summaryrefslogtreecommitdiff
path: root/libartbase/base/mem_map.cc
diff options
context:
space:
mode:
Diffstat (limited to 'libartbase/base/mem_map.cc')
-rw-r--r--libartbase/base/mem_map.cc1158
1 files changed, 1158 insertions, 0 deletions
diff --git a/libartbase/base/mem_map.cc b/libartbase/base/mem_map.cc
new file mode 100644
index 00000000000..21634f86b69
--- /dev/null
+++ b/libartbase/base/mem_map.cc
@@ -0,0 +1,1158 @@
+/*
+ * Copyright (C) 2008 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "mem_map.h"
+
+#include <inttypes.h>
+#include <stdlib.h>
+#include <sys/mman.h> // For the PROT_* and MAP_* constants.
+#ifndef ANDROID_OS
+#include <sys/resource.h>
+#endif
+
+#include <map>
+#include <memory>
+#include <sstream>
+
+#include "android-base/stringprintf.h"
+#include "android-base/unique_fd.h"
+#include "backtrace/BacktraceMap.h"
+#include "cutils/ashmem.h"
+
+#include "base/allocator.h"
+#include "base/bit_utils.h"
+#include "base/globals.h"
+#include "base/logging.h" // For VLOG_IS_ON.
+#include "base/memory_tool.h"
+#include "base/utils.h"
+
+#ifndef MAP_ANONYMOUS
+#define MAP_ANONYMOUS MAP_ANON
+#endif
+
+namespace art {
+
+using android::base::StringPrintf;
+using android::base::unique_fd;
+
+template<class Key, class T, AllocatorTag kTag, class Compare = std::less<Key>>
+using AllocationTrackingMultiMap =
+ std::multimap<Key, T, Compare, TrackingAllocator<std::pair<const Key, T>, kTag>>;
+
+using Maps = AllocationTrackingMultiMap<void*, MemMap*, kAllocatorTagMaps>;
+
+// All the non-empty MemMaps. Use a multimap as we do a reserve-and-divide (eg ElfMap::Load()).
+static Maps* gMaps GUARDED_BY(MemMap::GetMemMapsLock()) = nullptr;
+
+static std::ostream& operator<<(
+ std::ostream& os,
+ std::pair<BacktraceMap::iterator, BacktraceMap::iterator> iters) {
+ for (BacktraceMap::iterator it = iters.first; it != iters.second; ++it) {
+ const backtrace_map_t* entry = *it;
+ os << StringPrintf("0x%08x-0x%08x %c%c%c %s\n",
+ static_cast<uint32_t>(entry->start),
+ static_cast<uint32_t>(entry->end),
+ (entry->flags & PROT_READ) ? 'r' : '-',
+ (entry->flags & PROT_WRITE) ? 'w' : '-',
+ (entry->flags & PROT_EXEC) ? 'x' : '-', entry->name.c_str());
+ }
+ return os;
+}
+
+std::ostream& operator<<(std::ostream& os, const Maps& mem_maps) {
+ os << "MemMap:" << std::endl;
+ for (auto it = mem_maps.begin(); it != mem_maps.end(); ++it) {
+ void* base = it->first;
+ MemMap* map = it->second;
+ CHECK_EQ(base, map->BaseBegin());
+ os << *map << std::endl;
+ }
+ return os;
+}
+
+std::mutex* MemMap::mem_maps_lock_ = nullptr;
+
+#if USE_ART_LOW_4G_ALLOCATOR
+// Handling mem_map in 32b address range for 64b architectures that do not support MAP_32BIT.
+
+// The regular start of memory allocations. The first 64KB is protected by SELinux.
+static constexpr uintptr_t LOW_MEM_START = 64 * KB;
+
+// Generate random starting position.
+// To not interfere with image position, take the image's address and only place it below. Current
+// formula (sketch):
+//
+// ART_BASE_ADDR = 0001XXXXXXXXXXXXXXX
+// ----------------------------------------
+// = 0000111111111111111
+// & ~(kPageSize - 1) =~0000000000000001111
+// ----------------------------------------
+// mask = 0000111111111110000
+// & random data = YYYYYYYYYYYYYYYYYYY
+// -----------------------------------
+// tmp = 0000YYYYYYYYYYY0000
+// + LOW_MEM_START = 0000000000001000000
+// --------------------------------------
+// start
+//
+// arc4random as an entropy source is exposed in Bionic, but not in glibc. When we
+// do not have Bionic, simply start with LOW_MEM_START.
+
+// Function is standalone so it can be tested somewhat in mem_map_test.cc.
+#ifdef __BIONIC__
+uintptr_t CreateStartPos(uint64_t input) {
+ CHECK_NE(0, ART_BASE_ADDRESS);
+
+ // Start with all bits below highest bit in ART_BASE_ADDRESS.
+ constexpr size_t leading_zeros = CLZ(static_cast<uint32_t>(ART_BASE_ADDRESS));
+ constexpr uintptr_t mask_ones = (1 << (31 - leading_zeros)) - 1;
+
+ // Lowest (usually 12) bits are not used, as aligned by page size.
+ constexpr uintptr_t mask = mask_ones & ~(kPageSize - 1);
+
+ // Mask input data.
+ return (input & mask) + LOW_MEM_START;
+}
+#endif
+
+static uintptr_t GenerateNextMemPos() {
+#ifdef __BIONIC__
+ uint64_t random_data;
+ arc4random_buf(&random_data, sizeof(random_data));
+ return CreateStartPos(random_data);
+#else
+ // No arc4random on host, see above.
+ return LOW_MEM_START;
+#endif
+}
+
+// Initialize linear scan to random position.
+uintptr_t MemMap::next_mem_pos_ = GenerateNextMemPos();
+#endif
+
+// Return true if the address range is contained in a single memory map by either reading
+// the gMaps variable or the /proc/self/map entry.
+bool MemMap::ContainedWithinExistingMap(uint8_t* ptr, size_t size, std::string* error_msg) {
+ uintptr_t begin = reinterpret_cast<uintptr_t>(ptr);
+ uintptr_t end = begin + size;
+
+ // There is a suspicion that BacktraceMap::Create is occasionally missing maps. TODO: Investigate
+ // further.
