptr; } // Check access. The class linker has a fast path for looking into the dex cache // and does not check the access if it hits it. if (compiling_class.Get() == nullptr) { if (!resolved_method->IsPublic()) { return nullptr; } } else if (!compiling_class->CanAccessResolvedMethod(resolved_method->GetDeclaringClass(), resolved_method, dex_compilation_unit_->GetDexCache().Get(), method_idx)) { return nullptr; } // We have to special case the invoke-super case, as ClassLinker::ResolveMethod does not. // We need to look at the referrer's super class vtable. We need to do this to know if we need to // make this an invoke-unresolved to handle cross-dex invokes or abstract super methods, both of // which require runtime handling. if (invoke_type == kSuper) { if (compiling_class.Get() == nullptr) { // We could not determine the method's class we need to wait until runtime. DCHECK(Runtime::Current()->IsAotCompiler()); return nullptr; } ArtMethod* current_method = graph_->GetArtMethod(); DCHECK(current_method != nullptr); Handle methods_class(hs.NewHandle( dex_compilation_unit_->GetClassLinker()->ResolveReferencedClassOfMethod(Thread::Current(), method_idx, current_method))); if (methods_class.Get() == nullptr) { // Invoking a super method requires knowing the actual super class. If we did not resolve // the compiling method's declaring class (which only happens for ahead of time // compilation), bail out. DCHECK(Runtime::Current()->IsAotCompiler()); return nullptr; } else { ArtMethod* actual_method; if (methods_class->IsInterface()) { actual_method = methods_class->FindVirtualMethodForInterfaceSuper( resolved_method, class_linker->GetImagePointerSize()); } else { uint16_t vtable_index = resolved_method->GetMethodIndex(); actual_method = compiling_class->GetSuperClass()->GetVTableEntry( vtable_index, class_linker->GetImagePointerSize()); } if (actual_method != resolved_method && !IsSameDexFile(*actual_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) { // The back-end code generator relies on this check in order to ensure that it will not // attempt to read the dex_cache with a dex_method_index that is not from the correct // dex_file. If we didn't do this check then the dex_method_index will not be updated in the // builder, which means that the code-generator (and compiler driver during sharpening and // inliner, maybe) might invoke an incorrect method. // TODO: The actual method could still be referenced in the current dex file, so we // could try locating it. // TODO: Remove the dex_file restriction. return nullptr; } if (!actual_method->IsInvokable()) { // Fail if the actual method cannot be invoked. Otherwise, the runtime resolution stub // could resolve the callee to the wrong method. return nullptr; } resolved_method = actual_method; } } // Check for incompatible class changes. The class linker has a fast path for // looking into the dex cache and does not check incompatible class changes if it hits it. if (resolved_method->CheckIncompatibleClassChange(invoke_type)) { return nullptr; } return resolved_method; } bool HGraphBuilder::BuildInvoke(const Instruction& instruction, uint32_t dex_pc, uint32_t method_idx, uint32_t number_of_vreg_arguments, bool is_range, uint32_t* args, uint32_t register_index) { InvokeType invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode()); const char* descriptor = dex_file_->GetMethodShorty(method_idx); Primitive::Type return_type = Primitive::GetType(descriptor[0]); // Remove the return type from the 'proto'. size_t number_of_arguments = strlen(descriptor) - 1; if (invoke_type != kStatic) { // instance call // One extra argument for 'this'. number_of_arguments++; } MethodReference target_method(dex_file_, method_idx); // Special handling for string init. int32_t string_init_offset = 0; bool is_string_init = compiler_driver_->IsStringInit(method_idx, dex_file_, &string_init_offset); // Replace calls to String. with StringFactory. if (is_string_init) { HInvokeStaticOrDirect::DispatchInfo dispatch_info = { HInvokeStaticOrDirect::MethodLoadKind::kStringInit, HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod, dchecked_integral_cast(string_init_offset), 0U }; HInvoke* invoke = new (arena_) HInvokeStaticOrDirect( arena_, number_of_arguments - 1, Primitive::kPrimNot /*return_type */, dex_pc, method_idx, target_method, dispatch_info, invoke_type, kStatic /* optimized_invoke_type */, HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit); return HandleStringInit(invoke, number_of_vreg_arguments, args, register_index, is_range, descriptor); } ArtMethod* resolved_method = ResolveMethod(method_idx, invoke_type); if (UNLIKELY(resolved_method == nullptr)) { MaybeRecordStat(MethodCompilationStat::kUnresolvedMethod); HInvoke* invoke = new (arena_) HInvokeUnresolved(arena_, number_of_arguments, return_type, dex_pc, method_idx, invoke_type); return HandleInvoke(invoke, number_of_vreg_arguments, args, register_index, is_range, descriptor, nullptr /* clinit_check */); } // Potential class initialization check, in the case of a static method call. HClinitCheck* clinit_check = nullptr; HInvoke* invoke = nullptr; if (invoke_type == kDirect || invoke_type == kStatic || invoke_type == kSuper) { // By default, consider that the called method implicitly requires // an initialization check of its declaring method. HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit; ScopedObjectAccess soa(Thread::Current()); if (invoke_type == kStatic) { clinit_check = ProcessClinitCheckForInvoke( dex_pc, resolved_method, method_idx, &clinit_check_requirement); } else if (invoke_type == kSuper) { if (IsSameDexFile(*resolved_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) { // Update the target method to the one resolved. Note that this may be a no-op if // we resolved to the method referenced by the instruction. method_idx = resolved_method->GetDexMethodIndex(); target_method = MethodReference(dex_file_, method_idx); } } HInvokeStaticOrDirect::DispatchInfo dispatch_info = { HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod, HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod, 0u, 0U }; invoke = new (arena_) HInvokeStaticOrDirect(arena_, number_of_arguments, return_type, dex_pc, method_idx, target_method, dispatch_info, invoke_type, invoke_type, clinit_check_requirement); } else if (invoke_type == kVirtual) { ScopedObjectAccess soa(Thread::Current()); // Needed for the method index invoke = new (arena_) HInvokeVirtual(arena_, number_of_arguments, return_type, dex_pc, method_idx, resolved_method->GetMethodIndex()); } else { DCHECK_EQ(invoke_type, kInterface); ScopedObjectAccess soa(Thread::Current()); // Needed for the method index invoke = new (arena_) HInvokeInterface(arena_, number_of_arguments, return_type, dex_pc, method_idx, resolved_method->GetDexMethodIndex()); } return HandleInvoke(invoke, number_of_vreg_arguments, args, register_index, is_range, descriptor, clinit_check); } bool HGraphBuilder::BuildNewInstance(uint16_t type_index, uint32_t dex_pc) { bool finalizable; bool can_throw = NeedsAccessCheck(type_index, &finalizable); // Only the non-resolved entrypoint handles the finalizable class case. If we // need access checks, then we haven't resolved the method and the class may // again be finalizable. QuickEntrypointEnum entrypoint = (finalizable || can_throw) ? kQuickAllocObject : kQuickAllocObjectInitialized; ScopedObjectAccess soa(Thread::Current()); StackHandleScope<3> hs(soa.Self()); Handle dex_cache(hs.NewHandle( dex_compilation_unit_->GetClassLinker()->FindDexCache( soa.Self(), *dex_compilation_unit_->GetDexFile()))); Handle resolved_class(hs.NewHandle(dex_cache->GetResolvedType(type_index))); const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile(); Handle outer_dex_cache(hs.NewHandle( outer_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), outer_dex_file))); if (outer_dex_cache.Get() != dex_cache.Get()) { // We