summaryrefslogtreecommitdiff
path: root/libartbase/base/memory_region.h
diff options
context:
space:
mode:
Diffstat (limited to 'libartbase/base/memory_region.h')
-rw-r--r--libartbase/base/memory_region.h224
1 files changed, 224 insertions, 0 deletions
diff --git a/libartbase/base/memory_region.h b/libartbase/base/memory_region.h
new file mode 100644
index 00000000000..7add466cc7a
--- /dev/null
+++ b/libartbase/base/memory_region.h
@@ -0,0 +1,224 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_LIBARTBASE_BASE_MEMORY_REGION_H_
+#define ART_LIBARTBASE_BASE_MEMORY_REGION_H_
+
+#include <stdint.h>
+#include <type_traits>
+
+#include <android-base/logging.h>
+
+#include "base/bit_utils.h"
+#include "base/casts.h"
+#include "base/enums.h"
+#include "base/macros.h"
+#include "base/value_object.h"
+#include "globals.h"
+
+namespace art {
+
+// Memory regions are useful for accessing memory with bounds check in
+// debug mode. They can be safely passed by value and do not assume ownership
+// of the region.
+class MemoryRegion FINAL : public ValueObject {
+ public:
+ struct ContentEquals {
+ constexpr bool operator()(const MemoryRegion& lhs, const MemoryRegion& rhs) const {
+ return lhs.size() == rhs.size() && memcmp(lhs.begin(), rhs.begin(), lhs.size()) == 0;
+ }
+ };
+
+ MemoryRegion() : pointer_(nullptr), size_(0) {}
+ MemoryRegion(void* pointer_in, uintptr_t size_in) : pointer_(pointer_in), size_(size_in) {}
+
+ void* pointer() const { return pointer_; }
+ size_t size() const { return size_; }
+ size_t size_in_bits() const { return size_ * kBitsPerByte; }
+
+ static size_t pointer_offset() {
+ return OFFSETOF_MEMBER(MemoryRegion, pointer_);
+ }
+
+ uint8_t* begin() const { return reinterpret_cast<uint8_t*>(pointer_); }
+ uint8_t* end() const { return begin() + size_; }
+
+ // Load value of type `T` at `offset`. The memory address corresponding
+ // to `offset` should be word-aligned (on ARM, this is a requirement).
+ template<typename T>
+ ALWAYS_INLINE T Load(uintptr_t offset) const {
+ T* address = ComputeInternalPointer<T>(offset);
+ DCHECK(IsWordAligned(address));
+ return *address;
+ }
+
+ // Store `value` (of type `T`) at `offset`. The memory address
+ // corresponding to `offset` should be word-aligned (on ARM, this is
+ // a requirement).
+ template<typename T>
+ ALWAYS_INLINE void Store(uintptr_t offset, T value) const {
+ T* address = ComputeInternalPointer<T>(offset);
+ DCHECK(IsWordAligned(address));
+ *address = value;
+ }
+
+ // Load value of type `T` at `offset`. The memory address corresponding
+ // to `offset` does not need to be word-aligned.
+ template<typename T>
+ ALWAYS_INLINE T LoadUnaligned(uintptr_t offset) const {
+ // Equivalent unsigned integer type corresponding to T.
+ typedef typename std::make_unsigned<T>::type U;
+ U equivalent_unsigned_integer_value = 0;
+ // Read the value byte by byte in a little-endian fashion.
+ for (size_t i = 0; i < sizeof(U); ++i) {
+ equivalent_unsigned_integer_value +=
+ *ComputeInternalPointer<uint8_t>(offset + i) << (i * kBitsPerByte);
+ }
+ return bit_cast<T, U>(equivalent_unsigned_integer_value);
+ }
+
+ // Store `value` (of type `T`) at `offset`. The memory address
+ // corresponding to `offset` does not need to be word-aligned.
+ template<typename T>
+ ALWAYS_INLINE void StoreUnaligned(uintptr_t offset, T value) const {
+ // Equivalent unsigned integer type corresponding to T.
+ typedef typename std::make_unsigned<T>::type U;
+ U equivalent_unsigned_integer_value = bit_cast<U, T>(value);
+ // Write the value byte by byte in a little-endian fashion.
+ for (size_t i = 0; i < sizeof(U); ++i) {
+ *ComputeInternalPointer<uint8_t>(offset + i) =
+ (equivalent_unsigned_integer_value >> (i * kBitsPerByte)) & 0xFF;
+ }
+ }
+
+ template<typename T>
+ ALWAYS_INLINE T* PointerTo(uintptr_t offset) const {
+ return ComputeInternalPointer<T>(offset);
+ }
+
+ // Load a single bit in the region. The bit at offset 0 is the least
+ // significant bit in the first byte.