+ {
+ std::lock_guard<std::mutex> mu(*mem_maps_lock_);
+ for (auto& pair : *gMaps) {
+ MemMap* const map = pair.second;
+ if (begin >= reinterpret_cast<uintptr_t>(map->Begin()) &&
+ end <= reinterpret_cast<uintptr_t>(map->End())) {
+ return true;
+ }
+ }
+ }
+
+ std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(getpid(), true));
+ if (map == nullptr) {
+ if (error_msg != nullptr) {
+ *error_msg = StringPrintf("Failed to build process map");
+ }
+ return false;
+ }
+
+ ScopedBacktraceMapIteratorLock lock(map.get());
+ for (BacktraceMap::iterator it = map->begin(); it != map->end(); ++it) {
+ const backtrace_map_t* entry = *it;
+ if ((begin >= entry->start && begin < entry->end) // start of new within old
+ && (end > entry->start && end <= entry->end)) { // end of new within old
+ return true;
+ }
+ }
+ if (error_msg != nullptr) {
+ PrintFileToLog("/proc/self/maps", LogSeverity::ERROR);
+ *error_msg = StringPrintf("Requested region 0x%08" PRIxPTR "-0x%08" PRIxPTR " does not overlap "
+ "any existing map. See process maps in the log.", begin, end);
+ }
+ return false;
+}
+
+// Return true if the address range does not conflict with any /proc/self/maps entry.
+static bool CheckNonOverlapping(uintptr_t begin,
+ uintptr_t end,
+ std::string* error_msg) {
+ std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(getpid(), true));
+ if (map.get() == nullptr) {
+ *error_msg = StringPrintf("Failed to build process map");
+ return false;
+ }
+ ScopedBacktraceMapIteratorLock lock(map.get());
+ for (BacktraceMap::iterator it = map->begin(); it != map->end(); ++it) {
+ const backtrace_map_t* entry = *it;
+ if ((begin >= entry->start && begin < entry->end) // start of new within old
+ || (end > entry->start && end < entry->end) // end of new within old
+ || (begin <= entry->start && end > entry->end)) { // start/end of new includes all of old
+ std::ostringstream map_info;
+ map_info << std::make_pair(it, map->end());
+ *error_msg = StringPrintf("Requested region 0x%08" PRIxPTR "-0x%08" PRIxPTR " overlaps with "
+ "existing map 0x%08" PRIxPTR "-0x%08" PRIxPTR " (%s)\n%s",
+ begin, end,
+ static_cast<uintptr_t>(entry->start),
+ static_cast<uintptr_t>(entry->end),
+ entry->name.c_str(),
+ map_info.str().c_str());
+ return false;
+ }
+ }
+ return true;
+}
+
+// CheckMapRequest to validate a non-MAP_FAILED mmap result based on
+// the expected value, calling munmap if validation fails, giving the
+// reason in error_msg.
+//
+// If the expected_ptr is null, nothing is checked beyond the fact
+// that the actual_ptr is not MAP_FAILED. However, if expected_ptr is
+// non-null, we check that pointer is the actual_ptr == expected_ptr,
+// and if not, report in error_msg what the conflict mapping was if
+// found, or a generic error in other cases.
+static bool CheckMapRequest(uint8_t* expected_ptr, void* actual_ptr, size_t byte_count,
+ std::string* error_msg) {
+ // Handled first by caller for more specific error messages.
+ CHECK(actual_ptr != MAP_FAILED);
+
+ if (expected_ptr == nullptr) {
+ return true;
+ }
+
+ uintptr_t actual = reinterpret_cast<uintptr_t>(actual_ptr);
+ uintptr_t expected = reinterpret_cast<uintptr_t>(expected_ptr);
+ uintptr_t limit = expected + byte_count;
+
+ if (expected_ptr == actual_ptr) {
+ return true;
+ }
+
+ // We asked for an address but didn't get what we wanted, all paths below here should fail.
+ int result = munmap(actual_ptr, byte_count);
+ if (result == -1) {
+ PLOG(WARNING) << StringPrintf("munmap(%p, %zd) failed", actual_ptr, byte_count);
+ }
+
+ if (error_msg != nullptr) {
+ // We call this here so that we can try and generate a full error
+ // message with the overlapping mapping. There's no guarantee that
+ // that there will be an overlap though, since
+ // - The kernel is not *required* to honor expected_ptr unless MAP_FIXED is
+ // true, even if there is no overlap
+ // - There might have been an overlap at the point of mmap, but the
+ // overlapping region has since been unmapped.
+ std::string error_detail;
+ CheckNonOverlapping(expected, limit, &error_detail);
+ std::ostringstream os;
+ os << StringPrintf("Failed to mmap at expected address, mapped at "
+ "0x%08" PRIxPTR " instead of 0x%08" PRIxPTR,
+ actual, expected);
+ if (!error_detail.empty()) {
+ os << " : " << error_detail;
+ }
+ *error_msg = os.str();
+ }
+ return false;
+}
+
+#if USE_ART_LOW_4G_ALLOCATOR
+static inline void* TryMemMapLow4GB(void* ptr,
+ size_t page_aligned_byte_count,
+ int prot,
+ int flags,
+ int fd,
+ off_t offset) {
+ void* actual = mmap(ptr, page_aligned_byte_count, prot, flags, fd, offset);
+ if (actual != MAP_FAILED) {
+ // Since we didn't use MAP_FIXED the kernel may have mapped it somewhere not in the low
+ // 4GB. If this is the case, unmap and retry.
+ if (reinterpret_cast<uintptr_t>(actual) + page_aligned_byte_count >= 4 * GB) {
+ munmap(actual, page_aligned_byte_count);
+ actual = MAP_FAILED;
+ }
+ }
+ return actual;
+}
+#endif
+
+MemMap* MemMap::MapAnonymous(const char* name,
+ uint8_t* expected_ptr,
+ size_t byte_count,
+ int prot,
+ bool low_4gb,
+ bool reuse,
+ std::string* error_msg,
+ bool use_ashmem) {
+#ifndef __LP64__
+ UNUSED(low_4gb);
+#endif
+ use_ashmem = use_ashmem && !kIsTargetLinux;
+ if (byte_count == 0) {
+ return new MemMap(name, nullptr, 0, nullptr, 0, prot, false);
+ }
+ size_t page_aligned_byte_count = RoundUp(byte_count, kPageSize);
+
+ int flags = MAP_PRIVATE | MAP_ANONYMOUS;
+ if (reuse) {
+ // reuse means it is okay that it overlaps an existing page mapping.