currently do not support inlining allocations across dex files. return false; } HLoadClass* load_class = new (arena_) HLoadClass( graph_->GetCurrentMethod(), type_index, outer_dex_file, IsOutermostCompilingClass(type_index), dex_pc, /*needs_access_check*/ can_throw, compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_file, type_index)); current_block_->AddInstruction(load_class); HInstruction* cls = load_class; if (!IsInitialized(resolved_class)) { cls = new (arena_) HClinitCheck(load_class, dex_pc); current_block_->AddInstruction(cls); } current_block_->AddInstruction(new (arena_) HNewInstance( cls, graph_->GetCurrentMethod(), dex_pc, type_index, *dex_compilation_unit_->GetDexFile(), can_throw, finalizable, entrypoint)); return true; } static bool IsSubClass(mirror::Class* to_test, mirror::Class* super_class) SHARED_REQUIRES(Locks::mutator_lock_) { return to_test != nullptr && !to_test->IsInterface() && to_test->IsSubClass(super_class); } bool HGraphBuilder::IsInitialized(Handle cls) const { if (cls.Get() == nullptr) { return false; } // `CanAssumeClassIsLoaded` will return true if we're JITting, or will // check whether the class is in an image for the AOT compilation. if (cls->IsInitialized() && compiler_driver_->CanAssumeClassIsLoaded(cls.Get())) { return true; } if (IsSubClass(GetOutermostCompilingClass(), cls.Get())) { return true; } // TODO: We should walk over the inlined methods, but we don't pass // that information to the builder. if (IsSubClass(GetCompilingClass(), cls.Get())) { return true; } return false; } HClinitCheck* HGraphBuilder::ProcessClinitCheckForInvoke( uint32_t dex_pc, ArtMethod* resolved_method, uint32_t method_idx, HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) { const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile(); Thread* self = Thread::Current(); StackHandleScope<4> hs(self); Handle dex_cache(hs.NewHandle( dex_compilation_unit_->GetClassLinker()->FindDexCache( self, *dex_compilation_unit_->GetDexFile()))); Handle outer_dex_cache(hs.NewHandle( outer_compilation_unit_->GetClassLinker()->FindDexCache( self, outer_dex_file))); Handle outer_class(hs.NewHandle(GetOutermostCompilingClass())); Handle resolved_method_class(hs.NewHandle(resolved_method->GetDeclaringClass())); // The index at which the method's class is stored in the DexCache's type array. uint32_t storage_index = DexFile::kDexNoIndex; bool is_outer_class = (resolved_method->GetDeclaringClass() == outer_class.Get()); if (is_outer_class) { storage_index = outer_class->GetDexTypeIndex(); } else if (outer_dex_cache.Get() == dex_cache.Get()) { // Get `storage_index` from IsClassOfStaticMethodAvailableToReferrer. compiler_driver_->IsClassOfStaticMethodAvailableToReferrer(outer_dex_cache.Get(), GetCompilingClass(), resolved_method, method_idx, &storage_index); } HClinitCheck* clinit_check = nullptr; if (IsInitialized(resolved_method_class)) { *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone; } else if (storage_index != DexFile::kDexNoIndex) { *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit; HLoadClass* load_class = new (arena_) HLoadClass( graph_->GetCurrentMethod(), storage_index, outer_dex_file, is_outer_class, dex_pc, /*needs_access_check*/ false, compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_file, storage_index)); current_block_->AddInstruction(load_class); clinit_check = new (arena_) HClinitCheck(load_class, dex_pc); current_block_->AddInstruction(clinit_check); } return clinit_check; } bool HGraphBuilder::SetupInvokeArguments(HInvoke* invoke, uint32_t number_of_vreg_arguments, uint32_t* args, uint32_t register_index, bool is_range, const char* descriptor, size_t start_index, size_t* argument_index) { uint32_t descriptor_index = 1; // Skip the return type. uint32_t dex_pc = invoke->GetDexPc(); for (size_t i = start_index; // Make sure we don't go over the expected arguments or over the number of // dex registers given. If the instruction was seen as dead by the verifier, // it hasn't been properly checked. (i < number_of_vreg_arguments) && (*argument_index < invoke->GetNumberOfArguments()); i++, (*argument_index)++) { Primitive::Type type = Primitive::GetType(descriptor[descriptor_index++]); bool is_wide = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble); if (!is_range && is_wide && ((i + 1 == number_of_vreg_arguments) || (args[i] + 1 != args[i + 1]))) { // Longs and doubles should be in pairs, that is, sequential registers. The verifier should // reject any class where this is violated. However, the verifier only does these checks // on non trivially dead instructions, so we just bailout the compilation. VLOG(compiler) << "Did not compile " << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_) << " because of non-sequential dex register pair in wide argument"; MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode); return false; } HInstruction* arg = LoadLocal(is_range ? register_index + i : args[i], type, dex_pc); invoke->SetArgumentAt(*argument_index, arg); if (is_wide) { i++; } } if (*argument_index != invoke->GetNumberOfArguments()) { VLOG(compiler) << "Did not compile " << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_) << " because of wrong number of arguments in invoke instruction"; MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode); return false; } if (invoke->IsInvokeStaticOrDirect() && HInvokeStaticOrDirect::NeedsCurrentMethodInput( invoke->AsInvokeStaticOrDirect()->GetMethodLoadKind())) { invoke->SetArgumentAt(*argument_index, graph_->GetCurrentMethod()); (*argument_index)++; } return true; } bool HGraphBuilder::HandleInvoke(HInvoke* invoke, uint32_t number_of_vreg_arguments, uint32_t* args, uint32_t register_index, bool is_range, const char* descriptor, HClinitCheck* clinit_check) { DCHECK(!invoke->IsInvokeStaticOrDirect() || !invoke->AsInvokeStaticOrDirect()->IsStringInit()); size_t start_index = 0; size_t argument_index = 0; if (invoke->GetOriginalInvokeType() != InvokeType::kStatic) { // Instance call. HInstruction* arg = LoadLocal( is_range ? register_index : args[0], Primitive::kPrimNot, invoke->GetDexPc()); HNullCheck* null_check = new (arena_) HNullCheck(arg, invoke->GetDexPc()); current_block_->AddInstruction(null_check); invoke->SetArgumentAt(0, null_check); start_index = 1; argument_index = 1; } if (!SetupInvokeArguments(invoke, number_of_vreg_arguments, args, register_index, is_range, descriptor, start_index, &argument_index)) { return false; } if (clinit_check != nullptr) { // Add the class initialization check as last input of `invoke`. DCHECK(invoke->IsInvokeStaticOrDirect()); DCHECK(invoke->AsInvokeStaticOrDirect()->GetClinitCheckRequirement() == HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit); invoke->SetArgumentAt(argument_index, clinit_check); argument_index++; } current_block_->AddInstruction(invoke); latest_result_ = invoke; return true; } bool HGraphBuilder::HandleStringInit(HInvoke* invoke, uint32_t number_of_vreg_arguments, uint32_t* args, uint32_t register_index, bool is_range, const char* descriptor) { DCHECK(invoke->IsInvokeStaticOrDirect()); DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit()); size_t start_index = 1; size_t argument_index = 0; if (!SetupInvokeArguments(invoke, number_of_vreg_arguments, args, register_index, is_range, descriptor, start_index, &argument_index)) { return false; } // Add move-result for StringFactory method. uint32_t orig_this_reg = is_range ? register_index : args[0]; HInstruction* new_instance = LoadLocal(orig_this_reg, Primitive::kPrimNot, invoke->GetDexPc()); invoke->SetArgumentAt(argument_index, new_instance); current_block_->AddInstruction(invoke); latest_result_ = invoke; return true; } static Primitive::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) { const DexFile::FieldId& field_id = dex_file.GetFieldId(field_index); const char* type = dex_file.GetFieldTypeDescriptor(field_id); return