+ ALWAYS_INLINE bool LoadBit(uintptr_t bit_offset) const {
+ uint8_t bit_mask;
+ uint8_t byte = *ComputeBitPointer(bit_offset, &bit_mask);
+ return byte & bit_mask;
+ }
+
+ ALWAYS_INLINE void StoreBit(uintptr_t bit_offset, bool value) const {
+ uint8_t bit_mask;
+ uint8_t* byte = ComputeBitPointer(bit_offset, &bit_mask);
+ if (value) {
+ *byte |= bit_mask;
+ } else {
+ *byte &= ~bit_mask;
+ }
+ }
+
+ // Load `length` bits from the region starting at bit offset `bit_offset`.
+ // The bit at the smallest offset is the least significant bit in the
+ // loaded value. `length` must not be larger than the number of bits
+ // contained in the return value (32).
+ ALWAYS_INLINE uint32_t LoadBits(uintptr_t bit_offset, size_t length) const {
+ DCHECK_LE(length, BitSizeOf<uint32_t>());
+ DCHECK_LE(bit_offset + length, size_in_bits());
+ if (UNLIKELY(length == 0)) {
+ // Do not touch any memory if the range is empty.
+ return 0;
+ }
+ const uint8_t* address = begin() + bit_offset / kBitsPerByte;
+ const uint32_t shift = bit_offset & (kBitsPerByte - 1);
+ // Load the value (reading only the strictly needed bytes).
+ const uint32_t load_bit_count = shift + length;
+ uint32_t value = address[0] >> shift;
+ if (load_bit_count > 8) {
+ value |= static_cast<uint32_t>(address[1]) << (8 - shift);
+ if (load_bit_count > 16) {
+ value |= static_cast<uint32_t>(address[2]) << (16 - shift);
+ if (load_bit_count > 24) {
+ value |= static_cast<uint32_t>(address[3]) << (24 - shift);
+ if (load_bit_count > 32) {
+ value |= static_cast<uint32_t>(address[4]) << (32 - shift);
+ }
+ }
+ }
+ }
+ // Clear unwanted most significant bits.
+ uint32_t clear_bit_count = BitSizeOf(value) - length;
+ value = (value << clear_bit_count) >> clear_bit_count;
+ for (size_t i = 0; i < length; ++i) {
+ DCHECK_EQ((value >> i) & 1, LoadBit(bit_offset + i));
+ }
+ return value;
+ }
+
+ // Store `value` on `length` bits in the region starting at bit offset
+ // `bit_offset`. The bit at the smallest offset is the least significant
+ // bit of the stored `value`. `value` must not be larger than `length`
+ // bits.
+ void StoreBits(uintptr_t bit_offset, uint32_t value, size_t length);
+
+ void CopyFrom(size_t offset, const MemoryRegion& from) const;
+
+ template<class Vector>
+ void CopyFromVector(size_t offset, Vector& vector) const {
+ if (!vector.empty()) {
+ CopyFrom(offset, MemoryRegion(vector.data(), vector.size()));
+ }
+ }
+
+ // Compute a sub memory region based on an existing one.
+ ALWAYS_INLINE MemoryRegion Subregion(uintptr_t offset, uintptr_t size_in) const {
+ CHECK_GE(this->size(), size_in);
+ CHECK_LE(offset, this->size() - size_in);
+ return MemoryRegion(reinterpret_cast<void*>(begin() + offset), size_in);
+ }
+
+ // Compute an extended memory region based on an existing one.
+ ALWAYS_INLINE void Extend(const MemoryRegion& region, uintptr_t extra) {
+ pointer_ = region.pointer();
+ size_ = (region.size() + extra);
+ }
+
+ private:
+ template<typename T>
+ ALWAYS_INLINE T* ComputeInternalPointer(size_t offset) const {
+ CHECK_GE(size(), sizeof(T));
+ CHECK_LE(offset, size() - sizeof(T));
+ return reinterpret_cast<T*>(begin() + offset);
+ }
+
+ // Locate the bit with the given offset. Returns a pointer to the byte
+ // containing the bit, and sets bit_mask to the bit within that byte.
+ ALWAYS_INLINE uint8_t* ComputeBitPointer(uintptr_t bit_offset, uint8_t* bit_mask) const {
+ uintptr_t bit_remainder = (bit_offset & (kBitsPerByte - 1));
+ *bit_mask = (1U << bit_remainder);
+ uintptr_t byte_offset = (bit_offset >> kBitsPerByteLog2);
+ return ComputeInternalPointer<uint8_t>(byte_offset);
+ }
+
+ // Is `address` aligned on a machine word?
+ template<typename T> static constexpr bool IsWordAligned(const T* address) {
+ // Word alignment in bytes. Determined from pointer size.
+ return IsAligned<kRuntimePointerSize>(address);
+ }
+
+ void* pointer_;
+ size_t size_;
+};
+
+} // namespace art
+
+#endif // ART_LIBARTBASE_BASE_MEMORY_REGION_H_