+ // Only use this if you actually made the page reservation yourself.
+ CHECK(expected_ptr != nullptr);
+
+ DCHECK(ContainedWithinExistingMap(expected_ptr, byte_count, error_msg)) << *error_msg;
+ flags |= MAP_FIXED;
+ }
+
+ if (use_ashmem) {
+ if (!kIsTargetBuild) {
+ // When not on Android (either host or assuming a linux target) ashmem is faked using
+ // files in /tmp. Ensure that such files won't fail due to ulimit restrictions. If they
+ // will then use a regular mmap.
+ struct rlimit rlimit_fsize;
+ CHECK_EQ(getrlimit(RLIMIT_FSIZE, &rlimit_fsize), 0);
+ use_ashmem = (rlimit_fsize.rlim_cur == RLIM_INFINITY) ||
+ (page_aligned_byte_count < rlimit_fsize.rlim_cur);
+ }
+ }
+
+ unique_fd fd;
+
+
+ if (use_ashmem) {
+ // android_os_Debug.cpp read_mapinfo assumes all ashmem regions associated with the VM are
+ // prefixed "dalvik-".
+ std::string debug_friendly_name("dalvik-");
+ debug_friendly_name += name;
+ fd.reset(ashmem_create_region(debug_friendly_name.c_str(), page_aligned_byte_count));
+
+ if (fd.get() == -1) {
+ // We failed to create the ashmem region. Print a warning, but continue
+ // anyway by creating a true anonymous mmap with an fd of -1. It is
+ // better to use an unlabelled anonymous map than to fail to create a
+ // map at all.
+ PLOG(WARNING) << "ashmem_create_region failed for '" << name << "'";
+ } else {
+ // We succeeded in creating the ashmem region. Use the created ashmem
+ // region as backing for the mmap.
+ flags &= ~MAP_ANONYMOUS;
+ }
+ }
+
+ // We need to store and potentially set an error number for pretty printing of errors
+ int saved_errno = 0;
+
+ void* actual = MapInternal(expected_ptr,
+ page_aligned_byte_count,
+ prot,
+ flags,
+ fd.get(),
+ 0,
+ low_4gb);
+ saved_errno = errno;
+
+ if (actual == MAP_FAILED) {
+ if (error_msg != nullptr) {
+ if (kIsDebugBuild || VLOG_IS_ON(oat)) {
+ PrintFileToLog("/proc/self/maps", LogSeverity::WARNING);
+ }
+
+ *error_msg = StringPrintf("Failed anonymous mmap(%p, %zd, 0x%x, 0x%x, %d, 0): %s. "
+ "See process maps in the log.",
+ expected_ptr,
+ page_aligned_byte_count,
+ prot,
+ flags,
+ fd.get(),
+ strerror(saved_errno));
+ }
+ return nullptr;
+ }
+ if (!CheckMapRequest(expected_ptr, actual, page_aligned_byte_count, error_msg)) {
+ return nullptr;
+ }
+ return new MemMap(name, reinterpret_cast<uint8_t*>(actual), byte_count, actual,
+ page_aligned_byte_count, prot, reuse);
+}
+
+MemMap* MemMap::MapDummy(const char* name, uint8_t* addr, size_t byte_count) {
+ if (byte_count == 0) {
+ return new MemMap(name, nullptr, 0, nullptr, 0, 0, false);
+ }
+ const size_t page_aligned_byte_count = RoundUp(byte_count, kPageSize);
+ return new MemMap(name, addr, byte_count, addr, page_aligned_byte_count, 0, true /* reuse */);
+}
+
+template<typename A, typename B>
+static ptrdiff_t PointerDiff(A* a, B* b) {
+ return static_cast<ptrdiff_t>(reinterpret_cast<intptr_t>(a) - reinterpret_cast<intptr_t>(b));
+}
+
+bool MemMap::ReplaceWith(MemMap** source_ptr, /*out*/std::string* error) {
+#if !HAVE_MREMAP_SYSCALL
+ UNUSED(source_ptr);
+ *error = "Cannot perform atomic replace because we are missing the required mremap syscall";
+ return false;
+#else // !HAVE_MREMAP_SYSCALL
+ CHECK(source_ptr != nullptr);
+ CHECK(*source_ptr != nullptr);
+ if (!MemMap::kCanReplaceMapping) {
+ *error = "Unable to perform atomic replace due to runtime environment!";
+ return false;
+ }
+ MemMap* source = *source_ptr;
+ // neither can be reuse.
+ if (source->reuse_ || reuse_) {
+ *error = "One or both mappings is not a real mmap!";
+ return false;
+ }
+ // TODO Support redzones.
+ if (source->redzone_size_ != 0 || redzone_size_ != 0) {
+ *error = "source and dest have different redzone sizes";
+ return false;
+ }
+ // Make sure they have the same offset from the actual mmap'd address
+ if (PointerDiff(BaseBegin(), Begin()) != PointerDiff(source->BaseBegin(), source->Begin())) {
+ *error =
+ "source starts at a different offset from the mmap. Cannot atomically replace mappings";
+ return false;
+ }
+ // mremap doesn't allow the final [start, end] to overlap with the initial [start, end] (it's like
+ // memcpy but the check is explicit and actually done).
+ if (source->BaseBegin() > BaseBegin() &&
+ reinterpret_cast<uint8_t*>(BaseBegin()) + source->BaseSize() >
+ reinterpret_cast<uint8_t*>(source->BaseBegin())) {
+ *error = "destination memory pages overlap with source memory pages";
+ return false;
+ }
+ // Change the protection to match the new location.
+ int old_prot = source->GetProtect();
+ if (!source->Protect(GetProtect())) {
+ *error = "Could not change protections for source to those required for dest.";
+ return false;
+ }
+
+ // Do the mremap.