Primitive::GetType(type[0]); } bool HGraphBuilder::BuildInstanceFieldAccess(const Instruction& instruction, uint32_t dex_pc, bool is_put) { uint32_t source_or_dest_reg = instruction.VRegA_22c(); uint32_t obj_reg = instruction.VRegB_22c(); uint16_t field_index; if (instruction.IsQuickened()) { if (!CanDecodeQuickenedInfo()) { return false; } field_index = LookupQuickenedInfo(dex_pc); } else { field_index = instruction.VRegC_22c(); } ScopedObjectAccess soa(Thread::Current()); ArtField* resolved_field = compiler_driver_->ComputeInstanceFieldInfo(field_index, dex_compilation_unit_, is_put, soa); HInstruction* object = LoadLocal(obj_reg, Primitive::kPrimNot, dex_pc); HInstruction* null_check = new (arena_) HNullCheck(object, dex_pc); current_block_->AddInstruction(null_check); Primitive::Type field_type = (resolved_field == nullptr) ? GetFieldAccessType(*dex_file_, field_index) : resolved_field->GetTypeAsPrimitiveType(); if (is_put) { HInstruction* value = LoadLocal(source_or_dest_reg, field_type, dex_pc); HInstruction* field_set = nullptr; if (resolved_field == nullptr) { MaybeRecordStat(MethodCompilationStat::kUnresolvedField); field_set = new (arena_) HUnresolvedInstanceFieldSet(null_check, value, field_type, field_index, dex_pc); } else { uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex(); field_set = new (arena_) HInstanceFieldSet(null_check, value, field_type, resolved_field->GetOffset(), resolved_field->IsVolatile(), field_index, class_def_index, *dex_file_, dex_compilation_unit_->GetDexCache(), dex_pc); } current_block_->AddInstruction(field_set); } else { HInstruction* field_get = nullptr; if (resolved_field == nullptr) { MaybeRecordStat(MethodCompilationStat::kUnresolvedField); field_get = new (arena_) HUnresolvedInstanceFieldGet(null_check, field_type, field_index, dex_pc); } else { uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex(); field_get = new (arena_) HInstanceFieldGet(null_check, field_type, resolved_field->GetOffset(), resolved_field->IsVolatile(), field_index, class_def_index, *dex_file_, dex_compilation_unit_->GetDexCache(), dex_pc); } current_block_->AddInstruction(field_get); UpdateLocal(source_or_dest_reg, field_get, dex_pc); } return true; } static mirror::Class* GetClassFrom(CompilerDriver* driver, const DexCompilationUnit& compilation_unit) { ScopedObjectAccess soa(Thread::Current()); StackHandleScope<2> hs(soa.Self()); const DexFile& dex_file = *compilation_unit.GetDexFile(); Handle class_loader(hs.NewHandle( soa.Decode(compilation_unit.GetClassLoader()))); Handle dex_cache(hs.NewHandle( compilation_unit.GetClassLinker()->FindDexCache(soa.Self(), dex_file))); return driver->ResolveCompilingMethodsClass(soa, dex_cache, class_loader, &compilation_unit); } mirror::Class* HGraphBuilder::GetOutermostCompilingClass() const { return GetClassFrom(compiler_driver_, *outer_compilation_unit_); } mirror::Class* HGraphBuilder::GetCompilingClass() const { return GetClassFrom(compiler_driver_, *dex_compilation_unit_); } bool HGraphBuilder::IsOutermostCompilingClass(uint16_t type_index) const { ScopedObjectAccess soa(Thread::Current()); StackHandleScope<4> hs(soa.Self()); Handle dex_cache(hs.NewHandle( dex_compilation_unit_->GetClassLinker()->FindDexCache( soa.Self(), *dex_compilation_unit_->GetDexFile()))); Handle class_loader(hs.NewHandle( soa.Decode(dex_compilation_unit_->GetClassLoader()))); Handle cls(hs.NewHandle(compiler_driver_->ResolveClass( soa, dex_cache, class_loader, type_index, dex_compilation_unit_))); Handle outer_class(hs.NewHandle(GetOutermostCompilingClass())); // GetOutermostCompilingClass returns null when the class is unresolved // (e.g. if it derives from an unresolved class). This is bogus knowing that // we are compiling it. // When this happens we cannot establish a direct relation between the current // class and the outer class, so we return false. // (Note that this is only used for optimizing invokes and field accesses) return (cls.Get() != nullptr) && (outer_class.Get() == cls.Get()); } void HGraphBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction, uint32_t dex_pc, bool is_put, Primitive::Type field_type) { uint32_t source_or_dest_reg = instruction.VRegA_21c(); uint16_t field_index = instruction.VRegB_21c(); if (is_put) { HInstruction* value = LoadLocal(source_or_dest_reg, field_type, dex_pc); current_block_->AddInstruction( new (arena_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc)); } else { current_block_->AddInstruction( new (arena_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc)); UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction(), dex_pc); } } bool HGraphBuilder::BuildStaticFieldAccess(const Instruction& instruction, uint32_t dex_pc, bool is_put) { uint32_t source_or_dest_reg = instruction.VRegA_21c(); uint16_t field_index = instruction.VRegB_21c(); ScopedObjectAccess soa(Thread::Current()); StackHandleScope<5> hs(soa.Self()); Handle dex_cache(hs.NewHandle( dex_compilation_unit_->GetClassLinker()->FindDexCache( soa.Self(), *dex_compilation_unit_->GetDexFile()))); Handle class_loader(hs.NewHandle( soa.Decode(dex_compilation_unit_->GetClassLoader()))); ArtField* resolved_field = compiler_driver_->ResolveField( soa, dex_cache, class_loader, dex_compilation_unit_, field_index, true); if (resolved_field == nullptr) { MaybeRecordStat(MethodCompilationStat::kUnresolvedField); Primitive::Type field_type = GetFieldAccessType(*dex_file_, field_index); BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type); return true; } Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType(); const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile(); Handle outer_dex_cache(hs.NewHandle( outer_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), outer_dex_file))); Handle outer_class(hs.NewHandle(GetOutermostCompilingClass())); // The index at which the field's class is stored in the DexCache's type array. uint32_t storage_index; bool is_outer_class = (outer_class.Get() == resolved_field->GetDeclaringClass()); if (is_outer_class) { storage_index = outer_class->GetDexTypeIndex(); } else if (outer_dex_cache.Get() != dex_cache.Get()) { // The compiler driver cannot currently understand multiple dex caches involved. Just bailout. return false; } else { // TODO: This is rather expensive. Perf it and cache the results if needed. std::pair pair = compiler_driver_->IsFastStaticField( outer_dex_cache.Get(), GetCompilingClass(), resolved_field, field_index, &storage_index); bool can_easily_access = is_put ? pair.second : pair.first; if (!can_easily_access) { MaybeRecordStat(MethodCompilationStat::kUnresolvedFieldNotAFastAccess); BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type); return true; } } bool is_in_cache = compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_file, storage_index); HLoadClass* constant = new (arena_) HLoadClass(graph_->GetCurrentMethod(), storage_index, outer_dex_file, is_outer_class, dex_pc, /*needs_access_check*/ false, is_in_cache); current_block_->AddInstruction(constant); HInstruction* cls = constant; Handle klass(hs.NewHandle(resolved_field->GetDeclaringClass())); if (!IsInitialized(klass)) { cls = new (arena_) HClinitCheck(constant, dex_pc); current_block_->AddInstruction(cls); } uint16_t class_def_index = klass->GetDexClassDefIndex(); if (is_put) { // We need to keep the class alive before loading the value. HInstruction* value = LoadLocal(source_or_dest_reg, field_type, dex_pc); DCHECK_EQ(value->GetType(), field_type); current_block_->AddInstruction(new (arena_) HStaticFieldSet(cls, value, field_type, resolved_field->GetOffset(), resolved_field->IsVolatile(), field_index, class_def_index, *dex_file_, dex_cache_, dex_pc)); } else { current_block_->AddInstruction(new (arena_) HStaticFieldGet(cls, field_type, resolved_field->GetOffset(), resolved_field->IsVolatile(), field_index, class_def_index, *dex_file_, dex_cache_, dex_pc)); UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction(), dex_pc); } return