+ void* res = mremap(/*old_address*/source->BaseBegin(),
+ /*old_size*/source->BaseSize(),
+ /*new_size*/source->BaseSize(),
+ /*flags*/MREMAP_MAYMOVE | MREMAP_FIXED,
+ /*new_address*/BaseBegin());
+ if (res == MAP_FAILED) {
+ int saved_errno = errno;
+ // Wasn't able to move mapping. Change the protection of source back to the original one and
+ // return.
+ source->Protect(old_prot);
+ *error = std::string("Failed to mremap source to dest. Error was ") + strerror(saved_errno);
+ return false;
+ }
+ CHECK(res == BaseBegin());
+
+ // The new base_size is all the pages of the 'source' plus any remaining dest pages. We will unmap
+ // them later.
+ size_t new_base_size = std::max(source->base_size_, base_size_);
+
+ // Delete the old source, don't unmap it though (set reuse) since it is already gone.
+ *source_ptr = nullptr;
+ size_t source_size = source->size_;
+ source->already_unmapped_ = true;
+ delete source;
+ source = nullptr;
+
+ size_ = source_size;
+ base_size_ = new_base_size;
+ // Reduce base_size if needed (this will unmap the extra pages).
+ SetSize(source_size);
+
+ return true;
+#endif // !HAVE_MREMAP_SYSCALL
+}
+
+MemMap* MemMap::MapFileAtAddress(uint8_t* expected_ptr,
+ size_t byte_count,
+ int prot,
+ int flags,
+ int fd,
+ off_t start,
+ bool low_4gb,
+ bool reuse,
+ const char* filename,
+ std::string* error_msg) {
+ CHECK_NE(0, prot);
+ CHECK_NE(0, flags & (MAP_SHARED | MAP_PRIVATE));
+
+ // Note that we do not allow MAP_FIXED unless reuse == true, i.e we
+ // expect his mapping to be contained within an existing map.
+ if (reuse) {
+ // reuse means it is okay that it overlaps an existing page mapping.
+ // Only use this if you actually made the page reservation yourself.
+ CHECK(expected_ptr != nullptr);
+ DCHECK(error_msg != nullptr);
+ DCHECK(ContainedWithinExistingMap(expected_ptr, byte_count, error_msg))
+ << ((error_msg != nullptr) ? *error_msg : std::string());
+ flags |= MAP_FIXED;
+ } else {
+ CHECK_EQ(0, flags & MAP_FIXED);
+ // Don't bother checking for an overlapping region here. We'll
+ // check this if required after the fact inside CheckMapRequest.
+ }
+
+ if (byte_count == 0) {
+ return new MemMap(filename, nullptr, 0, nullptr, 0, prot, false);
+ }
+ // Adjust 'offset' to be page-aligned as required by mmap.
+ int page_offset = start % kPageSize;
+ off_t page_aligned_offset = start - page_offset;
+ // Adjust 'byte_count' to be page-aligned as we will map this anyway.
+ size_t page_aligned_byte_count = RoundUp(byte_count + page_offset, kPageSize);
+ // The 'expected_ptr' is modified (if specified, ie non-null) to be page aligned to the file but
+ // not necessarily to virtual memory. mmap will page align 'expected' for us.
+ uint8_t* page_aligned_expected =
+ (expected_ptr == nullptr) ? nullptr : (expected_ptr - page_offset);
+
+ size_t redzone_size = 0;
+ if (RUNNING_ON_MEMORY_TOOL && kMemoryToolAddsRedzones && expected_ptr == nullptr) {
+ redzone_size = kPageSize;
+ page_aligned_byte_count += redzone_size;
+ }
+
+ uint8_t* actual = reinterpret_cast<uint8_t*>(MapInternal(page_aligned_expected,
+ page_aligned_byte_count,
+ prot,
+ flags,
+ fd,
+ page_aligned_offset,
+ low_4gb));
+ if (actual == MAP_FAILED) {
+ if (error_msg != nullptr) {
+ auto saved_errno = errno;
+
+ if (kIsDebugBuild || VLOG_IS_ON(oat)) {
+ PrintFileToLog("/proc/self/maps", LogSeverity::WARNING);
+ }
+
+ *error_msg = StringPrintf("mmap(%p, %zd, 0x%x, 0x%x, %d, %" PRId64
+ ") of file '%s' failed: %s. See process maps in the log.",
+ page_aligned_expected, page_aligned_byte_count, prot, flags, fd,
+ static_cast<int64_t>(page_aligned_offset), filename,
+ strerror(saved_errno));
+ }
+ return nullptr;
+ }
+ if (!CheckMapRequest(expected_ptr, actual, page_aligned_byte_count, error_msg)) {
+ return nullptr;
+ }
+ if (redzone_size != 0) {
+ const uint8_t *real_start = actual + page_offset;
+ const uint8_t *real_end = actual + page_offset + byte_count;
+ const uint8_t *mapping_end = actual + page_aligned_byte_count;
+
+ MEMORY_TOOL_MAKE_NOACCESS(actual, real_start - actual);
+ MEMORY_TOOL_MAKE_NOACCESS(real_end, mapping_end - real_end);
+ page_aligned_byte_count -= redzone_size;
+ }
+
+ return new MemMap(filename, actual + page_offset, byte_count, actual, page_aligned_byte_count,
+ prot, reuse, redzone_size);
+}
+
+MemMap::~MemMap() {
+ if (base_begin_ == nullptr && base_size_ == 0) {
+ return;
+ }
+
+ // Unlike Valgrind, AddressSanitizer requires that all manually poisoned memory is unpoisoned
+ // before it is returned to the system.
+ if (redzone_size_ != 0) {
+ MEMORY_TOOL_MAKE_UNDEFINED(
+ reinterpret_cast<char*>(base_begin_) + base_size_ - redzone_size_,
+ redzone_size_);
+ }
+
+ if (!reuse_) {
+ MEMORY_TOOL_MAKE_UNDEFINED(base_begin_, base_size_);
+ if (!already_unmapped_) {
+ int result = munmap(base_begin_, base_size_);
+ if (result == -1) {
+ PLOG(FATAL) << "munmap failed";
+ }
+ }
+ }
+
+ // Remove it from gMaps.
+ std::lock_guard<std::mutex> mu(*mem_maps_lock_);
+ bool found = false;
+ DCHECK(gMaps != nullptr);
+ for (auto it = gMaps->lower_bound(base_begin_), end = gMaps->end();
+ it != end && it->first == base_begin_; ++it) {
+ if (it->second == this) {
+ found = true;
+ gMaps->erase(it);
+ break;
+ }
+ }
+ CHECK(found) << "MemMap not found";
+}
+
+MemMap::MemMap(const std::string& name, uint8_t* begin, size_t size, void* base_begin,
+ size_t base_size, int prot, bool reuse, size_t redzone_size)
+ : name_(name), begin_(begin), size_(size), base_begin_(base_begin), base_size_(base_size),
+ prot_(prot), reuse_(reuse), already_unmapped_(false), redzone_size_(redzone_size) {
+ if (size_ == 0) {
+ CHECK(begin_ == nullptr);
+ CHECK(base_begin_ == nullptr);
+ CHECK_EQ(base_size_, 0U);
+ } else {
+ CHECK(begin_ != nullptr);
+ CHECK(base_begin_ != nullptr);
+ CHECK_NE(base_size_, 0U);
+
+ // Add it to gMaps.
+ std::lock_guard<std::mutex> mu(*mem_maps_lock_);
+ DCHECK(gMaps != nullptr);
+ gMaps->insert(std::make_pair(base_begin_, this));
+ }
+}
+
+MemMap* MemMap::RemapAtEnd(uint8_t* new_end, const char* tail_name, int tail_prot,
+ std::string* error_msg, bool use_ashmem) {
+ use_ashmem = use_ashmem && !kIsTargetLinux;
+ DCHECK_GE(new_end, Begin());
+ DCHECK_LE(new_end, End());
+ DCHECK_LE(begin_ + size_, reinterpret_cast<uint8_t*>(base_begin_) + base_size_);
+ DCHECK_ALIGNED(begin_, kPageSize);
+ DCHECK_ALIGNED(base_begin_, kPageSize);
+ DCHECK_ALIGNED(reinterpret_cast<uint8_t*>(base_begin_) + base_size_, kPageSize);
+ DCHECK_ALIGNED(new_end, kPageSize);
+ uint8_t* old_end = begin_ + size_;
+ uint8_t* old_base_end = reinterpret_cast<uint8_t*>(base_begin_) + base_size_;
+ uint8_t* new_base_end = new_end;
+ DCHECK_LE(new_base_end, old_base_end);
+ if (new_base_end == old_base_end) {
+ return new MemMap(tail_name, nullptr, 0, nullptr, 0, tail_prot, false);
+ }
+ size_ = new_end - reinterpret_cast<uint8_t*>(begin_);
+ base_size_ = new_base_end - reinterpret_cast<uint8_t*>(base_begin_);
+ DCHECK_LE(begin_ + size_, reinterpret_cast<uint8_t*>(base_begin_) + base_size_);
+ size_t tail_size = old_end - new_end;
+ uint8_t* tail_base_begin = new_base_end;
+ size_t tail_base_size = old_base_end - new_base_end;
+ DCHECK_EQ(tail_base_begin + tail_base_size, old_base_end);
+ DCHECK_ALIGNED(tail_base_size, kPageSize);
+
+ unique_fd fd;
+ int flags = MAP_PRIVATE | MAP_ANONYMOUS;
+ if (use_ashmem) {
+ // android_os_Debug.cpp read_mapinfo assumes all ashmem regions associated with the VM are
+ // prefixed "dalvik-".
+ std::string debug_friendly_name("dalvik-");
+ debug_friendly_name += tail_name;
+ fd.reset(ashmem_create_region(debug_friendly_name.c_str(), tail_base_size));
+ flags = MAP_PRIVATE | MAP_FIXED;
+ if (fd.get() == -1) {
+ *error_msg = StringPrintf("ashmem_create_region failed for '%s': %s",
+ tail_name, strerror(errno));
+ return nullptr;
+ }
+ }
+
+ MEMORY_TOOL_MAKE_UNDEFINED(tail_base_begin, tail_base_size);
+ // Unmap/map the tail region.
+ int result = munmap(tail_base_begin, tail_base_size);
+ if (result == -1) {
+ PrintFileToLog("/proc/self/maps", LogSeverity::WARNING);
+ *error_msg = StringPrintf("munmap(%p, %zd) failed for '%s'. See process maps in the log.",
+ tail_base_begin, tail_base_size, name_.c_str());
+ return nullptr;
+ }
+ // Don't cause memory allocation between the munmap and the mmap
+ // calls. Otherwise, libc (or something else) might take this memory
+ // region. Note this isn't perfect as there's no way to prevent
+ // other threads to try to take this memory region here.
+ uint8_t* actual = reinterpret_cast<uint8_t*>(mmap(tail_base_begin,
+ tail_base_size,
+ tail_prot,
+ flags,
+ fd.get(),
+ 0));
+ if (actual == MAP_FAILED) {
+ PrintFileToLog("/proc/self/maps", LogSeverity::WARNING);
+ *error_msg = StringPrintf("anonymous mmap(%p, %zd, 0x%x, 0x%x, %d, 0) failed. See process "
+ "maps in the log.", tail_base_begin, tail_base_size, tail_prot, flags,
+ fd.get());
+ return nullptr;
+ }
+ return new MemMap(tail_name, actual, tail_size, actual, tail_base_size, tail_prot, false);
+}
+
+void MemMap::MadviseDontNeedAndZero() {
+ if (base_begin_ != nullptr || base_size_ != 0) {
+ if (!kMadviseZeroes) {
+ memset(base_begin_, 0, base_size_);
+ }
+ int result = madvise(base_begin_, base_size_, MADV_DONTNEED);
+ if (result == -1) {
+ PLOG(WARNING) << "madvise failed";
+ }
+ }
+}
+
+bool MemMap::Sync() {
+ bool result;
+ if (redzone_size_ != 0) {
+ // To avoid valgrind errors, temporarily lift the lower-end noaccess protection before passing
+ // it to msync() as it only accepts page-aligned base address, and exclude the higher-end
+ // noaccess protection from the msync range. b/27552451.