true; } void HGraphBuilder::BuildCheckedDivRem(uint16_t out_vreg, uint16_t first_vreg, int64_t second_vreg_or_constant, uint32_t dex_pc, Primitive::Type type, bool second_is_constant, bool isDiv) { DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong); HInstruction* first = LoadLocal(first_vreg, type, dex_pc); HInstruction* second = nullptr; if (second_is_constant) { if (type == Primitive::kPrimInt) { second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc); } else { second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc); } } else { second = LoadLocal(second_vreg_or_constant, type, dex_pc); } if (!second_is_constant || (type == Primitive::kPrimInt && second->AsIntConstant()->GetValue() == 0) || (type == Primitive::kPrimLong && second->AsLongConstant()->GetValue() == 0)) { second = new (arena_) HDivZeroCheck(second, dex_pc); current_block_->AddInstruction(second); } if (isDiv) { current_block_->AddInstruction(new (arena_) HDiv(type, first, second, dex_pc)); } else { current_block_->AddInstruction(new (arena_) HRem(type, first, second, dex_pc)); } UpdateLocal(out_vreg, current_block_->GetLastInstruction(), dex_pc); } void HGraphBuilder::BuildArrayAccess(const Instruction& instruction, uint32_t dex_pc, bool is_put, Primitive::Type anticipated_type) { uint8_t source_or_dest_reg = instruction.VRegA_23x(); uint8_t array_reg = instruction.VRegB_23x(); uint8_t index_reg = instruction.VRegC_23x(); HInstruction* object = LoadLocal(array_reg, Primitive::kPrimNot, dex_pc); object = new (arena_) HNullCheck(object, dex_pc); current_block_->AddInstruction(object); HInstruction* length = new (arena_) HArrayLength(object, dex_pc); current_block_->AddInstruction(length); HInstruction* index = LoadLocal(index_reg, Primitive::kPrimInt, dex_pc); index = new (arena_) HBoundsCheck(index, length, dex_pc); current_block_->AddInstruction(index); if (is_put) { HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type, dex_pc); // TODO: Insert a type check node if the type is Object. current_block_->AddInstruction(new (arena_) HArraySet( object, index, value, anticipated_type, dex_pc)); } else { current_block_->AddInstruction(new (arena_) HArrayGet(object, index, anticipated_type, dex_pc)); UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction(), dex_pc); } graph_->SetHasBoundsChecks(true); } void HGraphBuilder::BuildFilledNewArray(uint32_t dex_pc, uint32_t type_index, uint32_t number_of_vreg_arguments, bool is_range, uint32_t* args, uint32_t register_index) { HInstruction* length = graph_->GetIntConstant(number_of_vreg_arguments, dex_pc); bool finalizable; QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index, &finalizable) ? kQuickAllocArrayWithAccessCheck : kQuickAllocArray; HInstruction* object = new (arena_) HNewArray(length, graph_->GetCurrentMethod(), dex_pc, type_index, *dex_compilation_unit_->GetDexFile(), entrypoint); current_block_->AddInstruction(object); const char* descriptor = dex_file_->StringByTypeIdx(type_index); DCHECK_EQ(descriptor[0], '[') << descriptor; char primitive = descriptor[1]; DCHECK(primitive == 'I' || primitive == 'L' || primitive == '[') << descriptor; bool is_reference_array = (primitive == 'L') || (primitive == '['); Primitive::Type type = is_reference_array ? Primitive::kPrimNot : Primitive::kPrimInt; for (size_t i = 0; i < number_of_vreg_arguments; ++i) { HInstruction* value = LoadLocal(is_range ? register_index + i : args[i], type, dex_pc); HInstruction* index = graph_->GetIntConstant(i, dex_pc); current_block_->AddInstruction( new (arena_) HArraySet(object, index, value, type, dex_pc)); } latest_result_ = object; } template void HGraphBuilder::BuildFillArrayData(HInstruction* object, const T* data, uint32_t element_count, Primitive::Type anticipated_type, uint32_t dex_pc) { for (uint32_t i = 0; i < element_count; ++i) { HInstruction* index = graph_->GetIntConstant(i, dex_pc); HInstruction* value = graph_->GetIntConstant(data[i], dex_pc); current_block_->AddInstruction(new (arena_) HArraySet( object, index, value, anticipated_type, dex_pc)); } } void HGraphBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) { HInstruction* array = LoadLocal(instruction.VRegA_31t(), Primitive::kPrimNot, dex_pc); HNullCheck* null_check = new (arena_) HNullCheck(array, dex_pc); current_block_->AddInstruction(null_check); HInstruction* length = new (arena_) HArrayLength(null_check, dex_pc); current_block_->AddInstruction(length); int32_t payload_offset = instruction.VRegB_31t() + dex_pc; const Instruction::ArrayDataPayload* payload = reinterpret_cast(code_start_ + payload_offset); const uint8_t* data = payload->data; uint32_t element_count = payload->element_count; // Implementation of this DEX instruction seems to be that the bounds check is // done before doing any stores. HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc); current_block_->AddInstruction(new (arena_) HBoundsCheck(last_index, length, dex_pc)); switch (payload->element_width) { case 1: BuildFillArrayData(null_check, reinterpret_cast(data), element_count, Primitive::kPrimByte, dex_pc); break; case 2: BuildFillArrayData(null_check, reinterpret_cast(data), element_count, Primitive::kPrimShort, dex_pc); break; case 4: BuildFillArrayData(null_check, reinterpret_cast(data), element_count, Primitive::kPrimInt, dex_pc); break; case 8: BuildFillWideArrayData(null_check, reinterpret_cast(data), element_count, dex_pc); break; default: LOG(FATAL) << "Unknown element width for " << payload->element_width; } graph_->SetHasBoundsChecks(true); } void HGraphBuilder::BuildFillWideArrayData(HInstruction* object, const int64_t* data, uint32_t element_count, uint32_t dex_pc) { for (uint32_t i = 0; i < element_count; ++i) { HInstruction* index = graph_->GetIntConstant(i, dex_pc); HInstruction* value = graph_->GetLongConstant(data[i], dex_pc); current_block_->AddInstruction(new (arena_) HArraySet( object, index, value, Primitive::kPrimLong, dex_pc)); } } static TypeCheckKind ComputeTypeCheckKind(Handle cls) SHARED_REQUIRES(Locks::mutator_lock_) { if (cls.Get() == nullptr) { return TypeCheckKind::kUnresolvedCheck; } else if (cls->IsInterface()) { return TypeCheckKind::kInterfaceCheck; } else if (cls->IsArrayClass()) { if (cls->GetComponentType()->IsObjectClass()) { return TypeCheckKind::kArrayObjectCheck; } else if (cls->CannotBeAssignedFromOtherTypes()) { return TypeCheckKind::kExactCheck; } else { return TypeCheckKind::kArrayCheck; } } else if (cls->IsFinal()) { return TypeCheckKind::kExactCheck; } else if (cls->IsAbstract()) { return TypeCheckKind::kAbstractClassCheck; } else { return TypeCheckKind::kClassHierarchyCheck; } } void HGraphBuilder::BuildTypeCheck(const Instruction& instruction, uint8_t destination, uint8_t reference, uint16_t type_index, uint32_t dex_pc) { bool type_known_final, type_known_abstract, use_declaring_class; bool can_access = compiler_driver_->CanAccessTypeWithoutChecks( dex_compilation_unit_->GetDexMethodIndex(), *dex_compilation_unit_->GetDexFile(), type_index, &type_known_final, &type_known_abstract, &use_declaring_class); ScopedObjectAccess soa(Thread::Current()); StackHandleScope<2> hs(soa.Self()); const DexFile& dex_file = *dex_compilation_unit_->GetDexFile(); Handle dex_cache(hs.NewHandle( dex_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), dex_file))); Handle resolved_class(hs.NewHandle(dex_cache->GetResolvedType(type_index))); HInstruction* object = LoadLocal(reference, Primitive::kPrimNot, dex_pc); HLoadClass* cls = new (arena_) HLoadClass( graph_->GetCurrentMethod(), type_index, dex_file, IsOutermostCompilingClass(type_index), dex_pc, !can_access, compiler_driver_->CanAssumeTypeIsPresentInDexCache(dex_file, type_index)); current_block_->AddInstruction(cls); TypeCheckKind check_kind = ComputeTypeCheckKind(resolved_class); if (instruction.Opcode() == Instruction::INSTANCE_OF) { current_block_->AddInstruction(new (arena_) HInstanceOf(object, cls, check_kind, dex_pc)); UpdateLocal(destination, current_block_->GetLastInstruction(), dex_pc); } else { DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST); // We emit a CheckCast followed by a BoundType. CheckCast is a statement // which may throw. If it succeeds BoundType sets the new type of `object` // for all subsequent uses. current_block_->AddInstruction(new (arena_) HCheckCast(object, cls, check_kind, dex_pc)); current_block_->AddInstruction(new (arena_) HBoundType(object, dex_pc)); UpdateLocal(reference, current_block_->GetLastInstruction(), dex_pc); } } bool HGraphBuilder::NeedsAccessCheck(uint32_t type_index, bool* finalizable) const { return !compiler_driver_->CanAccessInstantiableTypeWithoutChecks( dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index, finalizable); } void HGraphBuilder::BuildSwitchJumpTable(const SwitchTable& table, const Instruction& instruction, HInstruction* value, uint32_t dex_pc) { // Add the successor blocks to the current block. uint16_t num_entries = table.GetNumEntries(); for (size_t i = 1; i <= num_entries; i++) { int32_t target_offset = table.GetEntryAt(i); HBasicBlock* case_target = FindBlockStartingAt(dex_pc + target_offset); DCHECK(case_target != nullptr); // Add the target block as a successor. current_block_->AddSuccessor(case_target); } // Add the default target block as the last successor. HBasicBlock* default_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits()); DCHECK(default_target != nullptr); current_block_->AddSuccessor(default_target); // Now add the Switch instruction. int32_t starting_key = table.GetEntryAt(0); current_block_->AddInstruction( new (arena_) HPackedSwitch(starting_key, num_entries, value, dex_pc)); // This block ends with control flow. current_block_ = nullptr; } void HGraphBuilder::BuildPackedSwitch(const Instruction& instruction, uint32_t dex_pc) { // Verifier guarantees that the payload for PackedSwitch contains: // (a) number of entries (may be zero) // (b) first and lowest switch case value (entry 0, always present) // (c) list of target pcs (entries 1 <= i <= N) SwitchTable table(instruction, dex_pc, false); // Value to test against. HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt, dex_pc); // Starting key value. int32_t starting_key = table.GetEntryAt(0); // Retrieve number of entries. uint16_t num_entries = table.GetNumEntries(); if (num_entries == 0) { return; } // Don't use a packed switch if there are very few entries. if (num_entries > kSmallSwitchThreshold) { BuildSwitchJumpTable(table, instruction, value, dex_pc); } else { // Chained cmp-and-branch, starting from starting_key. for (size_t i = 1; i <= num_entries; i++) { BuildSwitchCaseHelper(instruction, i, i == num_entries, table, value, starting_key + i - 1, table.GetEntryAt(i), dex_pc); } } } void HGraphBuilder::BuildSparseSwitch(const Instruction& instruction, uint32_t dex_pc) { // Verifier guarantees that the payload for SparseSwitch contains: // (a) number of entries (may be zero) // (b) sorted key values (entries 0 <= i < N) // (c) target pcs corresponding to the switch values (entries N <= i < 2*N) SwitchTable table(instruction, dex_pc, true); // Value to test against. HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt, dex_pc); uint16_t num_entries = table.GetNumEntries(); for (size_t i = 0; i < num_entries; i++) { BuildSwitchCaseHelper(instruction, i, i == static_cast(num_entries) - 1, table, value, table.GetEntryAt(i), table.GetEntryAt(i + num_entries), dex_pc); } } void HGraphBuilder::BuildSwitchCaseHelper(const Instruction& instruction, size_t index, bool is_last_case, const SwitchTable& table, HInstruction* value, int32_t case_value_int, int32_t target_offset, uint32_t dex_pc) { HBasicBlock* case_target = FindBlockStartingAt(dex_pc + target_offset); DCHECK(case_target != nullptr); PotentiallyAddSuspendCheck(case_target, dex_pc); // The current case's value. HInstruction* this_case_value = graph_->GetIntConstant(case_value_int, dex_pc); // Compare value and this_case_value. HEqual* comparison = new (arena_) HEqual(value, this_case_value, dex_pc); current_block_->AddInstruction(comparison); HInstruction* ifinst = new (arena_) HIf(comparison, dex_pc); current_block_->AddInstruction(ifinst); // Case hit: use the target offset to determine where to go. current_block_->AddSuccessor(case_target); // Case miss: go to the next case (or default fall-through). // When there is a next case, we use the block stored with the table offset representing this // case (that is where we registered them in ComputeBranchTargets). // When there is no next case, we use the following instruction. // TODO: Find a good way to peel the last iteration to avoid conditional, but still have re-use. if (!is_last_case) { HBasicBlock* next_case_target = FindBlockStartingAt(table.GetDexPcForIndex(index)); DCHECK(next_case_target != nullptr); current_block_->AddSuccessor(next_case_target); // Need to manually add the block, as there is no dex-pc transition for the cases. graph_->AddBlock(next_case_target); current_block_ = next_case_target; } else { HBasicBlock* default_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits()); DCHECK(default_target != nullptr); current_block_->AddSuccessor(default_target); current_block_ = nullptr; } } void HGraphBuilder::PotentiallyAddSuspendCheck(HBasicBlock* target, uint32_t dex_pc) { int32_t target_offset = target->GetDexPc() - dex_pc; if (target_offset <= 0) { // DX generates back edges to the first encountered return. We can save // time of later passes by not adding redundant suspend checks. HInstruction* last_in_target = target->GetLastInstruction(); if (last_in_target != nullptr && (last_in_target->IsReturn() || last_in_target->IsReturnVoid())) { return; } // Add a suspend check to backward branches which may potentially loop. We // can remove them after we recognize loops in the graph. current_block_->AddInstruction(new (arena_) HSuspendCheck(dex_pc)); } } bool HGraphBuilder::CanDecodeQuickenedInfo() const { return interpreter_metadata_ != nullptr; } uint16_t HGraphBuilder::LookupQuickenedInfo(uint32_t dex_pc) { DCHECK(interpreter_metadata_ != nullptr); uint32_t dex_pc_in_map = DecodeUnsignedLeb128(&interpreter_metadata_); DCHECK_EQ(dex_pc, dex_pc_in_map); return DecodeUnsignedLeb128(&interpreter_metadata_); } bool HGraphBuilder::AnalyzeDexInstruction(const Instruction& instruction, uint32_t dex_pc) { if (current_block_ == nullptr) { return true; // Dead code } switch (instruction.Opcode()) { case Instruction::CONST_4: { int32_t register_index = instruction.VRegA(); HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc); UpdateLocal(register_index, constant, dex_pc); break; } case Instruction::CONST_16: { int32_t register_index = instruction.VRegA(); HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc); UpdateLocal(register_index, constant, dex_pc); break; } case Instruction::CONST: { int32_t register_index = instruction.VRegA(); HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc); UpdateLocal(register_index, constant, dex_pc); break; } case Instruction::CONST_HIGH16: { int32_t register_index = instruction.VRegA(); HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc); UpdateLocal(register_index, constant, dex_pc); break; } case Instruction::CONST_WIDE_16: { int32_t register_index = instruction.VRegA(); // Get 16 bits of constant value, sign extended to 64 bits. int64_t value = instruction.VRegB_21s(); value <<= 48; value >>= 48; HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); UpdateLocal(register_index, constant, dex_pc); break; } case Instruction::CONST_WIDE_32: { int32_t register_index = instruction.VRegA(); // Get 32 bits of constant value, sign extended to 64 bits. int64_t value = instruction.VRegB_31i(); value <<= 32; value >>= 32; HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); UpdateLocal(register_index, constant, dex_pc); break; } case