+ uint8_t* base_begin = reinterpret_cast<uint8_t*>(base_begin_);
+ MEMORY_TOOL_MAKE_DEFINED(base_begin, begin_ - base_begin);
+ result = msync(BaseBegin(), End() - base_begin, MS_SYNC) == 0;
+ MEMORY_TOOL_MAKE_NOACCESS(base_begin, begin_ - base_begin);
+ } else {
+ result = msync(BaseBegin(), BaseSize(), MS_SYNC) == 0;
+ }
+ return result;
+}
+
+bool MemMap::Protect(int prot) {
+ if (base_begin_ == nullptr && base_size_ == 0) {
+ prot_ = prot;
+ return true;
+ }
+
+ if (mprotect(base_begin_, base_size_, prot) == 0) {
+ prot_ = prot;
+ return true;
+ }
+
+ PLOG(ERROR) << "mprotect(" << reinterpret_cast<void*>(base_begin_) << ", " << base_size_ << ", "
+ << prot << ") failed";
+ return false;
+}
+
+bool MemMap::CheckNoGaps(MemMap* begin_map, MemMap* end_map) {
+ std::lock_guard<std::mutex> mu(*mem_maps_lock_);
+ CHECK(begin_map != nullptr);
+ CHECK(end_map != nullptr);
+ CHECK(HasMemMap(begin_map));
+ CHECK(HasMemMap(end_map));
+ CHECK_LE(begin_map->BaseBegin(), end_map->BaseBegin());
+ MemMap* map = begin_map;
+ while (map->BaseBegin() != end_map->BaseBegin()) {
+ MemMap* next_map = GetLargestMemMapAt(map->BaseEnd());
+ if (next_map == nullptr) {
+ // Found a gap.
+ return false;
+ }
+ map = next_map;
+ }
+ return true;
+}
+
+void MemMap::DumpMaps(std::ostream& os, bool terse) {
+ std::lock_guard<std::mutex> mu(*mem_maps_lock_);
+ DumpMapsLocked(os, terse);
+}
+
+void MemMap::DumpMapsLocked(std::ostream& os, bool terse) {
+ const auto& mem_maps = *gMaps;
+ if (!terse) {
+ os << mem_maps;
+ return;
+ }
+
+ // Terse output example:
+ // [MemMap: 0x409be000+0x20P~0x11dP+0x20P~0x61cP+0x20P prot=0x3 LinearAlloc]
+ // [MemMap: 0x451d6000+0x6bP(3) prot=0x3 large object space allocation]
+ // The details:
+ // "+0x20P" means 0x20 pages taken by a single mapping,
+ // "~0x11dP" means a gap of 0x11d pages,
+ // "+0x6bP(3)" means 3 mappings one after another, together taking 0x6b pages.
+ os << "MemMap:" << std::endl;
+ for (auto it = mem_maps.begin(), maps_end = mem_maps.end(); it != maps_end;) {
+ MemMap* map = it->second;
+ void* base = it->first;
+ CHECK_EQ(base, map->BaseBegin());
+ os << "[MemMap: " << base;
+ ++it;
+ // Merge consecutive maps with the same protect flags and name.
+ constexpr size_t kMaxGaps = 9;
+ size_t num_gaps = 0;
+ size_t num = 1u;
+ size_t size = map->BaseSize();
+ CHECK_ALIGNED(size, kPageSize);
+ void* end = map->BaseEnd();
+ while (it != maps_end &&
+ it->second->GetProtect() == map->GetProtect() &&
+ it->second->GetName() == map->GetName() &&
+ (it->second->BaseBegin() == end || num_gaps < kMaxGaps)) {
+ if (it->second->BaseBegin() != end) {
+ ++num_gaps;
+ os << "+0x" << std::hex << (size / kPageSize) << "P";
+ if (num != 1u) {
+ os << "(" << std::dec << num << ")";
+ }
+ size_t gap =
+ reinterpret_cast<uintptr_t>(it->second->BaseBegin()) - reinterpret_cast<uintptr_t>(end);
+ CHECK_ALIGNED(gap, kPageSize);
+ os << "~0x" << std::hex << (gap / kPageSize) << "P";
+ num = 0u;
+ size = 0u;
+ }
+ CHECK_ALIGNED(it->second->BaseSize(), kPageSize);
+ ++num;
+ size += it->second->BaseSize();
+ end = it->second->BaseEnd();
+ ++it;
+ }
+ os << "+0x" << std::hex << (size / kPageSize) << "P";
+ if (num != 1u) {
+ os << "(" << std::dec << num << ")";
+ }
+ os << " prot=0x" << std::hex << map->GetProtect() << " " << map->GetName() << "]" << std::endl;
+ }
+}
+
+bool MemMap::HasMemMap(MemMap* map) {
+ void* base_begin = map->BaseBegin();
+ for (auto it = gMaps->lower_bound(base_begin), end = gMaps->end();
+ it != end && it->first == base_begin; ++it) {
+ if (it->second == map) {
+ return true;
+ }
+ }
+ return false;
+}
+
+MemMap* MemMap::GetLargestMemMapAt(void* address) {
+ size_t largest_size = 0;
+ MemMap* largest_map = nullptr;
+ DCHECK(gMaps != nullptr);
+ for (auto it = gMaps->lower_bound(address), end = gMaps->end();
+ it != end && it->first == address; ++it) {
+ MemMap* map = it->second;
+ CHECK(map != nullptr);
+ if (largest_size < map->BaseSize()) {
+ largest_size = map->BaseSize();
+ largest_map = map;
+ }
+ }
+ return largest_map;
+}
+
+void MemMap::Init() {
+ if (mem_maps_lock_ != nullptr) {
+ // dex2oat calls MemMap::Init twice since its needed before the runtime is created.
+ return;
+ }
+ mem_maps_lock_ = new std::mutex();
+ // Not for thread safety, but for the annotation that gMaps is GUARDED_BY(mem_maps_lock_).
+ std::lock_guard<std::mutex> mu(*mem_maps_lock_);
+ DCHECK(gMaps == nullptr);
+ gMaps = new Maps;
+}
+
+void MemMap::Shutdown() {
+ if (mem_maps_lock_ == nullptr) {
+ // If MemMap::Shutdown is called more than once, there is no effect.
+ return;
+ }
+ {
+ // Not for thread safety, but for the annotation that gMaps is GUARDED_BY(mem_maps_lock_).
+ std::lock_guard<std::mutex> mu(*mem_maps_lock_);
+ DCHECK(gMaps != nullptr);
+ delete gMaps;
+ gMaps = nullptr;
+ }
+ delete mem_maps_lock_;
+ mem_maps_lock_ = nullptr;
+}
+
+void MemMap::SetSize(size_t new_size) {
+ CHECK_LE(new_size, size_);
+ size_t new_base_size = RoundUp(new_size + static_cast<size_t>(PointerDiff(Begin(), BaseBegin())),
+ kPageSize);
+ if (new_base_size == base_size_) {
+ size_ = new_size;
+ return;
+ }
+ CHECK_LT(new_base_size, base_size_);
+ MEMORY_TOOL_MAKE_UNDEFINED(
+ reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(BaseBegin()) +
+ new_base_size),
+ base_size_ - new_base_size);
+ CHECK_EQ(munmap(reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(BaseBegin()) + new_base_size),
+ base_size_ - new_base_size), 0) << new_base_size << " " << base_size_;
+ base_size_ = new_base_size;
+ size_ = new_size;
+}
+
+void* MemMap::MapInternalArtLow4GBAllocator(size_t length,
+ int prot,
+ int flags,
+ int fd,
+ off_t offset) {
+#if USE_ART_LOW_4G_ALLOCATOR
+ void* actual = MAP_FAILED;
+
+ bool first_run = true;
+
+ std::lock_guard<std::mutex> mu(*mem_maps_lock_);
+ for (uintptr_t ptr = next_mem_pos_; ptr < 4 * GB; ptr += kPageSize) {
+ // Use gMaps as an optimization to skip over large maps.
+ // Find the first map which is address > ptr.
+ auto it = gMaps->upper_bound(reinterpret_cast<void*>(ptr));
+ if (it != gMaps->begin()) {
+ auto before_it = it;
+ --before_it;
+ // Start at the end of the map before the upper bound.
+ ptr = std::max(ptr, reinterpret_cast<uintptr_t>(before_it->second->BaseEnd()));
+ CHECK_ALIGNED(ptr, kPageSize);
+ }
+ while (it != gMaps->end()) {
+ // How much space do we have until the next map?
+ size_t delta = reinterpret_cast<uintptr_t>(it->first) - ptr;
+ // If the space may be sufficient, break out of the loop.
+ if (delta >= length) {
+ break;
+ }
+ // Otherwise, skip to the end of the map.
+ ptr = reinterpret_cast<uintptr_t>(it->second->BaseEnd());
+ CHECK_ALIGNED(ptr, kPageSize);
+ ++it;
+ }
+
+ // Try to see if we get lucky with this address since none of the ART maps overlap.
+ actual = TryMemMapLow4GB(reinterpret_cast<void*>(ptr), length, prot, flags, fd, offset);
+ if (actual != MAP_FAILED) {
+ next_mem_pos_ = reinterpret_cast<uintptr_t>(actual) + length;
+ return actual;
+ }
+
+ if (4U * GB - ptr < length) {
+ // Not enough memory until 4GB.
+ if (first_run) {
+ // Try another time from the bottom;
+ ptr = LOW_MEM_START - kPageSize;
+ first_run = false;
+ continue;
+ } else {
+ // Second try failed.
+ break;
+ }
+ }
+
+ uintptr_t tail_ptr;
+
+ // Check pages are free.
+ bool safe = true;
+ for (tail_ptr = ptr; tail_ptr < ptr + length; tail_ptr += kPageSize) {
+ if (msync(reinterpret_cast<void*>(tail_ptr), kPageSize, 0) == 0) {
+ safe = false;
+ break;
+ } else {
+ DCHECK_EQ(errno, ENOMEM);
+ }
+ }
+
+ next_mem_pos_ = tail_ptr; // update early, as we break out when we found and mapped a region
+
+ if (safe == true) {
+ actual = TryMemMapLow4GB(reinterpret_cast<void*>(ptr), length, prot, flags, fd, offset);
+ if (actual != MAP_FAILED) {
+ return actual;
+ }
+ } else {
+ // Skip over last page.
+ ptr = tail_ptr;
+ }
+ }
+
+ if (actual == MAP_FAILED) {
+ LOG(ERROR) << "Could not find contiguous low-memory space.";
+ errno = ENOMEM;
+ }
+ return actual;
+#else
+ UNUSED(length, prot, flags, fd, offset);
+ LOG(FATAL) << "Unreachable";
+ UNREACHABLE();
+#endif
+}
+
+void* MemMap::MapInternal(void* addr,
+ size_t length,
+ int prot,
+ int flags,
+ int fd,
+ off_t offset,
+ bool low_4gb) {
+#ifdef __LP64__
+ // When requesting low_4g memory and having an expectation, the requested range should fit into
+ // 4GB.
+ if (low_4gb && (
+ // Start out of bounds.
+ (reinterpret_cast<uintptr_t>(addr) >> 32) != 0 ||
+ // End out of bounds. For simplicity, this will fail for the last page of memory.
+ ((reinterpret_cast<uintptr_t>(addr) + length) >> 32) != 0)) {
+ LOG(ERROR) << "The requested address space (" << addr << ", "
+ << reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(addr) + length)
+ << ") cannot fit in low_4gb";
+ return MAP_FAILED;
+ }
+#else
+ UNUSED(low_4gb);
+#endif
+ DCHECK_ALIGNED(length, kPageSize);
+ // TODO:
+ // A page allocator would be a useful abstraction here, as
+ // 1) It is doubtful that MAP_32BIT on x86_64 is doing the right job for us
+ void* actual = MAP_FAILED;
+#if USE_ART_LOW_4G_ALLOCATOR
+ // MAP_32BIT only available on x86_64.
+ if (low_4gb && addr == nullptr) {
+ // The linear-scan allocator has an issue when executable pages are denied (e.g., by selinux
+ // policies in sensitive processes). In that case, the error code will still be ENOMEM. So
+ // the allocator will scan all low 4GB twice, and still fail. This is *very* slow.