Instruction::CONST_WIDE: { int32_t register_index = instruction.VRegA(); HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc); UpdateLocal(register_index, constant, dex_pc); break; } case Instruction::CONST_WIDE_HIGH16: { int32_t register_index = instruction.VRegA(); int64_t value = static_cast(instruction.VRegB_21h()) << 48; HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); UpdateLocal(register_index, constant, dex_pc); break; } // Note that the SSA building will refine the types. case Instruction::MOVE: case Instruction::MOVE_FROM16: case Instruction::MOVE_16: { HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc); UpdateLocal(instruction.VRegA(), value, dex_pc); break; } // Note that the SSA building will refine the types. case Instruction::MOVE_WIDE: case Instruction::MOVE_WIDE_FROM16: case Instruction::MOVE_WIDE_16: { HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimLong, dex_pc); UpdateLocal(instruction.VRegA(), value, dex_pc); break; } case Instruction::MOVE_OBJECT: case Instruction::MOVE_OBJECT_16: case Instruction::MOVE_OBJECT_FROM16: { HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimNot, dex_pc); UpdateLocal(instruction.VRegA(), value, dex_pc); break; } case Instruction::RETURN_VOID_NO_BARRIER: case Instruction::RETURN_VOID: { BuildReturn(instruction, Primitive::kPrimVoid, dex_pc); break; } #define IF_XX(comparison, cond) \ case Instruction::IF_##cond: If_22t(instruction, dex_pc); break; \ case Instruction::IF_##cond##Z: If_21t(instruction, dex_pc); break IF_XX(HEqual, EQ); IF_XX(HNotEqual, NE); IF_XX(HLessThan, LT); IF_XX(HLessThanOrEqual, LE); IF_XX(HGreaterThan, GT); IF_XX(HGreaterThanOrEqual, GE); case Instruction::GOTO: case Instruction::GOTO_16: case Instruction::GOTO_32: { int32_t offset = instruction.GetTargetOffset(); HBasicBlock* target = FindBlockStartingAt(offset + dex_pc); DCHECK(target != nullptr); PotentiallyAddSuspendCheck(target, dex_pc); current_block_->AddInstruction(new (arena_) HGoto(dex_pc)); current_block_->AddSuccessor(target); current_block_ = nullptr; break; } case Instruction::RETURN: { BuildReturn(instruction, return_type_, dex_pc); break; } case Instruction::RETURN_OBJECT: { BuildReturn(instruction, return_type_, dex_pc); break; } case Instruction::RETURN_WIDE: { BuildReturn(instruction, return_type_, dex_pc); break; } case Instruction::INVOKE_DIRECT: case Instruction::INVOKE_INTERFACE: case Instruction::INVOKE_STATIC: case Instruction::INVOKE_SUPER: case Instruction::INVOKE_VIRTUAL: case Instruction::INVOKE_VIRTUAL_QUICK: { uint16_t method_idx; if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_QUICK) { if (!CanDecodeQuickenedInfo()) { return false; } method_idx = LookupQuickenedInfo(dex_pc); } else { method_idx = instruction.VRegB_35c(); } uint32_t number_of_vreg_arguments = instruction.VRegA_35c(); uint32_t args[5]; instruction.GetVarArgs(args); if (!BuildInvoke(instruction, dex_pc, method_idx, number_of_vreg_arguments, false, args, -1)) { return false; } break; } case Instruction::INVOKE_DIRECT_RANGE: case Instruction::INVOKE_INTERFACE_RANGE: case Instruction::INVOKE_STATIC_RANGE: case Instruction::INVOKE_SUPER_RANGE: case Instruction::INVOKE_VIRTUAL_RANGE: case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: { uint16_t method_idx; if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK) { if (!CanDecodeQuickenedInfo()) { return false; } method_idx = LookupQuickenedInfo(dex_pc); } else { method_idx = instruction.VRegB_3rc(); } uint32_t number_of_vreg_arguments = instruction.VRegA_3rc(); uint32_t register_index = instruction.VRegC(); if (!BuildInvoke(instruction, dex_pc, method_idx, number_of_vreg_arguments, true, nullptr, register_index)) { return false; } break; } case Instruction::NEG_INT: { Unop_12x(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::NEG_LONG: { Unop_12x(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::NEG_FLOAT: { Unop_12x(instruction, Primitive::kPrimFloat, dex_pc); break; } case Instruction::NEG_DOUBLE: { Unop_12x(instruction, Primitive::kPrimDouble, dex_pc); break; } case Instruction::NOT_INT: { Unop_12x(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::NOT_LONG: { Unop_12x(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::INT_TO_LONG: { Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimLong, dex_pc); break; } case Instruction::INT_TO_FLOAT: { Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimFloat, dex_pc); break; } case Instruction::INT_TO_DOUBLE: { Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimDouble, dex_pc); break; } case Instruction::LONG_TO_INT: { Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimInt, dex_pc); break; } case Instruction::LONG_TO_FLOAT: { Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimFloat, dex_pc); break; } case Instruction::LONG_TO_DOUBLE: { Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimDouble, dex_pc); break; } case Instruction::FLOAT_TO_INT: { Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimInt, dex_pc); break; } case Instruction::FLOAT_TO_LONG: { Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimLong, dex_pc); break; } case Instruction::FLOAT_TO_DOUBLE: { Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimDouble, dex_pc); break; } case Instruction::DOUBLE_TO_INT: { Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimInt, dex_pc); break; } case Instruction::DOUBLE_TO_LONG: { Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimLong, dex_pc); break; } case Instruction::DOUBLE_TO_FLOAT: { Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimFloat, dex_pc); break; } case Instruction::INT_TO_BYTE: { Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimByte, dex_pc); break; } case Instruction::INT_TO_SHORT: { Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimShort, dex_pc); break; } case Instruction::INT_TO_CHAR: { Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimChar, dex_pc); break; } case Instruction::ADD_INT: { Binop_23x(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::ADD_LONG: { Binop_23x(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::ADD_DOUBLE: { Binop_23x(instruction, Primitive::kPrimDouble, dex_pc); break; } case Instruction::ADD_FLOAT: { Binop_23x(instruction, Primitive::kPrimFloat, dex_pc); break; } case Instruction::SUB_INT: { Binop_23x(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::SUB_LONG: { Binop_23x(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::SUB_FLOAT: { Binop_23x(instruction, Primitive::kPrimFloat, dex_pc); break; } case Instruction::SUB_DOUBLE: { Binop_23x(instruction, Primitive::kPrimDouble, dex_pc); break; } case Instruction::ADD_INT_2ADDR: { Binop_12x(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::MUL_INT: { Binop_23x(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::MUL_LONG: { Binop_23x(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::MUL_FLOAT: { Binop_23x(instruction, Primitive::kPrimFloat, dex_pc); break; } case Instruction::MUL_DOUBLE: { Binop_23x(instruction, Primitive::kPrimDouble, dex_pc); break; } case Instruction::DIV_INT: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), dex_pc, Primitive::kPrimInt, false, true); break; } case Instruction::DIV_LONG: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), dex_pc, Primitive::kPrimLong, false, true); break; } case Instruction::DIV_FLOAT: { Binop_23x(instruction, Primitive::kPrimFloat, dex_pc); break; } case Instruction::DIV_DOUBLE: { Binop_23x(instruction, Primitive::kPrimDouble, dex_pc); break; } case Instruction::REM_INT: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), dex_pc, Primitive::kPrimInt, false, false); break; } case Instruction::REM_LONG: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), dex_pc, Primitive::kPrimLong, false, false); break; } case Instruction::REM_FLOAT: { Binop_23x(instruction, Primitive::kPrimFloat, dex_pc); break; } case Instruction::REM_DOUBLE: { Binop_23x(instruction, Primitive::kPrimDouble, dex_pc); break; } case Instruction::AND_INT: { Binop_23x(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::AND_LONG: { Binop_23x(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::SHL_INT: { Binop_23x_shift(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::SHL_LONG: { Binop_23x_shift(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::SHR_INT: { Binop_23x_shift(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::SHR_LONG: { Binop_23x_shift(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::USHR_INT: { Binop_23x_shift(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::USHR_LONG: { Binop_23x_shift(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::OR_INT: { Binop_23x(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::OR_LONG: { Binop_23x(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::XOR_INT: { Binop_23x(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::XOR_LONG: { Binop_23x(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::ADD_LONG_2ADDR: { Binop_12x(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::ADD_DOUBLE_2ADDR: { Binop_12x(instruction, Primitive::kPrimDouble, dex_pc); break; } case Instruction::ADD_FLOAT_2ADDR: { Binop_12x(instruction, Primitive::kPrimFloat, dex_pc); break; } case Instruction::SUB_INT_2ADDR: { Binop_12x(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::SUB_LONG_2ADDR: { Binop_12x(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::SUB_FLOAT_2ADDR: { Binop_12x(instruction, Primitive::kPrimFloat, dex_pc); break; } case Instruction::SUB_DOUBLE_2ADDR: { Binop_12x(instruction, Primitive::kPrimDouble, dex_pc); break; } case Instruction::MUL_INT_2ADDR: { Binop_12x(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::MUL_LONG_2ADDR: { Binop_12x(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::MUL_FLOAT_2ADDR: { Binop_12x(instruction, Primitive::kPrimFloat, dex_pc); break; } case Instruction::MUL_DOUBLE_2ADDR: { Binop_12x(instruction, Primitive::kPrimDouble, dex_pc); break; } case Instruction::DIV_INT_2ADDR: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), dex_pc, Primitive::kPrimInt, false, true); break; } case Instruction::DIV_LONG_2ADDR: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), dex_pc, Primitive::kPrimLong, false, true); break; } case Instruction::REM_INT_2ADDR: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), dex_pc, Primitive::kPrimInt, false, false); break; } case Instruction::REM_LONG_2ADDR: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), dex_pc, Primitive::kPrimLong, false, false); break; } case Instruction::REM_FLOAT_2ADDR: { Binop_12x(instruction, Primitive::kPrimFloat, dex_pc); break; } case Instruction::REM_DOUBLE_2ADDR: { Binop_12x(instruction, Primitive::kPrimDouble, dex_pc); break; } case Instruction::SHL_INT_2ADDR: { Binop_12x_shift(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::SHL_LONG_2ADDR: { Binop_12x_shift(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::SHR_INT_2ADDR: { Binop_12x_shift(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::SHR_LONG_2ADDR: { Binop_12x_shift(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::USHR_INT_2ADDR: { Binop_12x_shift(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::USHR_LONG_2ADDR: { Binop_12x_shift(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::DIV_FLOAT_2ADDR: { Binop_12x(instruction, Primitive::kPrimFloat, dex_pc); break; } case Instruction::DIV_DOUBLE_2ADDR: { Binop_12x(instruction, Primitive::kPrimDouble, dex_pc); break; } case Instruction::AND_INT_2ADDR: { Binop_12x(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::AND_LONG_2ADDR: { Binop_12x(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::OR_INT_2ADDR: { Binop_12x(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::OR_LONG_2ADDR: { Binop_12x(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::XOR_INT_2ADDR: { Binop_12x(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::XOR_LONG_2ADDR: { Binop_12x(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::ADD_INT_LIT16: { Binop_22s(instruction, false, dex_pc); break; } case Instruction::AND_INT_LIT16: { Binop_22s(instruction, false, dex_pc); break; } case Instruction::OR_INT_LIT16: { Binop_22s(instruction, false, dex_pc); break; } case Instruction::XOR_INT_LIT16: { Binop_22s(instruction, false, dex_pc); break; } case Instruction::RSUB_INT: { Binop_22s(instruction, true, dex_pc); break; } case Instruction::MUL_INT_LIT16: { Binop_22s(instruction, false, dex_pc); break; } case Instruction::ADD_INT_LIT8: { Binop_22b(instruction, false, dex_pc); break; } case Instruction::AND_INT_LIT8: { Binop_22b(instruction, false, dex_pc); break; } case Instruction::OR_INT_LIT8: { Binop_22b(instruction, false, dex_pc); break; } case Instruction::XOR_INT_LIT8: { Binop_22b(instruction, false, dex_pc); break; } case Instruction::RSUB_INT_LIT8: { Binop_22b(instruction, true, dex_pc); break; } case Instruction::MUL_INT_LIT8: { Binop_22b(instruction, false, dex_pc); break; } case Instruction::DIV_INT_LIT16: case Instruction::DIV_INT_LIT8: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), dex_pc, Primitive::kPrimInt, true, true); break; } case Instruction::REM_INT_LIT16: case Instruction::REM_INT_LIT8: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), dex_pc, Primitive::kPrimInt, true, false); break; } case Instruction::SHL_INT_LIT8: { Binop_22b(instruction, false, dex_pc); break; } case Instruction::SHR_INT_LIT8: { Binop_22b(instruction, false, dex_pc); break; } case Instruction::USHR_INT_LIT8: { Binop_22b(instruction, false, dex_pc); break; } case Instruction::NEW_INSTANCE: { if (!BuildNewInstance(instruction.VRegB_21c(), dex_pc)) { return false; } UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc); break; } case Instruction::NEW_ARRAY: { uint16_t type_index = instruction.VRegC_22c(); HInstruction* length = LoadLocal(instruction.VRegB_22c(), Primitive::kPrimInt, dex_pc); bool finalizable; QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index, &finalizable) ? kQuickAllocArrayWithAccessCheck : kQuickAllocArray; current_block_->AddInstruction(new (arena_) HNewArray(length, graph_->GetCurrentMethod(), dex_pc, type_index, *dex_compilation_unit_->GetDexFile(), entrypoint)); UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction(), dex_pc); break; } case Instruction::FILLED_NEW_ARRAY: { uint32_t number_of_vreg_arguments = instruction.VRegA_35c(); uint32_t type_index = instruction.VRegB_35c(); uint32_t args[5]; instruction.GetVarArgs(args); BuildFilledNewArray(dex_pc, type_index, number_of_vreg_arguments, false, args, 0); break; } case Instruction::FILLED_NEW_ARRAY_RANGE: { uint32_t number_of_vreg_arguments = instruction.VRegA_3rc(); uint32_t type_index = instruction.VRegB_3rc(); uint32_t register_index = instruction.VRegC_3rc(); BuildFilledNewArray( dex_pc, type_index, number_of_vreg_arguments, true, nullptr, register_index); break; } case Instruction::FILL_ARRAY_DATA: { BuildFillArrayData(instruction, dex_pc); break; } case Instruction::MOVE_RESULT: case Instruction::MOVE_RESULT_WIDE: case Instruction::MOVE_RESULT_OBJECT: { if (latest_result_ == nullptr) { // Only dead code can lead to this situation, where the verifier // does not reject the method. } else { // An Invoke/FilledNewArray and its MoveResult could have landed in // different blocks if there was a try/catch block boundary between // them. For Invoke, we insert a StoreLocal after the instruction. For // FilledNewArray, the local needs to be updated after the array was // filled, otherwise we might overwrite an input vreg. HStoreLocal* update_local = new (arena_) HStoreLocal(GetLocalAt(instruction.VRegA()), latest_result_, dex_pc); HBasicBlock* block = latest_result_->GetBlock(); if (block == current_block_) { // MoveResult and the previous instruction are in the same block. current_block_->AddInstruction(update_local); } else { // The two instructions are in