+ //
+ // To avoid the issue, always map non-executable first, and mprotect if necessary.
+ const int orig_prot = prot;
+ const int prot_non_exec = prot & ~PROT_EXEC;
+ actual = MapInternalArtLow4GBAllocator(length, prot_non_exec, flags, fd, offset);
+
+ if (actual == MAP_FAILED) {
+ return MAP_FAILED;
+ }
+
+ // See if we need to remap with the executable bit now.
+ if (orig_prot != prot_non_exec) {
+ if (mprotect(actual, length, orig_prot) != 0) {
+ PLOG(ERROR) << "Could not protect to requested prot: " << orig_prot;
+ munmap(actual, length);
+ errno = ENOMEM;
+ return MAP_FAILED;
+ }
+ }
+ return actual;
+ }
+
+ actual = mmap(addr, length, prot, flags, fd, offset);
+#else
+#if defined(__LP64__)
+ if (low_4gb && addr == nullptr) {
+ flags |= MAP_32BIT;
+ }
+#endif
+ actual = mmap(addr, length, prot, flags, fd, offset);
+#endif
+ return actual;
+}
+
+std::ostream& operator<<(std::ostream& os, const MemMap& mem_map) {
+ os << StringPrintf("[MemMap: %p-%p prot=0x%x %s]",
+ mem_map.BaseBegin(), mem_map.BaseEnd(), mem_map.GetProtect(),
+ mem_map.GetName().c_str());
+ return os;
+}
+
+void MemMap::TryReadable() {
+ if (base_begin_ == nullptr && base_size_ == 0) {
+ return;
+ }
+ CHECK_NE(prot_ & PROT_READ, 0);
+ volatile uint8_t* begin = reinterpret_cast<volatile uint8_t*>(base_begin_);
+ volatile uint8_t* end = begin + base_size_;
+ DCHECK(IsAligned<kPageSize>(begin));
+ DCHECK(IsAligned<kPageSize>(end));
+ // Read the first byte of each page. Use volatile to prevent the compiler from optimizing away the
+ // reads.
+ for (volatile uint8_t* ptr = begin; ptr < end; ptr += kPageSize) {
+ // This read could fault if protection wasn't set correctly.
+ uint8_t value = *ptr;
+ UNUSED(value);
+ }
+}
+
+void ZeroAndReleasePages(void* address, size_t length) {
+ if (length == 0) {
+ return;
+ }
+ uint8_t* const mem_begin = reinterpret_cast<uint8_t*>(address);
+ uint8_t* const mem_end = mem_begin + length;
+ uint8_t* const page_begin = AlignUp(mem_begin, kPageSize);
+ uint8_t* const page_end = AlignDown(mem_end, kPageSize);
+ if (!kMadviseZeroes || page_begin >= page_end) {
+ // No possible area to madvise.
+ std::fill(mem_begin, mem_end, 0);
+ } else {
+ // Spans one or more pages.
+ DCHECK_LE(mem_begin, page_begin);
+ DCHECK_LE(page_begin, page_end);
+ DCHECK_LE(page_end, mem_end);
+ std::fill(mem_begin, page_begin, 0);
+ CHECK_NE(madvise(page_begin, page_end - page_begin, MADV_DONTNEED), -1) << "madvise failed";
+ std::fill(page_end, mem_end, 0);
+ }
+}
+
+void MemMap::AlignBy(size_t size) {
+ CHECK_EQ(begin_, base_begin_) << "Unsupported";
+ CHECK_EQ(size_, base_size_) << "Unsupported";
+ CHECK_GT(size, static_cast<size_t>(kPageSize));
+ CHECK_ALIGNED(size, kPageSize);
+ if (IsAlignedParam(reinterpret_cast<uintptr_t>(base_begin_), size) &&
+ IsAlignedParam(base_size_, size)) {
+ // Already aligned.
+ return;
+ }
+ uint8_t* base_begin = reinterpret_cast<uint8_t*>(base_begin_);
+ uint8_t* base_end = base_begin + base_size_;
+ uint8_t* aligned_base_begin = AlignUp(base_begin, size);
+ uint8_t* aligned_base_end = AlignDown(base_end, size);
+ CHECK_LE(base_begin, aligned_base_begin);
+ CHECK_LE(aligned_base_end, base_end);
+ size_t aligned_base_size = aligned_base_end - aligned_base_begin;
+ CHECK_LT(aligned_base_begin, aligned_base_end)
+ << "base_begin = " << reinterpret_cast<void*>(base_begin)
+ << " base_end = " << reinterpret_cast<void*>(base_end);
+ CHECK_GE(aligned_base_size, size);
+ // Unmap the unaligned parts.
+ if (base_begin < aligned_base_begin) {
+ MEMORY_TOOL_MAKE_UNDEFINED(base_begin, aligned_base_begin - base_begin);
+ CHECK_EQ(munmap(base_begin, aligned_base_begin - base_begin), 0)
+ << "base_begin=" << reinterpret_cast<void*>(base_begin)
+ << " aligned_base_begin=" << reinterpret_cast<void*>(aligned_base_begin);
+ }
+ if (aligned_base_end < base_end) {
+ MEMORY_TOOL_MAKE_UNDEFINED(aligned_base_end, base_end - aligned_base_end);
+ CHECK_EQ(munmap(aligned_base_end, base_end - aligned_base_end), 0)
+ << "base_end=" << reinterpret_cast<void*>(base_end)
+ << " aligned_base_end=" << reinterpret_cast<void*>(aligned_base_end);
+ }
+ std::lock_guard<std::mutex> mu(*mem_maps_lock_);
+ base_begin_ = aligned_base_begin;
+ base_size_ = aligned_base_size;
+ begin_ = aligned_base_begin;
+ size_ = aligned_base_size;
+ DCHECK(gMaps != nullptr);
+ if (base_begin < aligned_base_begin) {
+ auto it = gMaps->find(base_begin);
+ CHECK(it != gMaps->end()) << "MemMap not found";
+ gMaps->erase(it);
+ gMaps->insert(std::make_pair(base_begin_, this));
+ }
+}
+
+} // namespace art