different blocks. Insert the MoveResult // before the final control-flow instruction of the previous block. DCHECK(block->EndsWithControlFlowInstruction()); DCHECK(current_block_->GetInstructions().IsEmpty()); block->InsertInstructionBefore(update_local, block->GetLastInstruction()); } latest_result_ = nullptr; } break; } case Instruction::CMP_LONG: { Binop_23x_cmp(instruction, Primitive::kPrimLong, ComparisonBias::kNoBias, dex_pc); break; } case Instruction::CMPG_FLOAT: { Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kGtBias, dex_pc); break; } case Instruction::CMPG_DOUBLE: { Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kGtBias, dex_pc); break; } case Instruction::CMPL_FLOAT: { Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kLtBias, dex_pc); break; } case Instruction::CMPL_DOUBLE: { Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kLtBias, dex_pc); break; } case Instruction::NOP: break; case Instruction::IGET: case Instruction::IGET_QUICK: case Instruction::IGET_WIDE: case Instruction::IGET_WIDE_QUICK: case Instruction::IGET_OBJECT: case Instruction::IGET_OBJECT_QUICK: case Instruction::IGET_BOOLEAN: case Instruction::IGET_BOOLEAN_QUICK: case Instruction::IGET_BYTE: case Instruction::IGET_BYTE_QUICK: case Instruction::IGET_CHAR: case Instruction::IGET_CHAR_QUICK: case Instruction::IGET_SHORT: case Instruction::IGET_SHORT_QUICK: { if (!BuildInstanceFieldAccess(instruction, dex_pc, false)) { return false; } break; } case Instruction::IPUT: case Instruction::IPUT_QUICK: case Instruction::IPUT_WIDE: case Instruction::IPUT_WIDE_QUICK: case Instruction::IPUT_OBJECT: case Instruction::IPUT_OBJECT_QUICK: case Instruction::IPUT_BOOLEAN: case Instruction::IPUT_BOOLEAN_QUICK: case Instruction::IPUT_BYTE: case Instruction::IPUT_BYTE_QUICK: case Instruction::IPUT_CHAR: case Instruction::IPUT_CHAR_QUICK: case Instruction::IPUT_SHORT: case Instruction::IPUT_SHORT_QUICK: { if (!BuildInstanceFieldAccess(instruction, dex_pc, true)) { return false; } break; } case Instruction::SGET: case Instruction::SGET_WIDE: case Instruction::SGET_OBJECT: case Instruction::SGET_BOOLEAN: case Instruction::SGET_BYTE: case Instruction::SGET_CHAR: case Instruction::SGET_SHORT: { if (!BuildStaticFieldAccess(instruction, dex_pc, false)) { return false; } break; } case Instruction::SPUT: case Instruction::SPUT_WIDE: case Instruction::SPUT_OBJECT: case Instruction::SPUT_BOOLEAN: case Instruction::SPUT_BYTE: case Instruction::SPUT_CHAR: case Instruction::SPUT_SHORT: { if (!BuildStaticFieldAccess(instruction, dex_pc, true)) { return false; } break; } #define ARRAY_XX(kind, anticipated_type) \ case Instruction::AGET##kind: { \ BuildArrayAccess(instruction, dex_pc, false, anticipated_type); \ break; \ } \ case Instruction::APUT##kind: { \ BuildArrayAccess(instruction, dex_pc, true, anticipated_type); \ break; \ } ARRAY_XX(, Primitive::kPrimInt); ARRAY_XX(_WIDE, Primitive::kPrimLong); ARRAY_XX(_OBJECT, Primitive::kPrimNot); ARRAY_XX(_BOOLEAN, Primitive::kPrimBoolean); ARRAY_XX(_BYTE, Primitive::kPrimByte); ARRAY_XX(_CHAR, Primitive::kPrimChar); ARRAY_XX(_SHORT, Primitive::kPrimShort); case Instruction::ARRAY_LENGTH: { HInstruction* object = LoadLocal(instruction.VRegB_12x(), Primitive::kPrimNot, dex_pc); object = new (arena_) HNullCheck(object, dex_pc); current_block_->AddInstruction(object); current_block_->AddInstruction(new (arena_) HArrayLength(object, dex_pc)); UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction(), dex_pc); break; } case Instruction::CONST_STRING: { uint32_t string_index = instruction.VRegB_21c(); bool in_dex_cache = compiler_driver_->CanAssumeStringIsPresentInDexCache( *dex_file_, string_index); current_block_->AddInstruction( new (arena_) HLoadString(graph_->GetCurrentMethod(), string_index, dex_pc, in_dex_cache)); UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction(), dex_pc); break; } case Instruction::CONST_STRING_JUMBO: { uint32_t string_index = instruction.VRegB_31c(); bool in_dex_cache = compiler_driver_->CanAssumeStringIsPresentInDexCache( *dex_file_, string_index); current_block_->AddInstruction( new (arena_) HLoadString(graph_->GetCurrentMethod(), string_index, dex_pc, in_dex_cache)); UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction(), dex_pc); break; } case Instruction::CONST_CLASS: { uint16_t type_index = instruction.VRegB_21c(); bool type_known_final; bool type_known_abstract; bool dont_use_is_referrers_class; // `CanAccessTypeWithoutChecks` will tell whether the method being // built is trying to access its own class, so that the generated // code can optimize for this case. However, the optimization does not // work for inlining, so we use `IsOutermostCompilingClass` instead. bool can_access = compiler_driver_->CanAccessTypeWithoutChecks( dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index, &type_known_final, &type_known_abstract, &dont_use_is_referrers_class); current_block_->AddInstruction(new (arena_) HLoadClass( graph_->GetCurrentMethod(), type_index, *dex_file_, IsOutermostCompilingClass(type_index), dex_pc, !can_access, compiler_driver_->CanAssumeTypeIsPresentInDexCache(*dex_file_, type_index))); UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction(), dex_pc); break; } case Instruction::MOVE_EXCEPTION: { current_block_->AddInstruction(new (arena_) HLoadException(dex_pc)); UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction(), dex_pc); current_block_->AddInstruction(new (arena_) HClearException(dex_pc)); break; } case Instruction::THROW: { HInstruction* exception = LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot, dex_pc); current_block_->AddInstruction(new (arena_) HThrow(exception, dex_pc)); // A throw instruction must branch to the exit block. current_block_->AddSuccessor(exit_block_); // We finished building this block. Set the current block to null to avoid // adding dead instructions to it. current_block_ = nullptr; break; } case Instruction::INSTANCE_OF: { uint8_t destination = instruction.VRegA_22c(); uint8_t reference = instruction.VRegB_22c(); uint16_t type_index = instruction.VRegC_22c(); BuildTypeCheck(instruction, destination, reference, type_index, dex_pc); break; } case Instruction::CHECK_CAST: { uint8_t reference = instruction.VRegA_21c(); uint16_t type_index = instruction.VRegB_21c(); BuildTypeCheck(instruction, -1, reference, type_index, dex_pc); break; } case Instruction::MONITOR_ENTER: { current_block_->AddInstruction(new (arena_) HMonitorOperation( LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot, dex_pc), HMonitorOperation::OperationKind::kEnter, dex_pc)); break; } case Instruction::MONITOR_EXIT: { current_block_->AddInstruction(new (arena_) HMonitorOperation( LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot, dex_pc), HMonitorOperation::OperationKind::kExit, dex_pc)); break; } case Instruction::PACKED_SWITCH: { BuildPackedSwitch(instruction, dex_pc); break; } case Instruction::SPARSE_SWITCH: { BuildSparseSwitch(instruction, dex_pc); break; } default: VLOG(compiler) << "Did not compile " << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_) << " because of unhandled instruction " << instruction.Name(); MaybeRecordStat(MethodCompilationStat::kNotCompiledUnhandledInstruction); return false; } return true; } // NOLINT(readability/fn_size) HLocal* HGraphBuilder::GetLocalAt(uint32_t register_index) const { return locals_[register_index]; } void HGraphBuilder::UpdateLocal(uint32_t register_index, HInstruction* instruction, uint32_t dex_pc) const { HLocal* local = GetLocalAt(register_index); current_block_->AddInstruction(new (arena_) HStoreLocal(local, instruction, dex_pc)); } HInstruction* HGraphBuilder::LoadLocal(uint32_t register_index, Primitive::Type type, uint32_t dex_pc) const { HLocal* local = GetLocalAt(register_index); current_block_->AddInstruction(new (arena_) HLoadLocal(local, type, dex_pc)); return current_block_->GetLastInstruction(); } } // namespace art